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We study the Brownian motion in velocity-dependent fields of force. Our main result is a Smolu-

chowski equation valid for moderate to high damping constants. We derive that equation by per-

turbative solution of the Langevin equation and using functional derivative techniques.

A great variety of random processes arising in physical
sciences are described by Brownian motion of few
relevant degrees of freedom. In many cases the equation
that governs the dynamics of such processes is Kramers's
equation, which is a special Fokker-Planck equation
describing Brownian motion in a (potential) field of force.
In the high friction limit, Kramers's equation reduces to
a Fokker-Planck equation for the probability density of
the position coordinate only. This is the so-called Smolu-
chowski equation.

There is a wide field of applicability of the Kramers
and Smoluchowski equations (that is, of the Brownian
motion in a field of force): chemical kinetics, ' astrophy-
sics, ' nonlinear optics, ' electromagnetism, and solid-
state physics and electronics.

The Smoluchowski equation, first derived by M. von
Smoluchowski in 1915,"was rederived by Kramers' and
Chandrasekhar from Kramers's equation (i.e., the two-
dimensional Fokker-Planck equation in phase space).
Later on it was shown that the Smoluchowski equation is
the first-order approximation of an inverse friction ex-
pansion of Kramers's equation. ' The starting
point of all of these derivations is Kramers's (Fokker-
Planck) equation and it is generally applied to dynamical
systems in coordinate-dependent fields of force. With few
exceptions' these derivations deal only with one-
dimensional potential fields and none of them treats the
case of a nonpotential velocity-dependent field.

In this paper we want to address the problem of
Brownian motion of multidimensional systems in nonpo-
tential velocity-dependent fields of force. One meets such
processes in dealing with self-oscillatory systems, ' re-
laxation processes in plasmas, ' and magnetic sys-
tems. ' ' They are also of interest in relation to stellar dy-
namics and reaction rates in relativity and astrophy-
S1cs.

Our main result will be a Smoluchowski equation valid
for moderate to high damping constant. We will obtain
this equation by solving perturbatively the Langevin
equation (instead of Kramers's equation) and using the
so-called functional derivative method. ' '

The starting point of our analysis is the Langevin
equation for the position x and velocity v of a Brownian
particle initially at (xo, uo) in the presence of an external
nonpotential field

d d+ =P ' f xv+P 'u (z), +rj(r)
dr d~

(3)

with the initial conditions

dQ
u (0)=0, =Uo

dr

Here rt(r) =g(rip) is a Gaussian white noise with zero
mean and correlation function

(i)( )rrt(r2)) =pD5(r, —rq) .

We define the "scaled velocity" of the process as

du (r) dx (t)
dr dt

(4)

For each realization of the noise i)(r) we have a trajecto-
ry in the phase space which is a solution of Eq. (3). We
write this solution in the form [cf. Eqs. (2) and (5)]

dxu(r) =u(rxo, vo, [r)])=p
d7

where the symbol [rt] stands for functional dependence
on noise. The reduced density of trajectories in the
configuration space

p(x;rlxo, vo, [rj])—&(x —x(r))

0= —Pu+ f(x,v)+g(t),
where p is the damping, f (x, u) is the acceleration pro-
duced by the external field, and g(t) is a Gaussian 5-
correlated (white) noise with zero mean. We shall assume
that the external field f (x, v) is an analytic function in x
and U, such that in the high friction limit the damping
dominates over the field [i.e., f(x, u)l &alul, 0&a&p].
It is easily shown that this assumption allows us to seek a
solution to Eq. (l) in the form

x (t)=xo+p 'u(r)—:x(r), (2)

where r=pt is a new time scale and p 'lu(r, p)l goes to
zero as p tends to infinity. ' Equation ( 1 ) is then
equivalent to
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obeys the continuity equation

5(x —x(T))+P ' [v(T)5(x —x(T))]=0 .
B~ Bx

Averaging over all realizations of the noise and integrat-
ing over all possible initial velocities, with a given proba-

bility density p(up), we get the probability density func-
tion

p«Tlxp)= f dupp(up)&p(x Tlxp Upi[TI]) &,

which obeys the equation

p(x, ~xo)= —p ' f du p(u ) &v(T)p(X, Tix, uo, [TI])& .
T ax

(8)

Since the scaled velocity u(T) depends functionally on T)(T), our next step will be to evaluate the average on the right-
hand side of Eq. (8). Due to the linearity of the noise term in Eq. (3), we may define the "stochastic velocity" as

U ( T; [TJ ]}= V ( T; [TI ]} Ud ( T},
where v(T, [g]) is the derivative of the solution of Eq. (3) and ud(T) is the derivative of the solution of Eq. (3) when

Ti(T) =0 (i.e., the deterministic velocity). Thus

& V(T; [T)]}P(XTlxp Vp'['g]) &
=

& Vd(T)P(X TIXpv up( [TI])&+ & V, (T;[Ti])P(XvTIXpv up( [TI])& .

In order to evaluate the last term of Eq. (10) we shall use the Dubkov-Malakov formula:

& V, (T;[T)])P(X Tlxpv Vpv [T)])&
=

& V, (Tl [TI])& &P(»Tlxpv Vpv[TI]) &

(10)

](D 5 v (T;[ ])v()( Bv(v, v(lvp, vv;[v(](

)
+ dT] dT„n! o

'
o

" 5TI(T]) 5TI(T„) 5TI(T]) ' 5TI(T„)

where the symbol 5/5TI(T} means functional derivative. Now the high friction assumption allows a perturbative solu-
tion to Eq. (3) by a series expansion in the small parameter P

$1
g(T)=vo(1 —e ")+p 'f ds, e ' f ds&e '[f(s2)+Tl(s2)]

Si
+P f 'ds, e "f ds2 (e"—1)A(s2)uo+B(s2) f 'ds e'[f (s)+g(s)]

0 0 0

Sl
+P f ds, e ' f ds2e -'

—,'uoA'(s2)(1 e')—
0 0

S~ S 2+ —,'e 'B'(sz) f ds3e ' f ds e'[f (s3)+g(s3)][f(s)+Ti(s)]
0 0

$2

+upC(s2)(1 —e ')e ' f ds e'[f (s)+g(s)]

+ A (s2)f ds3e ' f ds e'[f (s)+q(s)]
0 0

Sp

+B(s2)e ' f ds (e' —1)A (s)vp+B (s)f dr e "[f(r)+T)(r)] .+0(P ), (12)
0 0

where

f (T)=f(xo, vpe '), A(T)= A (xp vpe '):—af(y, z}
By

and, similarly,

af(y,z), a f(y, z}
2az ay

B'(y, z)—: " ', C (y, z)—:a'f(y, z) a'.f(y, z)

7

(xo, Uoe )

(13a)

(13b)

(13c)

In Appendix A we show that
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and

(U, [|;[|)]&ptx|xo, uo;[|&]))=[U,t|;[vg]&)(5(x —x)|&))—zDB t& —e '&

( )+0&]&

(u, (~;[q]))=4DP e 'f ds(e' —e ')B'( s)+O{P ) .

(14)

(15)

In the asymptotic limit ~)) 1, we have

(u, {r;[g])p(x,rixo, uo;[rt]})= —,]DP B'(x[],0)(5(x —x{r}) ]D—P— (5{x—x(~)) )+O(P, e ') . (16}

Since x(r) =xo+O(P ', e ') [cf. Eqs. (2) and (12) ] then, up to the same order of approximation as in Eq. (16), we may
write

(u, (r;[ri])p(x, r~xouo,'[rt])}= ,'Dp '-B'(x, O)(5(x —x(r))) ,'Dp—'—(5(x—x(r))}+O(p ', e ') .

On the other hand, it is shown in Appendix B that

(uz(r)5(x —x(r))) =P '[f(x,O)+P 'B(x,O)f (x,O)](5{x—x( r) }) +O(P, e ') .

The substitution of Eqs. (18), (17},and (10) into Eq. (8) results in a Fokker-Planck equation for the probability density

p(x, ri]xo), that, expressed in the original time scale t =P r, reads

—p(x, r~xo)= — I[P 'f(x, O)+P B(x,0)f (x,O)+ —,&DP B'(x,O)]p(x, rjxo))
X

2

+ &DP —p( ,xi rx)o+O(P, e~') .
[}x

(19)

Following an analogous reasoning we can derive the Smoluchowski equation for a three-dimensional Brownian parti-
cle with position x=(x',x,x ) and velocity v=(u', u, u ) in a nonpotential fiel f(x, v). The final result is

8
p(x, t~—xo)= — „[[P 'f"(x,O)+P B,"(x,0)f'(x, O)+ ,'DP 5' B—["( x0)]p( xti xo) I

+ &DP 5"' — p(x, t ixo)+ O(P, e ~')—2 kl

[}x [}x
(20)

(summation over repeated indices is understood). Where
5"' is the Kronecker symbol and

B,"(x,v) = ' B]" (x,v)—: ' (21)

Equation (19) [Eq. (20)] is the Smoluchowski equation for
Brownian motion of systems in nonpotential velocity-
dependent fields of force. For velocity-independent fields
we have

B (x,O}=B'(x,O) =0

and Eq. (19) [Eq. (20)] reduces to previous re-
sults. ' ' ' Up to order P, Eq. (19) [Eq. (20)] still
remains a Fokker-Planck equation. Nevertheless, the in-
clusion of higher-order terms breaks down this structure
since higher-order derivatives of p(x, t ixo) appear linked
to these terms. A peculiarity of Eq. (19) [Eq. (20)] is that
the diffusion coefficient D also occurs in the drift term.

I

This fact is a consequence of the nonlinear character of
Eq. (1) which results in nonlinear noise terms in its per-
turbative solution [cf. Eqs. (12) and (1S)]. We should note
that other possible approaches (e.g., the adiabatic approx-
imation ' ) fail to produce that term. The reason for it
lies in the fact that the asymptotic limit 13t )) 1 and the
operation of averaging ( ) may not commute due to the
character of the generalized function of the white noise
g(t) 30
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APPENDIX A: DERIVATION OF EQS. (14) AND (15)

From Eqs. (5), (9), and (12) we have

u, (r[g])=P 'e 'f ds e'g{s)+p e 'f ds, B(s, )f ds2e 'g(s2)

Sl Sl
+13 e ' ds]e '

—,'e 'B'(s])f ds2e" f dsze"g(sz)g(sz)
0 0 0

+uoc(s] }(1—e ')e ' f ds2e 'rt(s2)+ A(s] )f ds3e "rt(s3)
0 0

+B(s, )e ' f dszB(sz) f ds3e 'g(s3) +O(P ) .
0 0

(Al)



41 BROWNIAN MOTION OF MULTIDIMENSIONAL SYSTEMS IN. . . 737

Averaging and taking into account that r/(r) is a zero-centered noise we get
I

{v, (r, [r/])) = ,'P—e f ds, e '8'(s, ) f dsze ' f ds2' {rI(s2)rI(sz) )+O(P ),
and now the substitution of Eq. (4) immediately leads to Eq. (15). On the other hand, the functional derivative of Eq.
(A 1) yields

and

=P 'e ' +P e ' f ds 8(s}+O(P )
5q(r, )

5"u, (r, [r/])
=O(P ) (n =2, 3,4, ) .

r/ r'1 r/ r

(A2}

(A3)

Now from Eq. (12) we have

=P '(1 —e ' )+P 'f ds, e ' ' f ds, B(s, )+O(P ')
9 rl 7 ~l

and

=0(/3 ) ( =2, 3,4, .
) .

5g(r, )
. 5rl(r„)

(A3')

Therefore [cf. Eqs. (2) and (7)]

5p(x, r~xp, up,
' [r/])

5ri(r, )

and

1 5u(r) B5(x —x(r))
5rI(r, ) Bx

(A4)

5"p(x, r) ~xp, vp'[r/])
=O(P ) (n =2, 3,4, . . . ) .

9r1 9m
Substitution of Eqs. (A2) —(A5) into Eq. (11) finally yields Eq. (14).

(A5)

APPENDIX B: DERIVATION OF EQ. (18)

The deterministic velocity ud(r) is the r derivative of Eq. (3) when r/(r) =0, therefore from Eq. (12) we get

ud(r)=upe '+P 'e 'f ds e'f (s)+/3 e 'f ds, (e ' —1)A (s, )up+8(s, )f ds e'f (s) +O(P ), (Bl)

where f (s), A (s, ), and 8 (s, ) are given by Eq. (13). In the asymptotic limit r »1 Eq. (Bl) reads

vd(r)=P 'f (xp, 0)+/3 [A(xp, 0)up+8(xp, 0)f (xp, 0)]+0(/3, e ') .

On the other hand, expanding f(xp+P 'u(r), ud(r)) in power series of P ' we have

T

f(xp+P u {r)uy(r))=f (r)+P A (r)up( 1 e ') +8(r)e 'f ds e'f (s) +O(P )

When ~&&1 this equation reads

f(x(r), vd(r))= f{xp,0)+P '[up A (xp, 0)+f(xp, 0)B (xp, 0)]+O(P,e ') . (B3)

Comparing Eq. (B2)with Eq. (B3) we see that

u„(r)=1{1 'f{x(r),vd(r))+O(P, e '),
thus

(B4)

{vd(r)5(x —x(r))) =j3 '( f(x, ud(r))5{x —x(r)))
+O(P, e) . {B5)

Now expanding again f(x, ud(r)) in power series of P
we have in the asymptotic limit
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f(x, ud(r))=f(x, O)+P 'B(x,O)f(xo, 0)

+O(P, e ) . (86)

Finally introducing Eq. (86) into (85) and taking into ac-
count that x(r)=xo+O(p ', e ') we achieve

{ud(r)5(x —x(r)) )

=P 'f (x,0){6(x—x(r)) )

+P f (x, O)B(x,O)(5{x—x(r)) ) +O{P,e '),
which is Eq. (18).
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