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Free Brownian motion of a particle driven by a dichotomous random force
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Dynamic behavior of free Brownian motion of a particle driven by dichotomous (random tele-

graphic) colored noise has been treated based on the ordinary Langevin equation. The treatment
makes direct use of the characteristic function without using the Fokker-Planck equation. The con-
ditional probability density in the case where inertial effects are neglected has been obtained exactly
as a function of the position of the particle, and it is shown that starting from the Dirac 5 function
at t =0, the probability density exhibits 5 functions at both extremes at early times, and the ampli-
tudes of the 5 functions gradually vanish as time goes on. It is shown that this presence of 5 func-
tions at the early stage is associated with dichotomous noise. The characteristic function for the
Langevin equation with complete consideration of inertial effects has also been obtained exactly.

I. INTRODUCTION

The importance of dichotomous or random telegraphic
colored noise has long been realized, first by communica-
tion engineers, ' and subsequently by physcists and chem-
ists. Dichotomous noise takes either the value of +E or
—E with a frequency y at time t and gives rise to an ex-
ponentially decaying correlation function. The Fokker-
Planck equations for a fluctuating system with dichoto-
mous noise have been obtained by Klyatskin and by Ki-
tahara, Horsthemke, and Lefever with a view to investi-

gating the equilibrium or stationary properties. Ishii and
Kitahara treated dynamic problems based on a class of
stochastic differential equations in the Laplace-
transformed domain of time. However, we note that
essential results for the dynamic processes have not been
satisfactorily obtained for the conditional probability
density as an explicit function of space and time.

In this paper we shall consider two fundamental prob-
lems whose properties in the case of white noise are fully
known, namely, free Brownian motion of a particle
driven by dichotomous noise. To this end, we start with
the ordinary Langevin equation whose formal solution
enables us to obtain the characteristic function directly
by using the method of averaging without reference to
the Fokker-Planck equation. By Fourier inversion of the
characteristic function, we shall calculate the conditional
probability density of the position of the particle, x, at
time t for case (i) where inertial effects in the Langevin
equation are ignored, which corresponds to the high-
viscosity limit treated by Einstein for the diffusion of a
particle in a fluid with a white-noise random force. It is
found that the conditional probability density starting
with the Dirac 5 function centered at the initial position
at t =0 still has Dirac 5 functions as time goes on at the
two extremes which correspond to the case where the
process consists entirely of +E or —E up to t without ex-
ception. These 5 functions appear explicitly in the early
stage and vanish as time goes on, because they are multi-
plied by the factor exp ( yt I2). We show t—hat this ap-
pearance of the 5 functions at the early stage is limited
not only to the present particular cases but also to the

general one with dichotomous noise. It should be point-
ed out that, even though the density is not a continuous,
finite function at the ends, average values obtained from
the density behave normally. The non-Gaussian charac-
ter of the present nonwhite Markov dichotomous noise
thus will be demonstrated explicitly.

Secondly, we shall calculate the characteristic function
exactly for case (ii) where inertial effects are fully taken
into account based on the Langevin equation. The proba-
bility density as a function of the velocity of the particle u

and t, this time is represented by a convolution integral.
Numerical calculations to obtain the conditional proba-
bility density also lead to 5 functions at the extremes at
short time. This case a1so corresponds to an L,R circuit
subject to a randomly fluctuating dichotomous e.m.f. and
Brownian motion of a particle in a harmonically bound
potential with neglect of inertial effects.

II. THEORY

A. Calculation of conditional probability density in case (i)

We write the equation of motion by neglecting inertial
effects in the Langevin equation as follows:

This equation of motion corresponds to the case which
Einstein investigated, Brownian motion where A,(t) is
white noise. But in the present work we assume that A,(t)
in Eq. (1) is centered dichotomous noise with the follow-
ing properties:

(2)

(3)

Note that by keeping E ly constant and letting y ~ oo,
we obtain the 5 function on the right-hand side of Eq. (3),
which corresponds to the case for white noise. Equation
(1) can be readily integrated formally and it is well known
that the Laplace transform of the characteristic function
4(u, s) with respect to t is given by
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4(u, s) =L((exp[ —iux(t)]) )

t=L exp —iu f X(t')dt'
0

=f (exp( —iux))e "dt
0

1

s+[u E /(s +y)]
(4)

where the initial position x (0)=xo =0 without the loss of
the generality in the formulation. In obtaining Eq. (4),
we have used the assumption that A,(t) is a Poisson pro-
cess so that the nonoverlapping time ranges are indepen-
dent, namely,

(&(t&)&(t2) &(t2 &)&(t2 ))=(&(t,9(t2))(&(t3)&(t&)) (&(t»)&(t& )),

where
S —[( + )2+ 2] /2

ti —t2 — —t2m .
and P(x, t) represents the conditional probability density.

The inverse Fourier transform of both sides in Eq. (4) The inverse Laplace transform of F(x,s) with respect to s
with respect to u may be readily obtained. The result is can be obtained (see p. 249 of Ref. 5)

L P (x, t) = [(s +y')+ y']F(x, s),=1
2E

where

1 xF(x,s) = —exp ——S
S E

in which

(7)

L '(F(x, s)) =e r 'Io(y )H t ——

where Io(z) is the modified Bessel function, H(z) is the
Heaviside step function, and

' 1/2

r'=r' '-"
Similarly, it follows that

L '((s+y')F(x, s))=e ~' y' I~(y")H t ——+5 t ——
E (9)

Therefore P(x, t) for x «0 is given by

P(x, t)= y e ''H t I,—(y—')+y' I, (y') + e r'5 t
4E 0 2E E (x «0) . (10)

Note that P (x, t) is an even function of x. It is immedi-
ately evident that P(x, t) is not Gaussian and has 5 func-
tions at t+ =(x/E) and t = —(x/E), which are pro-
nounced particularly at short times where the factor exp
(
—y't ) is not sufficiently small. It is seen that these posi-

tions correspond to the case in which the random force
consists of nothing but +E all the way up to t, or —E,
respectively, for t+ and t . These positions may be re-
garded as boundaries for P(x, t) in the white-noise case
where 5 functions are absent. It should be noted that
even though P (x, t) at the early stage behaves rather
anomalously, the characteristic function @(u,s) in Eq. (4}
is not discontinuous. In fact, it is obvious from Eq. (4}
that

I

(exp[ iux (t)])=—e ~ ' cosh(y„t )+ sinh(y„t)
Q

where

y =-'(y —4u E )

which corresponds to the overdamped oscillator case.

B. Calculation of the characteristic function for case (ii}

du (t)/dt = 13u(t)+ k(t)— (12)

with the assumptions in Eqs. (2) and (3) for A,(t). This
equation also corresponds to the circuit equation for an
(L,R) system subject to the fluctuating dichotomous emf,
if U (t) is regarded as the current i (t). The particular case
of P=O in Eq. (12) corresponds to Eq. (1). In addition,
Eq. (12) is the equation of motion for a particle undergo-
ing Brownian motion under a harmonically bound poten-
tial with neglect of inertial effects in which case v(t) is
the position of the particle.

Now, we shall move to another fundamental case of
Brownian motion which is governed by the ordinary
Langevin equation:
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The formal solution for Eq. (12) is given by

v (t) =e ~ J e~ A(t')dt
0

(13)

where v (0)= vo =0 has been assumed. To calculate the
characteristic function for this case, we should know the
moments:

'Zm

(v (t))=(2m)!e ~' . exp[p(t, +t2+ +t2 )](A(t, ))l(tz) . A(tz ))dt, dt2 . . dt2

where m is an integer. Equation (2) enables us to find

( v2m+1(t) ) —0

(14)

In view of Eqs. (3) and (5), we find after using the Laplace-transform technique that

E2 1
(v (t)) =(2m)!

2p 0!m!(c+ 1)(c +3) [c +(2m —1)]
4

—2'
+

1!(m —1)!(—c + 1)(c + 1)(c +3) [c +(2m —3)]
—4pt

+ e

2!(m —2)!(—c+1)(—c+3)(c+1)(c+3) [c+(2m —5)]
—2m I3t

+ +
m!0!(—c + 1)(—c + 3) . [—c + (2m —1)]

~
—(y+P)t—2

0!(m —1)!(c+ 1)(—c + 1)( —c +3) [ —c +(2m —1)]
—(y+3P)r—2

1!(m —2)!(c+1)(c+3)(—c+1)(—c+3) [ —c+(2m —3)]
—[y+(2m —1)P'tt

(m —1)!0!(—c + 1)(c + 1)(c +3) [c +(2m —1)]

where

(15)

C =

In order to obtain the characteristic function from Eq. (15), we sum each coeScient for exp ( 2m j3t ) and—that for exp
I
—[y+(2m —1 )P]t I, finding that

(c+1) z (
—c+1) z 2tt,

e 'r+~"
(
—c+3) z (c+3) z

(c+1)(—c+1) 2
'

2 ' 2
'

2
(16)

where

Z2 Z3
Z = Q 1F](a;Z)=1+ + + +.

2p
' ' ' ' 1!a 2!a(a+1) 3!a(a+1)(a+2)

in which, F, (a;z) is a confluent hypergeometric function. Equation (16) can be rewritten by using the identity

3'
1 1F v+1'—

4
=I (v+ I)

2

as
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' —(1/2)( c —1)
uE uE

e(u, t) = r(-,'(c +1))r(-,'( —c+1))
2

J( 1/2)( c —1 )

uE p,
2P

(1/2)(c + 1)
uE p,J—(1/2)(c+ 1) p

—(y+P)f
+

(c +1)(—c +1)

2 (1/2)( —c + 1)

r( —,'( —c +3))r( —,'(c +3)}

uE
(1/2)( —c + 1) p

uE p,
2P

' (1/2)(c+ 1)
p,

~(1/2)(c+)) p
(17)

In order to calculate the inverse Fourier transform of Eq. (17), we find it useful to note the relations (see p. 123 of Ref.
5):

1 r((c =1)/2) P P
v'~ I (c/2) E e

' 2 —(c/2) —2

xp

1 (c+1) 1 uE
2m — ' ' 2

' 4 P

1 (
—c+3) z;„„1P I (( —c+3)/2)

2m. — ' '
2

'
2 v'~ E I (( —c+2)/2)

' 2 c/2
1 F c+3 z 2p, —;„„& 1 I c+3 2 p, 1

e '—e' 1 — x
2m —~ 2

' 2 v'~ I ((c+2)/2) E E

c c(c+1) E

2

(18)

III. DISCUSSION

It has not been noted in previous studies as far as the
author knows that P(x, t) has 5 functions at the boun-
daries as seen in Eq. (10). The 5 functions arise from the
fact that at short times there is still a relatively high
probability that the Brownian particle takes all steps en-
tirely to the right or left without a single failure. The lo-
cation of the boundaries can be readily checked in Eq. (1)
by putting A, (t)=E or E, which leads to—

x+ =Et and x = —Et,
where x+ and x represent the positions of the particle
which takes all steps to the right or left. Even for the
general case where

dx (t)
dt

=M(x)+X(x)A.(t) (19)

the position of the 5 functions can be found easily by put-
ting A(t) =E or E in the starting st—ochastic differential
equation. This indicates that a general system subject to
random dichotomous noise will exhibit a conditional
probability density with 6 functions at boundaries partic-
ularly at short times with small y. Although it has been

Then the inverse can be obtained by using the convolu-
tion theorem stating that if

f f(x)e '""dx

=f f)(x)e '""dx f f2(x)e '""dx,

then

f (x)=f f1(x x')f, (x')dx' . —

shown in previous studies that the equilibrium or sta-
tionary density is nonzero in a limited range, it does not
exhibit 5 functions at the extremes of the range. This can
be understood in view of the fact that as t approaches
infinity, we can totally rule out the possibility of all
successes or failures. Hence in equilibrium, the density
does not have spikes, whereas in the dynamic case for
small t, it does. The white-noise case does not lead to
spikes in the dynamics, because except at t =0, the ran-
dom variable can take, in principle, any value from —ao

to ao with the prescribed probability and this can also be
seen from the fact that the white-noise limit is obtained
by keeping E /y while letting y tend to infinity, which
will remove the probability of all successes or failures.
We can regard the appearance of the 5 functions as the
presence of moving boundaries at x =x+ and x with
the probability (not the density) of —,'exp( y't ) of fin—ding
the particle at each boundary, which follows by integrat-
ing the second term on the right-hand side of Eq. (10)
with respect to x. Hence the total probability of finding
the particle between the boundaries is given by
1 —exp( y't ). If we c—alculate the probability from 0() to
x1 which is greater than zero, and less than x+ by in-

tegrating the second term in Eq. (10), it suddenly goes up
at x =x+ from zero to —,'exp( y't } and increase due t—o
the contribution from the area between the boundary and
x1. Therefore, physically, the presence of the 6 functions
in P(x, t) at the boundaries arising from dichotomous
noise can be reduced to that of the moving boundaries
with a time-varying ability of attracting and reflecting the
particle. It is interesting to note that in the early stage
dichotomous noise leads to a probability density which is
a mixture of the 6 functions at the boundaries with the
ordinary smooth non-Gaussian distribution between
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them. It should be pointed out that the same conclusion
is also true for the general case where Eq. (19) is valid.

Plots of P(x, t} obtained from Eq. (10) are shown in

Fig. 1 together with the corresponding Gaussian cases
(dotted curves) and with the 5 functions represented by
vertical lines where the relative contribution from the
functions is indicated by their heights. It is obvious in
Eq. (10) that if we do not take into account the 5 func-
tions, the normalization condition that

f" P(x, t)dx =1

cannot be fulfilled, because we do not take into account
the probability concentrated at the boundaries. This is
another reason why the 5 function must be present in
P(x, t). This fact also may be checked for P(x, t) in Fig.
1 for short time by comparing the corresponding Gauss-
ian curve where the area under the curve for P(x, t}
without the 5 functions for the dichotomous noise is con-
siderably smaller than that for the Gaussian curve. It
should be mentioned that although P(x, t) has discon-
tinuities due to the presence of the 5 functions, the aver-
age which is the integral with P (x, t ) takes ordinary
smooth behavior.

In order to check the white-noise limit in Eq. (10), let
us put y~~ keeping (E /y) constant. It follows in
view of the relation

lim I (y')=
r' ~ (2ny')'~

that

E2
P(x, t)= 4m.

r

' —1/2

exp
X

4(E'/y }t

which is nothing but the Gaussian distribution for the
motion of a random walker with the variance
(x (t)) =2E2t/y. Figure 2 shows plot of P(x, t) for
y=1 from which it is seen that the time evolution is
highly difFerent from that of Fig. 1 in that the area made
under P(x, t) is significantly smaller than 1, which is
1 —exp( —yt /2), and the former is far from the Gaussian
distribution (dotted curves).

Although it seems diScult to discuss even the white-
noise limit in Eq. (16) by considering the dynamics, the
equilibrium or stationary property of 4(u, t) can be
found, because

lim 4(u, t)=,F, (c+1) z
t~ao ' ' 2 2

In view of Eq. (18), it follows that

1 I ((c+1)/2) p Up

v ~ 1(c/2) E E

' 2 (c/2) —1

(20)

where P, (U) is the equilibrium density. This agrees fully
with the equilibrium density deduced from the method
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FIG. 1. Plots of P (x, t) in Eq. (9) vs x as a function of t The.
time t is 0.05, 0.1, 0.2, 0.35, 0.5, 1.0, and 2.5 from the top to the
bottom curves viewed from x =0 with @=10 and E =0.1.
Dotted curves represent the corresponding Gaussian process
when white noise is introduced. The spikes represent 5 func-
tions, and their decrease in height as t becomes large represents
the relative contribution from the 5 functions.

FIG. 2. Plots of P(x, t) in Eq. (9) vs x as a function of t The.
time t is 0.05, 0.1, 0.35, 1.0, and 2.0 from the top to the bottom
curves viewed from x =0 with @=1 and E'=1.0. Dotted
curves represent the corresponding Gaussian process when
white noise is introduced. The spikes represent 5 functions, and
their decrease in height as t becomes large represents the rela-
tive contribution from the 5 functions.
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based on the Fokker-Planck equation, which was not
used in our derivation of Eq. (20), confirming the agree-
ment of the two independent approaches. The white-
noise limit can be obtained for Eq. (20) by using the rela-
tion

I ((c+1)/2}
lim c/2

c I (c/2)

leading to

exp
2E

This relation gives the Boltzmann distribution after using
the fluctuation-dissipation theorem. It is obvious in Eq.
(20) that the dichotomous noise leads to a non-Boltzmann
distribution as t~ ao and P, (v) has the transition point
at c =2; for c &2 P, (v) has the maximum at v =0,
whereas for c & 2, it has minimum at U =0.

Although we could obtain the moments and the
characteristic function exactly in case (ii) [cf. Eq. (16)],
the probability density P(v, t) was expressed by the con-
volution integral. Thus we have carried out numerical

FIG. 4. Limit cycle plot for [dx (t)/dt] = Px(t—)+A(t)

calculations of case (ii) whose results are shown in Fig. 3

again together with the white-noise case for y =10. It be-
comes also clear that dichotomous noise leads to the 5
functions at the boundaries just as in case (i}.

Finally we show why we have the noise-induced transi-
tion at c =2. If we write

I t

I

i I I I

I

I I I 1

I

I I I I

I

I t l I

I

I I t I

and

P+(x) = —Px+E

30— (x)= —Px E—

Qp

15—

10—

0
—0.15 —0.10 —0.05

iii I

0.0 0.05 0.10
.i.

0.15

FIG. 3. Plots of P(v, t) for case (ii) vs v as a function of t for
E =0.5, P=1.0, and y=50. The time t is 0.015, 0.03, 0.045,
0.075, 0.12, 0.195, and 0.3 from the top to the bottom curves
viewed from v =0. Dotted curves represent the corresponding
Gaussian process when white noise is introduced. The spikes
this time have finite widths due to the fact that the solid curves
are obtained from a numerical analysis, but these spikes essen-
tially should be identical to those indicated by vertical lines in
Fig. 1.

by putting A,(t)=E and E in Eq. (1—2), we see that P's
represent the velocity as shown in Fig. 4, which may be
regarded as a phase diagram. It is seen easily that the
motion should be confined within the parallelogram
shown by the bold lines, because once dx(t)/dt =0 is
reached, the system no longer moves. Hence it must be
on either the upper or lower line with transition whose
frequency is determiend by y. Thus if y is large, whose
case is indicated by the short-dashed line in Fig.4, since
starting from x =0, the system on the upper line makes
the movement of x increase, because of the positive veloc-
ity in the region, while that on the lower line makes it
decrease so that the motion will be mostly confined near
x =0 with frequent transition between the two lines,
P(x, r) has the maximum at the stable point of x =0.
Whereas, if y is small, whose case is indicated by the dot-
ted line in Fig. 4, even though x =0 is still the stable
point, the system can stay on either line longer, which
eventually drives the system near the points where
dx(t)/dt =0, leading to P(x, t) with the minimum at
x =0. We therefore see that there should be the noise-
induced transition which is independent of E. This kind
of plot, which is similar to a limit cycle, becomes quite
useful when we consider the dynamic process intuitively.
In our case of dichotomous noise, the trajectory the sys-
tern takes is either P+(x) or P and the transition be-
tween the two states is governed statistically so as to
satisfy the Chapman-Kolmogorov equation which arises
from the assumption that the process is Markovian.
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