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Suppression of chaos by resonant parametric perturbations
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Starting from a chaotic regime in the dynamics of a Duffing-Holmes oscillator, we show how it is
possible, by means of a small parametric perturbation of suitable frequency, to bring the system to a
regular regime. This situation is studied from the analytic point of view using the Melnikov method
and from the numerical point of view computing Lyapunov exponents. The corresponding bounds
for the perturbation are compared. Noting that the time, measured along the original unperturbed
separatrix, that elapses between two successive homoclinic intersections grows when we approach
the resonance, we propose a possible scenario for this type of regularization of the dynamics.

I. INTRODUCTION

The transition from regular to chaotic regime in non-
linear deterministic systems is by now well accepted; nev-
ertheless, it still deserves a great deal of interesting work
as it is not completely understood. At variance, here we
deal with the opposite situation, namely, we show that a
small but resonant parametric perturbation added to a
system can change a chaotic regime into a regular one.
This idea arises from the observation that parametric per-
turbations can change the stability properties of elliptic
or hyperbolic points in the phase space of linear systems.
In particular, a parametric resonant perturbation of the
frequency of a linear oscillator at rest can excite it; on the
contrary, a parametric forced oscillation of the pivot of a
reversed pendulum can stabilize the usually unstable
equilibrium position. With these examples in mind, let
us mention a heuristic (even if crude) reasoning that has
suggested to us that parametric perturbations could also
provide a mean to reduce or suppress chaos in nonlinear
systems.

Let us remind that, if M is an n-dimensional smooth
manifold, a "dynamical system" is usually defined to be
a one-parameter group of diffeomorphisms P, : M~M
represented in local coordinates by x '=f'(x', . . . , x").
When the dynamical system is Hamiltonian, after
Mapertuis's principle of least action, the trajectories are
geodesics on the Riemannian manifold M equipped with
the Jacobi metrics g;k(x)=[h —U(x)]5,1, . For nonauto-
nomous Newtonian systems a different metric can be as-
signed to the enlarged configuration space including time.

Given a unit vector u tangent to M at a point x,
u E T,M„, there is only one geodesic y ( t ) originating at x
and having initial velocity u. A geodesic flow 6, on M is
therefore defined as a one-parameter group of
diffeomorphisms of the unitary tangent bundle T,M
sending u(to)ET&M „~ to u(t)ET, M t, ~, (dimT&M
=2n —1).

The trajectories of a geodesic flow strongly depend on
the stability properties of the geodesics on M; their stabil-
ity can be studied by means of the Jacobi equation for the

where V/dt is the covariant derivative, A is the curva-
ture tensor, y(t) is the geodesic, and g(t) is the Jacobi
vector field.

Equation (I) describes the stability of nearby geodesics
and g(t) can be decomposed into parallel and perpendicu-
lar components to the vector y(t). The Jacobi equation
for the perpendicular component g~(t) can be cast in the
form of a Newton equation'

(l(—t)=—grad(R—&ki kl&&y y &»
V V

(2)

where R is the Riemannian curvature in a section of the
((~,y} plane. Now, for manifolds of constant curvature
Eq. (2} gives g~+R(~=0. If R )0, the geodesics are
stable, but for suitable R =R(t) we could make them un-
stable by parametric resonance; loosely speaking, the reg-
ular solutions of a nonlinear integrable system (like a pen-
dulum) could become chaotic by means of a parametric
perturbation of such a system. This is, in fact, observed
in systems like x+[I+ecos(at)]sinx =0. We remark
that R (t) in the Jacobi equation is, of course, related to
the parametric perturbation of the equation of motion
through the connection defined by the metric of
configuration space. Anyway, we are oversimplifying
things because we want to give just a heuristic argument.
Then, to go on with our digression, we observe that when
R (0, as in the case of a Lobatchevsky plane, the geo-
desics are exponentially unstable, therefore the associated
geodesic flow is stochastic. In this case, the Jacobi equa-
tion ends up precisely on the equation of motion of a re-
versed pendulum for which, as we said before, stabiliza-
tion by parametric excitation is well known. This sug-
gests that a stabilization of unstable geodesics could be
attained by parametrically perturbing a chaotic system.
In general, there is no reason to associate a geodesic flow
on a manifold of constant negative curvature to a chaotic

vector field of variations, which is obtained by a local
linearization of the geodesic equation. Jacobi equation
can be written as

——g(t)+%„„(g(t),y(t) )y(t) =0,V V
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dynamical system; if this were the case, after the
Lobatchevsky-Hadamard theorem, it is known that such
a geodesic flow should be a C flow and thus structurally
stable, which is not the generic situation. Notice that
within the previous analogy with the reversed pendulum,
the scalar curvature in the Jacobi equation should
"periodically change in time" as a consequence of a para-
metric perturbation of a given chaotic system in order to
stabilize the geodesic flow.

Going on further with this analogy and making it more
precise is beyond the aim of our present work and cer-
tainly is not a trivial task. In practice, to test these ideas,
we have selected a nonlinear dynamical system whose
chaotic transition can be controlled by some predictive
analytical method, though approximate. Then we have
been able to investigate, both analytically and numerical-
ly, the possibility of suppressing chaos by parametric per-
turbation.

We have chosen the Duf6ng-Holmes equation. There
are at least two types of reasons why we have chosen this
model for our study. The first is that from the mathemat-
ical point of view, there is a sufficiently rich structure in
the parameter space, where regions of well-developed
chaos can be easily found and, under suitable conditions,
analytical predictions can be made by means of the Mel-
nikov method. The second is that, from the physical
point of view, this equation was used to study plasma os-
cillations which is the field of applications, even if re-
mote, that we have in mind.

We have found that, as expected from the previous ar-
guments, starting from a chaotic regime, a regular
motion is recovered only for some values of the perturba-
tion frequency, while perturbations of near resonant fre-
quencies still reduce the Lyapunov exponent. Finally, we
want to remark that in many real physical systems (like
tokamaks, particle accelerators, etc.), chaotic regimes
can have harmful consequences and one would dream to
find effective mechanisms to reduce or eliminate the
chaotic instability of the dynamics without radically
changing the hardware of a given system.

II. SYSTEM

As mentioned before, we study the Duffing-Holmes
equation with a parametric perturbation of the cubic
term

x —x+P[1+rt cos(Qt)]x = —5x+y cos(cot), (3)

where g is the amplitude and 0 the frequency of the
parametric perturbation. Here it should be q « 1.

For g=O we recover the usual Duffing-Holmes oscilla-
tor; the parameters 5 and y are assumed small and pro-
portional to some smallness parameter, so that the right-
hand side (rhs) of Eq. (3) is a nonautonomous and dissipa-
tive perturbation of a system described by the following
Hamiltonian:

H(p, x)= ,'(pi x+ ,'px ) . ———

a homoclinic loop. In the presence of dissipation, the
homoclinic loop is destroyed and W" and 8"never meet.
Nevertheless, a homoclinic intersection point can be
recovered by adding a forcing, provided that its ampli-

tude exceeds a critical value. This is a well-known situa-

tion where chaos may arrive. Furthermore, in the
present case a criterion, due to Melnikov, ' for the ex-

istence of chaotic motion applies.
The method consists in evaluating the distance b, (to)

between 8'" and 8" at time to, measured along the

homoclinic loop, and checking if 6(to) changes sign for
some to. The computation is performed up to first-order

perturbation theory.
Following Ref. 9, the Melnikov distance for the

Duffing-Holmes oscillator is given by

1/2
2

b, (t )=2m0 0 p
7TN 45

yea sech sin(~to)+

2
po(t) =—

' 1/2

secht tanht .

(6)

Therefore, in presence of parametric perturbation, we get
(see the Appendix)

b(to)=to(to) — f" dt po(t tp)
p

X [xo(t to)] c—os(Qt ) . (7)

Denoting by D„ the integral in the right-hand side of (7),
we write

dt sech (t to )tanh(—t to)cos(Qt )—4r) 4

4rt Qo 4»n(facto) d r sech r tanhr sin(Qr)

4q sin(Qto) drcosh rsinhrsin(Qr) .
oo

The last integral can be performed by the method of resi-
dues to yield

f d r cosh r sinhr sin(Qr)

24 2
4 q mQ

Therefore we get

We compute, along the same line, the corresponding
quantity for Eq. (3). First, notice that, corresponding to
the hyperbolic fixed point of (4}, the homoclinic loop is
given by

' 1/2
2

xo(t ) = — secht,

From the general theory of hyperbolic points applied to
the saddle point (0,0},one knows of the existence of stable
8" and unstable 8'" manifolds which, in this case, form

D„= (0 —60 +1)csch sin(Qto),
2

and gluing together (5), (7), and (10), we finally obtain

(10)
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2&2 7TCO 456(to)= —nyrosech sin(roto)+0 2 3

+ (Q —6Q +1)csch sin(Qto) .
6 2

With obvious notation, we rewrite Eq. (11) in the follow-

ing form:

b(tII }=2 (ro)sin(cotII)+8 (Q)sin(QtII)+ C . (12)

For a better understanding of the discussion below, we
have plotted A (ro) and 8 (Q) in Fig. l.

Let us first consider the efFect of the modulus of the
correction B(Q), disregarding the phase factors initially
set equal to 1 ~ Suppose that we are in a chaotic situation
for which the original Melnikov distance b, II changes sign
at some tp, i.e.,

A(ro) —C=d )0.
Then, as it is clear froin (12), if

lB(Q)~ &d,

(13)

(14)

the situation remains unchanged, i.e., for some tp, 5 will
change sign. This is, in particular, the case if the fre-
quency Q is such that B(Q) &0, i.e.„Q&0.414 or
Q & 2.414 (see Fig. 1).

A necessary condition for 6 to be positive for all tp is
then B(Q) & —d or, equivalently,

7l )
n'(Q —6Q + 1)csch(n.Q/2)

(15)

0.08

I I I

l

I I I I
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l

I I I I
l

I I I I
j

I I I I

But, for a general Q, we shall see that this condition is
not sufficient to assure the positivity of h. It turns out, as
it is shown in the following lemma, that condition (15) is
sufficient if the frequency 0 is in resonance with the driv-
ing frequency co.

Lemma 1. Let p 0=qco for some integers p and q, then
h(tz) always has the same sign, i.e., b (to) & 0, if and only
if condition (15) is fulfilled.

Proof. We have

b(to)= A (ro)sin(cotII)+8(Q)sin(Qto)

+C & —[ A (ro)+8(Q })+C, (16)

and therefore condition (15) implies b, (to)&0. The con-
verse follows from the existence of a value of tp such that

sin(rotII) =sin(QtII) = —1 . (17}

This is a consequence of the resonance condition.
Remark. If the second term on the rhs of Eq. (12) is re-

placed by sin(Qtz+y), with p in a small range of values,
the above reasoning breaks. However, our numerical
simulations showed that the result concerning suppres-
sion of chaos is phase independent. See also the remark
after Lemma 2.

We now turn to the nonresonant case, for which we
prove the following.

Lemma 2. Let Q/ro be irrational and let rI fulfill condi-
tion (15). Then there is some t for which b, (to) changes
sign.

Proof. As mentioned before, the result is trivial if (14)
is verified. If not, let tp be such that

h()(to)= A (ro)sin(toto)+C &0 .

IIy (15), there is then e )0 such that

[g (ro) —8 (Q) ]e & b, (to ) . (19)

Because 0/u is irrational, a well-known argument"
shows the existence of a t fulfilling simultaneously the fol-
lowing two inequalities:

and

I sin(Qt ) I
« (20)

I sin(rot) —sin(rotc )I & e, (21)

and therefore the Lemma follows.
Rernark. In the case where 0 is close to a resonance,

we estimate the time T elapsed between two changes of
sign of the Melnikov function.

In order to do this, we first notice that condition (20) is
equivalent to

lQT —kn
~

& arcsine

for some integer k, or

(22)

km 1T — & —are sine0 0 (23)

And since

004 I I I I l I I I I l I I I I l I I I I l I I I I l I I I

0,0 0.5 1.0 1 5 2.0 2.5 30

T+tp T
sin(co T)—sin(cot ) =2 cos co sin co0 2 2

T —tp~ 2 sin co (24)
FIG. 1. Functions A (ro) and 8(Q) in Eq. (12) are computed

here for @=4, 5=0.154, y=0.088, co= l. 1, and r)=0. 1. Solid
line represents A t'co) and dashed line 8(O). we get the following suScient condition for (21)
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I~T —toto —4mlI ~2arcsin-E
2

(25)

or

I
T —to —

I

~ —arcsin —.
4~l 2 . e

co co 2
(26)

Condition (23), together with (26), simply means that T is
a point in the intersection of two intervals of the real line.
Let Z be a constant (of the order of e) which is the max-
imum of the right-hand sides of (22) and (25). Then the
existence of such a T is equivalent to the following condi-
tion:

2ml km 1 1to+ —+-
N 0 co 0 (27}

Let us now take, for simplicity, the case of the principal
resonance A=co, since the other resonant cases can be
treated in the same way. Denote

Na= 0 (28)

and

(29)

IN+I «I & —,—5
(30)

where the curly brackets stand for the fractionary part of
a real number.

Then (27) can be written, changing the integers k and 1,
in the following form:

one can roughly estimate the time ~M' of the first homo-
clinic intersection to be T/n

The scaling of T given by (33), and therefore that of
est', is actually observed near the resonance (see Figs. 2
and 3). We notice that this estimation is phase indepen-
dent, and since it shows that the time elapsed between
two successive changes of sign in the Melnikov function
tends to infinity as resonance is approached, it provides
an analytic explanation for the observed suppression of
chaos.

In Figs. 2 and 3 the function rM'(Q) is reported for a
large interval of values of 0,. Let us just mention that the
low-frequency feature of this function is a consequence of
the beating of the two oscillating terms in Eq. (12) when
A (co}=B(Q).

Moreover, a striking analogy appears between the be-
havior of rM'(Q) and the behavior of the Lyapunov ex-

ponent A, (Q) (near the principal resonance), which is
shown in Sec. III. This suggests the existence of a deeper
relation between the two quantities. Thus we guess that a
variation of 0 near a resonance entails a scaling of the
dynamics given by that of ~M. The fact that the estima-
tion of ~M is performed in the neighborhood of the refer-
ence homoclinic point confirms the importance of this re-
gion of phase space with respect to global chaotic behav-
ior. ' This is to say that, when 0 varies, a given diver-
gence of nearby orbits is attained in a time which scales
as ~M. Furthermore, this guess is supported by the same
qualitative dependence of A, (Q) and rM'(Q) on the param-
eter g; according to the above remark, this behavior is re-
lated to the change of the number n as a function of g.
Indeed, it can be seen in Figs. 2 and 3 that, keeping 0
fixed, ~M' decreases when g increases. The previous con-
siderations can be rephrased as follows:

where 5 (again of order e) is such that

Z(co+Q) ~2M . (31)
lnA(Q, g) .Q NI

n
(34)

Now, in our case a can be taken smaller than 5/m. and
therefore, uniformly in P, k is near I/a.

Because 0 is near the principal resonance we have

The second factor on the rhs is likely to give only a loga-
rithmic correction when 0 or g vary, the reason being
that the ratio of the two natural lengths in our problem,

co co
I
Q co

Q 1 ——
0 0 0 (32) 0.16 1

' '~'T~ '
T r

and therefore

I Q roI— (33)

To be more precise, we notice that this estimate is ob-
tained in the limit A (co) —B(Q)—C =p=O, i.e., when a
condition of homoclinic tangency is approached.

Now, let B(Q) vary through Q or g. From Eq. (12) it
can be seen that critical values exist for p such that, when
it is increased, new intermediate intersection times sud-
denly appear. These times are near the submultiples of T
(the quasiperiod). These successive bifurcations of the
first intersection time [given by the first simple zero of
b,(to)] are responsible for the observed jumps of the func-
tion ~M (Q) reported in Figs. 2 and 3.

When g is increased, p decreases. This yields a lower-
ing of the number n of intermediate times and therefore
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FIG. 2. The inverse of the time ~M elapsed between two suc-
cessive homoclinic intersections, computed using Eq. (11), is

plotted vs the parametric perturbation frequency Q. Again
P=4, 5=0.154, @=0.088, and co= 1. l. The solid line corre-
sponds to g=0.09, dashed line to g=0. 1, and dotted line to

q =0.15.
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0.15

where the Jacobian matrix (BF;/Bx~) is computed along
the trajectory x(t).

The Lyapunov exponent is then given by

0.1

0.05

0.0
0, 5

I l I I I I ( I I I 1 I I I I I

1.5 2.01,0 25

FIG. 3. r~' vs fl is reported for P=4, 5=0. 154, y=0. 114,
co = 1.22, and q =0. 17.

which appear in A(Q, rt), may vary slowly with the pa-
rameters (Q, rj). In fact, they are related to the iterates of
points close to each other that tend to approach the at-
tractor along or close to the unstable manifold 8'", cross-
ing between left and right half-planes in an erratic way
(see Ref. 13). Hence we are led to think that A(Q, rl)
scales as the distance of the two sinks of the initial system
divided by p. Therefore the factor lnA(Q, r)) only intro-
duces a small correction in the above reported scaling of

III. NUMERICAL RESULTS

We have performed some computer simulations on the
system described by Eq. (3). We have mostly adopted a
fourth-order Hammings modified predictor-corrector.
Some comparisons have also been carried on by means of
fourth-order Runge-Kutta method to rule out possible
algorithm-dependent effects.

Not only a systematic numerical survey of the parame-
ter space of Eq. (3) is beyond our aims, but this would be
prohibitive because of its high dimension. Therefore we
have chosen some arbitrary sets of parameters, for the
unperturbed part of Eq. (3), such that the Melnikov cri-
terion was largely satisfied; then we verified also numeri-
cally that chaos was actually present after having elim-
inated a long transient. In choosing our sets of parame-
ters, we took advantage of an existing numerical study of
a subset of parameter space' of Eq. (3) at rt =0. Regular
and chaotic motions were detected by usual methods:
Lyapunov characteristic exponent, power spectrum, and
correlation function of the solution.

The Lyapunov exponent k is the most practical chaoti-
city indicator for our purposes. Equation (3), cast in the
form of a first-order system

(37)
t f/w(0)f/

A standard reprojection technique' has been adopted for
numerical evaluation of (37).

Numerical experiments have been performed on a
CRAY X-MP 48 computer. Time steps have been
chosen in the range At =0.001,0.003 to make the algo-
rithm error [which is of order (b, t ) ] of the same order of
magnitude of the computer round-off error. Typically,
Eqs. (35) and (36) have been integrated up to t = 15 000.

In Fig. 4, k versus 0 is reported. The equation of
motion has been integrated at fixed parametric perturba-
tion amplitude g=0.03. The dotted line corresponds to
the unperturbed value of A, obtained at g=O. Figure 4 is
composed of two different sets of points: the first is a
coarse-grained scanning of the interval DE[0.15,3.8]
with AQ=0. 1, the second is a denser collection of points
around multiples and submultiples of the forcing frequen-
cy co (after Lemma 1 these are the relevant regions to in-
vestigate).

The striking result is that for Q=Q&'=kQ&' the
Lyapunov exponent vanishes and thus a regular motion is
actually recovered. The Q~"' are the harmonics of the
forcing frequency co, hence the parametric resonance
"spectroscopy" is rather simple.

We found also that k can vanish for 0=—,'0„"', —', 0„"',
and —,'Qz ', and it can be lowered only in very narrow re-

gions around the resonant values, i.e., when the reso-
nance mismatch is I50I &0.002. But these subharmonic
resonances have a sensitive dependence on the starting
point in phase space, so that both regular and chaotic
solutions can be found. The values of A, (Q), computed
off-resonance with g&0, are close to the unperturbed
(rt =0) value of A, .

It is worth mentioning that the convergence of A, is fast
and the residual Auctuations are very small in the follow-

0.12

II. I

ooa

0.06

0.04

0 0 I I . I I

x=F(x, t), (35)

W;= Wj
j j x(t)

(36)

is numerically integrated together with the dynamics in
tangent space described by

T

FIG. 4. The maximum Lyapunov characteristic exponent A.

is reported vs Q. This result corresponds to P=4, 5=0.154,
y=0.088, co=1.1, and q=0.03. The dotted line refers to g=0
(unperturbed case) for which k=0. 1056. Dotted lines are also
used for subharmonic resonances whose existence depend on the
starting point in phase space.
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ing cases: (i) rt =0, (ii) g&0 and Q off-resonance, and (iii)

gAO and Q=Q'tt"' .At variance, when Q is nearly reso-
nant the convergence of A, is slowed down and persistent
fluctuations show up of typical magnitude
AA, /A, =0.01—0.02 around some average value. These
fluctuations do not seem to be due to a numerical artifact
because they do not change when the reprojection time
interval is varied, the integration time step is reduced, or
the overall integration time is increased.

Finally, notice that we observed A,(Q&"')=0 for
k=1,2,3, while for higher k the perturbation does not
even lower k.

Not only the theoretical prediction of suppression of
chaos for 0=QR is verified, but also a resemblance be-(1)

tween rM'(Q) and A(Q) is observed near O'R' (see also
Fig. 5).

On the other side, the analytical prediction in Eq. (15)
overestimates the threshold for g; Fig. 2 shows that, for a
given set of parameters of the unperturbed system,
g=0.09 is not sufhcient to suppress chaos while numeri-
cal simulations already give A, (Q'„")=0 with r)=0.01.
Another thing that is not theoretically explained is the
existence of higher resonances, i.e., A(QII ') =0 and
k(Q„)=0. But these problems are not surprising be-(3)

cause Melnikov's method, being based on perturbation
theory, is approximate.

In Fig. 5 a more detailed structure of A, versus 0 is
given in the neighborhood of Qz'. In Fig. 6 the same de-
tail is given for different values of the perturbation ampli-
tude g; a "line broadening" is observed when g is in-
creased. This is in good qualitative agreement with the
behavior of re'(Q) reported in Fig. 2. In Fig. 7 the prin-
cipal resonance is reported for a different set of the un-
perturbed system just to provide an example of the gener-
ic character of the results.

Another way of detecting the same phenomenon is by
looking at the spectral properties of the solutions. From
numerical integration one obtains pseudo-orbits of the

I
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FIG. 6. A. vs 0 for P=4, 5=0.154, y=0.088, and co= 1.1 at
different parametric perturbation amplitude. The dotted line
corresponds to q=0.03, solid line to g=0.05, and dashed line
to g=0.07.

system in the form of time series

I x ( to ) x ( t I ) . . . x ( t ) I, then standard fast Fourier
transform yields the power spectrum S(co„)= x(cu„)~,
where co„=2rrn lmhT and AT=tk tk I

—is the sam-

pling time. Usual averaging procedures have been used
to improve its quality.

In Fig. 8 we show how S(co„) is modified approaching
a resonant value of Q. Comparison among Figs.
8(a) —8(c) clearly shows that when Q —+QII', the random
component of the spectrum is reduced and its periodic
component is magnified. By Fourier transforming
S(co„)=~X(co„)~ after setting S(0)=0, the normalized
autocorrelation function C(r;)= (x(t)x(t+r; ) ),I
(x (t))„with r; =i b T, has been finally computed for
different values of A.

When Q is far from any QIt"', C(r;) is damped, which is
typical of chaotic motion where memory loss of initial
conditions is present. If 0 gets closer to some resonant

0.1

0.12

I I I I I I I I I I I I

f

I I I

0.08
0.1

0.08

Q.oe

0.04

0.0
1.15 1.25

0.02

0.0
1.15 1.25 1.3

FIG. 5. Detail of k vs Q near the principal resonance. The
parameters are p=4, 5 =0.154, y =0.088, co = 1.1, and rI =0.03.
Dotted line is a free-hand smoothing given as an eye guide.

FIG. 7. A, vs 0 near the principal resonance for a different set
of parameters P=4, 5=0.154, y =0.114, co= 1.22, and tt =0.04.
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spond to the homonymous cases of Fig. 8. The thickness of the
curves (b) and (c) is due to graphical squeezing of oscillations at
frequency cu.
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value, then C(r;) displays a slower damping, which
means that the time scale of memory loss gets larger, in
qualitative agreement with the decrease of Lyapunov ex-
ponent.

In Fig. 9 three different cases are provided: an off-
resonance example yielding a quickly damped C(r;) al-
most identical to the unperturbed case at g=0, and two
nearly resonant examples where C(r;) displays oscilla-
tions of very long period and slowly damped. When
0=QIt"I, we find that C(r, ) is an undamped sinusoid, this
means that x(t) has been attracted by a periodic solution,
which, in particular, is a period-one solution. Analogous
results were obtained for different sets of parameters of
the unperturbed system. Finally, it is worth mentioning
that all the observed phenomenology is independent of
the initial phase shift between the two cosines in Eq. (3).

IV. CONCLUSIONS
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FIG. 8. Power spectrum S(co„)=~X(co„)~ of the solution of
Eq. (3) for @=4, 5=0.154, @=0.088, co=1.1, and g=0.03; (a)
0=1.3, (b) 0=1.103, and (c) 0=1.101. These are obtained by
averaging over 10 meshes of 2" points with a sampling time
ET=0.6. Time integration step is b t =0.002.

In this article we considered the effect of a small para-
metric perturbation on the Duffing-Holmes equation (3),
i.e., we have introduced a small and periodic oscillation
of the coefficient in the cubic term of that equation. We
start from a nonperturbed situation (ran=0) in which the
solutions of the equation approach a limiting set which
looks like a strange attractor (see Ref. 13). In this non-
perturbed case the system has a positive Lyapunov ex-
ponent, thus the dynamics is chaotic.

The addition of a parametric perturbation turned out
to be able to make regular this chaotic dynamics. The
dynamics becomes regular provided that the perturbation
amplitude is larger than some critical value (for the stan-
dard set of parameters used, it is =0.01 of the corre-
sponding unperturbed term) and that the frequency is in
resonance with that of the forcing term (an effect up to
the third harmonic was present).

This fact was confirmed either by an analytic estima-
tion or by numerical computations. The Melnikov
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method has proved useful to predict the possibility of re-
gularizing chaotic dynamics and to estimate the thresh-
old of this regularization transition. As this is a first-
order perturbative method, the quantitative predictions
are not accurate. Nevertheless, the estimates of the
homoclinic intersection times and of the oscillation am-
plitudes of the stable and unstable rnanifolds give in-

teresting indications about the behavior of the Lyapunov
exponent I, near the principal resonance. In particular, it
gives information about the scaling and the direction of
variation of A, as function of the perturbation parameters.
Numerical computations of A, confirmed the possibility of
suppressing chaos (A, becomes zero). This phenomenon
occurs for values of the perturbation amplitude greater
than =0. 1 times the theoretically estimated value and for
a range of resonant frequencies larger than expected.
This seems to indicate that important nonlinear effects
strongly stabilize the system. These numerical simula-
tions also confirmed the prediction of a linear dependence
of A. as a function of the detuning and its dependence on
the perturbation amplitude. A great number of open
problems subsists. Among them, let us mention those un-

der present consideration for a planned work. A more
detailed analysis of the different scaling laws appearing in
the problem together with the comparison of the different
time scales relevant for the system (see Ref. 13). The re-
lation between the underlying geometrical structure and
the observed change of behavior of the system also seems
an important point to be enlightened.
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APPENDIX

Let us briefly sketch how Eq. (7) is derived. Equation
(3) can be trivially rewritten as

x —Px

+e
——p+ icos(tot ) — cos(Qt )x

E' E'

(A 1)

which is in the form

x= fo(x)+ef, (x, t), (A2)

where x=fo(x) is the integrable part derived from the
Hamiltonian (4). The Melnikov distance, at first order in
the smallness parameter e, is

b(to)= —I dt(foXf, ) (0). (A3)

and it is calculated along I' '(r), the unperturbed homo-
clinic loop parametrically defined by Eq. (6).
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