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Cellular-automaton model of earthquakes with deterministic dynamics
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A cellular-automaton model of threshold elements with deterministic dynamics is introduced.
The model is a cellular-automaton version of the mechanical earthquake model invented originally

by Burridge and Knopoff [Bull. Seismol. Soc. Am. 57, 341 (1967)l and studied recently by Carl-
son and Langer [Phys. Rev. Lett. 62, 2632 (1989); Phys. Rev. A 40, 6470 (1989)l. Randomness

exists only in initial configurations. Numerical results show that the distribution function of the
event magnitudes has a scaling region consistent with the Gutenberg-Richter law.

Self-organized criticality proposed by Bak, Tang, and
Wiesenfeld' is the idea that a system can develop by itself
to the critical state where it shows a scaling behavior. In
their original paper they proposed, as an example, the
"sand-pile model, " which is a cellular-automaton model
with stochastic dynamics, and they demonstrated that it
has a critical state as an attracter of the dynamics for two
or more spatial dimensions.

Recently Carlson and Langer2 studied a simple model
of an earthquake, which consisted of a one4imensional
chain of blocks and springs with each block being pulled
through a pulling spring by a constant velocity. The sys-
tem obeys the deterministic Newtonian equation but it
shows very complicated behavior because they introduced
velocity weakening friction acting on each block which

prohibited its smooth motion. This type of model was
originally introduced by Burridge and KnopoF' and is
known among seismologists with its variants, but Carlson
and Langer have established that the model shows a scal-
ing behavior without any randomness being embedded ex-
cept in the initial configurations. This spatially uniform
version of the mechanical earthquake model, which we
call the BKCL model after these people to distinguish it
from the other versions of the model in this paper, seems
to provide another example of self-organized criticality.

One of the interesting features of the BKCL model is
that the scaling behavior is found in the system with
deterministic dynamics and no randomness built in, and
that it is consistent with the Gutenberg-Richter law for
earthquake distribution. They also argued that this scal-
ing law could be derived from a simple scaling argument.

If the Gutenberg-Richter law can be obtained by the
scaling argument, the essential ingredients of the model
for that become clearer and we should be able to construct
a simpler model to attain deeper understanding. The pur-
pose of this work is to construct a cellular-automaton
model of an earthquake with deterministic dynamics
which shows a behavior similar to the BKCL model.

The underlying physical idea is the same as with the
BKCL model and the model consists of blocks and springs
(Fig. 1). Suppose f; is a total force which acts on the ith
block through the springs attached to it. The forces f; are
related to the displacements of the blocks from their natu-
ral positions x; by

f; —
kp (x; —

vz t ) +k, (x;- i +x;+ i
—2x; ), (1)

where k, and k~ are the spring constants for the connect-
ing and the pulling springs, respectively, v~ is the pulling
velocity, and t is time.

The dynamics of the model is defined as follows: As
long as all the f s are smaller than a threshold value fth,
all the blocks are stuck and x s are constant in time. In
this time region the f; increase continuously by a uniform
rate k~v~ per unit time. As soon as one of the forces
reaches the threshold f,h, that block is assumed to slip by
a certain distance to relax a certain amount of force bf.
During this elementary process, all the other blocks are
assumed to be stuck. Then part of the relaxed force bf
will be distributed equally to the neighboring blocks.
Namely, if the jth block is slipping, this process is given

by the change of forces from f s to f;"s as

fj -ftt -fJ -fth —~f,

f1+) fJ ~) fj~)+ 2 i3.8f,
(2)

FIG. 1. Blocks and springs system.

and all the other f;(i', j ~1) are unchanged. In Eq.
(2), d, is a ratio of the distributed force to the relaxed
force and is given by

2 c

kp+2k, ' (3)

according to Eq. (1).
If the neighboring forces fj ~1 before this process are

small enough to make fJ +1 smaller than ftt„no more slip-

ping ensues and all the forces start increasing uniformly
again until the next event occurs. On the other hand, if
the neighboring forces are close enough to fthm and

fJ +1 )fth, then these blocks also start slipping and the
forces will be relaxed according to the amount of excess
forces over fth. The part of the relaxed force will be redis-
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tributed to the neighboring blocks again.
These elementary processes are defined by the follow-

ing: Suppose fj exceeds f,h, then

(4)

y(x)
x +0

(6)

characterizes the way the forces are relaxed in the small
events. The uniform increase of forces starts only after
these processes settle, which means the duratian time af
the processes is assumed to be zero.

Each event consists of this kind of sequence of processes
and is embedded in the uniform increase of forces. We
define the moment of event in the following way. Sup-
pose the values of the forces and displacements just befare
and after the event are P;,x;J and ff,x tt, respectively.
Then the moment of the event M is defined as

M=-g(x —x;)-k, 'Z(f; —f )

and the magnitude of the event as

p =log)pM .

The distribution function 9k(p) of the magnitude of
events p per block per unit time is introduced and it
satisfies the sum rule

10"R(p)dp vt, ,

which simply reflects the fact that each block is moving at
v~ on the average.

There are three basic parameters for this system, name-
ly 6, bf, and a. The parameter 6 defined by (3) is related
to k, /k~ and characterizes the system "stiÃness. '* If 5 is
small, a large part of the forces is relaxed through pulling
springs during events, consequently events tend to local-
ize. On the other hand, if 6 is close to unity, most of the
relaxed force will be taken over to neighboring blocks and
events tend to extend over a large spatial region.

The parameter bf that defines the smallest event may
be related to the pulling velocity v~ in Carlson and
Langer's paper because the moment of the smallest event
is proportional to v~ there. It is important, however, to

This process will be repeated until all the forces become
smaller than f&h. The function p defines how much force
will be relaxed when the f s exceed the f&h and should
satisfy the conditions

0(+0) fa —~f,

I p(x) I &fth for x ~ 0.
The parameter Sf defines the smallest event where only a
single block is involved. We will take p as a decreasing
function at least for small x in order that a small event
can be amplified and lead to a large one, which is sup-
posed to imitate an event caused by the velocity-
weakening friction. The parameter a defined as

note that v~ itself plays no role in the present model.
The parameter u is "an amplification parameter. " For

large a, a small triggering sitp can easily induce a large
one. This parameter is analogous to the parameter a in
Carlson and Langer's paper.

We have done some numerical simulations. In the fol-
lowing we take v~ k~ f&h 1 and use

(10)

which is the simplest form satisfying Eqs. (5) and (6).
The free boundary condition where ft's are set to be zero
outside the system is employed. Note that this does not
correspond to the free boundary condition for the original
blocks and springs system.

Figure 2 shows time sequence of events. Displacements
hx; x —x; for each block during the events are plotted
as a function of event time and position. The event se-
quence which is prepared with a random initial config-
uration of f s at t —2 is shown. You can find some
similarities to the corresponding plots for the BKCL mod-
el, e.g., an almost periodic recurrence of small events
(creeping events), irregular sequences of large events, pre-
cursor events before the large events, and quiet periods
after them.

All these features are easily understood if you look at
the plots of x; for every sticking time region (Fig. 3). The
same sequence as that in Fig. 2 is used in Fig. 3. The orig-
inal configuration at t 0 shown by the lowest curve
moves upwards with an average velocity v~ 1 to form
many curves at every time the system sticks. Larger
events ensue after lacalized regions that have fallen
behind try to catch up by sequence of small events to
make the overall configuration smoother. After the large
events, the region has to wait some time for the next event
because it has gone a little ahead compared with other
parts of the system.

Distribution functions of events %(p) are plotted for
some parameters in Fig. 4. Isolated peaks at the smallest
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FIG. 2. Displacements during events hx as a function of
event time t and position i for 6 0.85, a 3.0, bf 0.01, and
L 200.
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FIG. 4. log~pR(p) vs p log~pM for a 3.0, Bf 0.01, and

(a) h 0.8, (b) 0.85, (c) 0.9, and (d) 0.95.

FIG. 3. Con6guration sequence of the system x; after each
event. The lowest curve shows a con6guration at t 0 and the
system moves up with the average velocity v~ 1 afterward.
The sequence of this 6gure is the same as that used in Fig. 2.

p correspond to the single block events of magnitude
logos[(1-h)8fj. There exists a scaling region where
log~pl%(p) l —p . The exponent b is not equal to unity
and depends on parameters slightly although it is not far
away from one. There are no great events which extend
the whole system for smaller 6, but for 6=1 there exists
weight for the great events. This is simply because the
system becomes stiff for 6=1 and the whole system tends
to slip together.

We also have done the simulations with a different
choice of p which satisfies Eqs. (5) and (6), but the basic
features described above are the same. In the present cal-
culation, we employ the free boundary condition where no
reflection occurs at the boundaries. Even if we use the
periodic boundary condition, we do not expect any dif-
ferences for small 6 because all the events are localized
within the length smaller than the system size. For 6
close to one, however, the largest events can be much
larger than the system size and travel around the whole
system many times in the periodic boundary condition.
This kind of situation does not seem to be physically in-
teresting.

To summarize, being motivated by Carlson and
Langer's work on the mechanical model of earthquakes,
we have constructed the cellular-automaton version of the
model which shows similar behaviors to the BKCL model.
Although the dynamics is deterministic and any random-
ness is not built in the model, it shows a rather irregular
behavior and the magnitude distribution of events %(p)
follows the power law p b for small p as is expected by
the scaling argument. 2 The exponent b is close to one,
which is consistent with the Gutenberg-Richter law, but
this is not universal and depends slightly on the parame-
ters.

Because the present cellular-automaton model is much

simpler than the mechanical model, numerical simulation
can be done easily. Note that the present model can be re-
garded as the v~ 0 limit in the BKCL model in the
sense that the duration time of events is assumed to be
zero. On the other hand, the smallest event is controlled
through Bf independently and this may have effects on the
largest .ength scale as v does in the BKCL model. 2

As Hwa and Kardar pointed out, the conservation law
is important for obtaining a scaling behavior. The present
model does not conserve total force if 6( 1, and this en-
tails the existence of a largest length scale, but we can still
have a scaling behavior in a small scale region.

Before concluding the report, let us discuss the relation-
ship with other models. The model we studied here is
similar to the one by Takayasu and Matsuzaki. 7 In their
model, the f s are always set to be zero after slipping,
namely, they took p(x) 0. This model shows only a
trivial behavior without site dependent random increase
rates of forces, with which they obtained a power law of
magnitude distribution for two-dimensional systems. As
for one dimension, however, it shows an exponential distri-
bution and they concluded that the one-dimensional sys-
tem with nearest-neighbor interaction never gives a
power-law distribution. The present model has no intrin-
sic randomness, and randomness in configuration is self-
generated by the function |S which leads to a power-law
distribution even in one dimension

The sand-pile model by Bak and co-workers' is also
very close to the present one. It can be derived from the
present model by taking Bf 2 and h 1 and replacing
the uniform increase of the f; by stochastic discrete grow-
ing. In this model, the randomness is being supplied from
outside. Although the original version of the sand-pile
model in one dimension does not show a critical dynam-
ics, ' some variants have been demonstrated to develop a
critical state even in one dimension. s
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