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Reduced form for the general-state multicenter integral
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In a previous paper Gaussian transforms were utilized to obtain the analytically reduced form
for the class of multicenter integrals containing a product of hydrogenic orbitals for s-states,
Yukawa or Coulomb potentials, and plane waves. In the present paper a related transformation
is developed for nonspherical functions, leading to the reduced form for multicenter integrals
that include hydrogenic orbitals representing states of arbitrary angular momentum.

I. INTRODUCTION

A central impediment to the evaluation of the merits
of theories in atomic and molecular physics is the task of
reducing the dimensionality of the multicenter integrals
of a particular theory to a numerically tractable num-
ber. Direct spatial integration is not possible in general
because the angular dependence in the coordinate-space
functions appears sequestered in various square roots of
quadratic forms. Researchers have commonly circum-
vented this problem by following the same general path.

(a) Introduce Fourier (three-dimensional integral)
transforms for each of the terms in the product of or-
bitals and potentials. After evaluating the original (co-
ordinate) integrals, and using the resulting b functions
to evaluate one or more of the (introduced) momentum
integrals, all of the angular dependence resides in simple
quadratic forms in exponentials and in denominators.

(b) Feynman {one-dimensional integral) transforms~
are then introduced for each term in the product of de-
nominators to produce a quadratic form in a single de-

nominator.
(c) One then completes the square in the denominator

for each of the momentum integrals in turn, adjusting
the exponentials accordingly, allowing that integral to be
evaluated.

The author has attempted to make this generality of path
explicit by carrying out these steps for a general multi-
center integral. The Fourier transform has been found
for a single-center product of hydrogenic orbitals repre-
senting arbitrary states and for a multicenter product of
18 orbitals and Coulomb or Yukama potentials. 4 For the
latter, the iterative step c, was replaced by two steps.

(c') An additional one-dimensional integral transform
was introduced to move the Feynman denominator into
an exponential so that all momentum dependence was
contained within a single quadratic form.

(d) Finally, a unitary operator, 5 that does not need

where

z
ao

(2)

The polynomial in ks that appears in the numerator,
which is typical of excited states, prevents one from us-

ing the above methods unless (1) is rewritten using a
polynomial of derivatives. Setting p = A/2,

As/' ( 8 l
u,",(R)= /, I1+y Ie ~

Opy

which leads to

One may then apply the general techniques outlined
above, but the resulting expression contains derivatives of
complicated functions left for the user to evaluate for his
or her particular multicenter integral. Such an expression

to be explicitly found, was invoked to simultaneously di-
agonalize all momentum integrals so that they could be
evaluated.

This approach was then used to find the reduced form for
a multicenter integral (in any number of coordinates) of
a product of 1s hydrogenic orbitals, Coulomb or Yukawa
potentials, and plane waves.

But a fundamental limitation of the Fourier transform
prevents the development of a "final reduced form, " one
free of derivatives to be evaluated, for multicenter inte-
grals involving excited states, even those with E=O Con-.
sider the Fourier integral representation" of the 2s hy-

drogenic orbital,
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cannot be considered to be in "final form" in the sense
that a result free of derivatives to be evaluated is final.

Fortunately, in a previous papers it was sho~n that
Gaussian transforms i5 may be used, in place of steps
(a), (b), and (c') above, to produce a quadratic form for
step (d) to diagonalize.

Because the Gaussian transform is a one-dimensional
integral, whereas the Fourier-Feynman transform is four-
dimensional, one needs only to diagonalize with respect
to the spatial variables. This gives a much simpler final
reduced form than does the Fourier-Feynman transform
in which both the spatial and the (introduced) momen-
tum quadratic forms must be diagonalized.

However, the difference between these two transforms
that is of a higher logical type t, han simple algebraic con-
venience is that the Gaussian transforms of ns orbitals
do not have the "pathologies" of Fourier transforms of
these orbitals. If one examines the Gaussian transform
of the "seed function" from which excited states are built

by derivatives,

e-pR y e-R p e-p /4p

R ~n 0 p'/'dp

it is seen that the parameter y that is used for the deriva-
tives in (3) is decoupled (in the sense of differentiation)
from the quadratic form pRz that will enter into the di-

agonalization. Then in the equivalent of (4),

) 3/S e-pR
uz, (R) = (R —pR )

23/z~ ( D~ ct72 ) pl/2

(6)

one may evaluate the derivatives before diagonalizing and
integrating over d R. Thus,

In the previous paper, s the shape function for products
of s-state hydrogenic orbitals and Coulomb or Yukawa

potentials was found, which gave the analytically re-

duced form for multicenter integrals of such products. In
the present paper the properties of solid harmonics are
folded into the Gaussian transform to create an integro-
diH'erential transform that places all coordinate depen-

dence of an object function that may not be spherically
symmetric into a single quadratic form in an exponential.
This leads to the reduced form for a general multicen-

ter integral that includes products of hydrogenic orbitals
representing arbitrary states, Coulomb or Yukawa poten-
tials, and plane waves.

II. THE EXTENDED TRANSFORM

z d z e '~P1 xl+" +P x )z1 z~e

Pgl jl (R, ) PQM/M(R ) (1 I )

in which the arguments R are linear functions of one
or more of the variables of integration and coordinate
vectors that are external to the integral,

R; =) /,;,x)
j=1

M+);,y, (12)

In the object functions

Pz~(R) = uj(R) u j(R)V"'(R)

The problem to be solved is the analytical reduction
of the general class of integrals

Qglg 1

'''/MMMM

I'j j . ..j j (r i, , p;yi, , yM)

p5/2
uz, (R) = —pR -A /16ppe

X !ps/z Sp5/2)

the u's are hydrogenic orbitals,

u„"q (R) = A / N„gF„g(2AR/n)Yj~(R)

where

(14)

There is no such decoupling of the parameter p, used
in the derivatives, from the quadratic form in k~ in the
Fourier case (4).

In fact, the Gaussian transform for a spherically sym-
metric function

P(R) = / dpe R 'A(p)

and

N„g ———/(n —E —1)!(n+ E)!,2

( I)'(2a/n)'+'R +-'e ""/"-
(n —E —1 —s)!(2E+ 1+s)!s!

(16)

is related to the Laplace transform

P(R) = G[A(p), R] = 1[A(p);R'],

The function

V /(R) = R/-"- " (17)

A(p) = G '[P(R); p] = I. '[P(s"') p] (10)

so that one may find the shape function A(p) that gives
the correct integral transform of the object function P(R)
from tables of inverse Laplace transforms,

is either a Coulomb potential (j = 0, )7 = 0), a Yukawa
potential (j = 0, )7 g 0), or ~m/)7s/2 times a 1s or-
bital (j = 1, )7 g 0). The usefulness of this j index
will become apparent in Sec. IV. Note that integrals in
which j ( 0 require an independent derivation, from the
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3 r.M(R):—R &LM(R)

have the property that 8

3 LM(R) & = 3 LM(&+&) e (19)

present development of the reduced form, because the in-
verse Laplace transform on which the derivation would
be based cannot be obtained from the shape function
in (5) by differentiation.

The central task is to find an integral transformation
for object functions such as (13) that contain nonspher-
ical functions. Any function P(R) may be expanded in
(the complete set of) spherical harmonics, so this task re-
duces to finding an integral transformation that includes
these functions. Solid harmonics

A[p i+a'] —) ALM(p) 3 LM(& (rr:)

L,M

such that

(22)

P(R) = dpA[p iV' ] e (~~ +'"
0 k=0

This integrmdiAerential transform has the desired
form: All of the R dependence lies within a quadratic
form in an exponential so that products of P's and
plane waves may be written as an exponential of a single
quadratic form to be diagonalized. In the present case
it is found that after the diagonalization and integrating
over the R's, the derivatives in (23) may be evaluated,
leaving a shape function A(p, q).

P(R) = ) PLM(R)PLM(R)
L,M

and if one may find the Gaussian shape functions

ALM(p) = G '[Pr,M(R); p] = L '[PLM(s )i p]

then one may define the shape functional

(20)

(21)

III. THE REDUCED FORM
QF THE MULTICENTER INTEGRAL

In the present case, (13) contains a product of spherical
harmonics for which (19) will not be of help since the
solid harmonic gradient operator is not a linear operator
in general. The angular momentum coupling must first
be carried out. Define the shorthand notation

) o1L, ,(R) —= V, , (R) .V„,(R)

') - ( ) 1 „, t'(2&r+1)(2&+ +1)(2L +1)&'~'
4x ) 0 0 0

„ (6
l mr mr+i Mr+i )—
) - (z)

( )M, ((2Li + 1)(2Er+z+ 1)(2L2+ 1)) '

(L, e„, L, )ItL, &r+, L,
0 0 0 ) l Mr mr+2 Mr+2 )
)- (~) ~, ((21m, + 1)(28~+1)(2I~+ ())

'

4xLg ——Lg min

where

Mj —mI + rgI+1 + ' + ~j

Jrj maX = Irj —]. + &j (26)

and

» = max(ILg-i —&gI, IK-i+ mr I),

p~ if I~ m~+ IJ~ is even

p~+ 1 if Ij + p~ is odd

(27)
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and where the index "(2)" on the summation sign indicates that one is to sum in steps of two. s Then the shape
functional corresponding to (13) is

where

e r r' ' ~"' '. (—1)" (AI/ne)"+" P' N„,e,
(nI —EJ —1 — I)!(281+ 1+ I)!sI!

( 1)"—(AJ/nJ)"+er AJ' N„...x ~ ~ ~ x
(nJ —EJ —1 —sJ)!(2EJ+ 1+sJ)!sJ!jsg —0

x
t'2 '+~r+ery +8",+er I, ~-+j (7/2y P)

p(~r+er+ +sr+"er La+-1+j)/2 XI.,M, i&&
IJ

(29)

7 = AJ/n J + ' ' ' + A J/n J + 'g (3o)

and H is a Hermite polynomial.
The reduced form of the rnulticenter integral, equation (67) of the previous paper, which will be referred to as

(67-I), may be generalized to include the arbitrary hydrogenic states in (11),

Q'g 1J 1 "gM J M f 3m/2I J "I J
OO —u)/A

dpi ' ' ' dpr» Jlp& J& tpl &
1 7k& ] J1$~JM [pM &

1 7kM] A/

(31)

The only change is in the matrix W of (28-I) in which
each b;& is replaced by

where 0 (40-I) is as before,

M

B,& = b;& + —) t~, &k,

j=1
(32)

n = ca+) ) b; b (—I)'+j+'w..
i=1 j=1

(38)

where b; (30-I), is A;& is A with the ith row and jth column deleted, and

M M
2Pi e

bi = + .Pk&ki ~k&y& .
k=1 j=1

(33)

The other elements of W (28-I) remain the same, except
that N + M ~ M. Equation (29-I) is

q, = —) ) (-I)*+J +'X, ,
il 1 ~

I

M

x t~&&b;& + —) gJ, &le~&ke
'e= )

(39)

M

Pk&k &k

k=1

and (31-I) is

(34)

Noting that

. a ~ I&, . „„a
'a~; ~

=
W

~r'+? - "'"'
al;.

@*'" (4o)

M M M

C=) ) ) p~ugjug, y, y,

and the determinant (36-I) is

(35) all of the derivatives in (31) may be evaluated and the
k's may be set to zero to give the final reduced form of
the general multicenter integral,

g&x2x".~ar9m g(Pl». ' ' Pr» & yl » yM)

&m1 &m2 &mm

Then the determinant (36-I) of W is

M

~ =0 —i) kj. gj

(36)

where

3m/2 "P1 "PM

(41)

Jle J (pl, ql) ~J J (pM, qM)

~
—A/A

P3/2
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m m

q; = —) ) (-I)*'+j'+ W;, t, ; b,'
a'=S P=l

(42)

and the shape functions A(p q) are given by the shape
functional Al'p, iV'1] (29) by replacing the operator i'7y
by the (c-number valued) vector q1.

IV. EXAMPLES

Setting j = 1,

~q1 ( )
(2x) ~2 iA ~2 4pp Y1 (p)

~g~ (~2+ p2)s

If g = 0, (50) is the nonsymmetrically normalized Fourier
transform of a 2p hydrogenic orbital,

In some cases (generally those in which no more than
one y or p appears) the integrals in the "final" reduced
form may be evaluated. Consider the easiest nontrivial

case,

s««««(p;0) = J d «:e 'p'" u««(x)H ' e

(43)

S,", „(I;0)=(2 )'~'

—i2A7/2 p Y1 (p)
t'A2

( +3+~ —+p'
~

(51)

In this case

~2l .(P,q) =

where

—2P
g =

and

(44)

(45)

e & ~ ~ A ~ 2+3! A/22 H1 1+j(p/2~p)
2j ~& 22 3I p(1 1+1+j)/2

x &1 (q),
Al
21m& (p; 0) = sj2 I1, 2„(p)

~x (—i4~6xAsp Y1 (p) ~

(9A'/4+ p')' )
(52)

Setting g = A yields ~n/A ~2 times the nonsymmetri-
cally normalized Fourier transform of the single center
product of ls and 2p orbitals

p = A/2+g .

The determinants are

A= p, Agg =— 1

and

Then

(46)

(47)

(48)

Finally, if j = 0, (49) gives

„p
( )

—(2x)s~2 iAs~2 p Y1 (p)
2 1fo «1

Now consider the more complicated integral

~ ~

(0;O, y)

= Jd *l"21- (x)"21 (x)+'

x(fx —yp' 'e "'! y!) .

,-(~'+1 ')I4~
x dp

(
.)i Hj i

!. (49)
o p'+' ' &2 p) The first shape function is

glgl
,21~/(P1, q1)
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2j~s 4 ( 22) 3!2 ~ ( 47r ) $000) —~mo
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Py
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(55)



76 JACK C. STRATON 41

and the second is

e "~/ ' &,, (r/2/2~pp)
(P~, q2) —

2, ~ (,+, )/,~ Ã p

Also

(56)

and
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2
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P23'

A

Consider the case ji ——1, jg ——0, then

(61)
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Changing variables from p2 to

and defining

one may reduce this to a one-dimensional integral

~pl- $'2i $; s (0 o y) = «(—1) VXoo,/, I

—+ —oyp + —0 y /i +

3 x 2sp /'3 3oy/i 0'y'/i'l
l2+ 2

+
2- Im 23

+ - &Xylo(x),&,
(~'+@~'r )) ~

g5

Finally, for the special case r/q
—0 (the Coulomb integral) p = p and the analytic result is

Szi" &;zi w;s. (0;O, y)

(65)

3x24 /'3x24
(—1) 'Yoo —

~
y3 x2 +Sx2pp+2p y)e. vy k vy

32 x 24 3 x 2 3 2 3
y2o(R) — + + +3x2 +3x2py+y y

5 ~ AD(3
p3 f3p3 f2 Qt2 p7g

(66)

This is the same result obtained using Fourier
techniques.

V. CONCLUSION

An integro-differential transform has been developed
for functions P(R) that may not be spherically symmet-
rical, in which all R dependence appears in a quadratic
form in an exponential. This allows one to diagonalize
the coordinate dependence of products of such functions
and plane waves so that the R integrals may be evaluated.

The angular momentum coupling has been explicitly

given for the case in which the P's are products of hydro-
genic orbitals representing arbitrary states and Coulomb
or Yukawa potentials. This integro-differential transform
is then used to find the analytically reduced form for the
general class of multicenter integrals of products of such
P's with plane waves.
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