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Growth processes are argued to develop self-organized critical states. This new characterization

of growth phenomena yields insight into the origin of fractal pattern formation, and the associated

exponents give information on scaling properties beyond that provided by the usual multifractal

description. As a major example, the dielectric-breakdown g model is considered. The fractal di-

mension is estimated to be 8 =ln3/1n2=1. 585 for g=1. This value is compared with results ob-

tained for different geometries and with values found when lattice effects are present. Also, the lim-

iting cases g~0 and g~ ao are discussed.

Spatial scaling structures originating from growth pro-
cesses have been found to be extremely widespread in na-
ture. ' Careful experiments on viscous fingering, dielec-
tric breakdown, and diffusion-limited growth have been
carried out, and various aggregation models ' have
been studied intensively in order to describe their fractal
outcome. Still, there is a little understanding of the euolu-
tion. Dynamically, the interface is unstable and therefore
triggered by fluctuations. The result is that the system
eventually reaches a statistically stationary state where a
rich ramified pattern is created. Since the state is an at-
tractor of an intrinsic dynamics, it is called self-
organized. A major observation is that this state can be
described by power laws —the pattern eventually becomes
scale invariant. Such a behavior is otherwise only well
known from critical phenomena which occur at a specific
value of a tuning parameter, e.g., temperature or magnet-
ic field.

In this Brief Report, it is argued that growth processes
naturally develop "critical" states. The analysis is based
on the theory of branching processes, and provides the
"missing link" between fractal growth and self-organized
critical phenomena, recently perceived by Bak et aI. in
another class of coupled systems, also dynamically trig-
gered by fluctuations. One example is a "sandpile, "
which is stable if the slope everywhere is less than or
equal to a certain slope. Adding sand causes, on the one
hand, the pile to grow; on the other hand, avalanches.
The dynamically stationary state is obtained at the "criti-
cal" point where these two effects exactly balance. Since
this critical state also is an attractor of an intrinsic dy-
namics, it is self-organized. The state is characterized by
power-law distributions for the avalanches, both in life-

time and size. I shall argue that similar distributions
characterize the self-organized critical growth phenome-
na.

One of the most studied growth models is the
dielectric-breakdown model (DBM) in two dimensions
(2D) where (i) the Laplace equation V /=0 is solved in
the medium surrounding the cluster with boundary con-
ditions /=0 on the cluster and /=1 on the surrounding
boundary, (ii) the growth stochastically takes place at
point i with probability

l(vy), l&

y l(vy), lv
'

where ( VP); is the gradient of P at i normal to the bound-

ary. From the model presented here, the fractal dimen-
sion is found to be D =ln3/ln2= 1.585 for v)= l.

Consider first the formation of viscous fingers when
one fluid displaces another fluid with higher viscosity. To
understand why viscous fingers become scale invariant,
one must follow the dynamical process that created them.
Basically, (i) the flow can stop, (ii) the flow can continue,
or (iii) the flow can branch, creating a new finger. How-
ever, eventually every finger cannot branch, since this
would imply a persistent decrease of the average flow rate,
and the system would never reach stationarity. Thus
some of the fingers must stop growing. The system
reaches stationarity exactly when successive branching
has been broken down to the level where the flow barely
survives. At this point extinction balances branching,
and the growth process is stable with respect to fluctua-
tions. It is in this sense that the dynamical stationary
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states for growth phenomena become critical. Common
for the sandpile model and fractal growth, criticality
expresses that information only just reaches infinity.

To be more specific, the flow above is dynamically
modeled by the branching process where in each genera-
tion an "individual" is replaced by zero, one, or two des-
cendants with probabilities Co, C„and Cz, respectively
[Fig. 1(a)]. On the average, the number of descendants
increases by a factor of CI+2Cz=1+Cz Co from one
generation to the next. At criticality where the family
barely survives, Co =Cz. At this point the structure of
branches becomes scale invariant. ' Removing the sur-
viving paths (see below), the aggregate breaks into "sub-
clusters" of extinct branches, corresponding to the
avalanches for the sandpile. It is the distributions of the
extinct branches, in size and lifetime, that describe the
self-organized critical states for growth phenomena. The
criticality ensures that the number of paths which even-
tually survives, also denoted the arms of the aggregate, is
of order 1.

Experimentally, the surviving paths can be retrieved,
observing where the interface moves in a small time
period. If the growth probabilities p; are known, the sur-
viving paths can be found from multifractal analysis us-

ing the natural measure m;=—p;: The scaling proper-
ties of the measure with the size L of the aggregate are
given by the distribution N(a) of the exponents
a;=——lnm;/lnL, and the f (a) spectrum is defined byf(a) =—InN(a}/InL in the limit of large L. Therefore the
probability that the growth is governed by the exponent
a is

P(a)=N(a)L ~L ' ' '
By integration,

viving paths are those ending in points with p,. ~p *.
From the description of the DBM as a critical branch-

ing process, information on the fractal dimension can be
derived, using the fine graining along a one-dimensional
cut through the cluster, recently introduced by
Pietronero et al. ' A cell is called full if it belongs to the
cluster. Dividing all cells into two, a full cell is replaced
by one or two full cells. The associated branching pro-
cess is shown in Fig. 1(b), where C'& and Cz denote the
probabilities that a full cell by fine graining is replaced by
one or two, respectively. For our description to hold
true, this fine graining must resemble a critical process;
since by this procedure one cannot distinguish extinction
from surviving without branching, one has the correspon-
dence C& =Co+C& and Cz =Cz to a critical branching
process [Fig. 1(a)] where CO=Cz. By fine graining the
number of full cells in average increases by a factor
C', +2Cz. The fractal dimension D of the cluster is

D =D, +1, (Sa)

where D, is the fractal dimension of the one-dimensional
intersection set, given by'

C +2C 2 (Sb)

I.e.,

However, also the information dimension D, can be re-
lated to C', and Cz, remembering that in the large L limit
almost all growth takes place on points with a =a' =D I,
i.e., on sites with growth probability p . By fine graining,
or equivalently by the branching process, this must not
change. Thus

In(p '!zt ) =C I ln( C'jp '!I ) +Cz ln( Czp
"

~ I ),

1=J P(a)da~ fL ' ' dctccLf~ (3) D, ln2=C', IlnC', I+CzllnCzl .

lnp'= g p;lnp, , (4)

where a' is defined by steepest descents, f'(a*)= 1.
From (3), D, =—f(u')=a while f (a) must be less than
a for all other values of a. Hence, P(a'}=5(a—a" ) in
the!arge-L limit, which is why D, is called the informa-
tion dimension (for the natural measure). It is generally
accepted" that D, =1 for z)=1. Analogous to (3) one
has a' = J ctP (a)d a, or for a finite system,

Based on the observation that the tips of the cluster are
more likely to grow when g is increased, the amount of
branching, i.e., Cz, will decrease. In particular, when
g~~, Cz~O. Consequently, C& ~C', ~1, D~1, and

D, ~0. Conversely, when z) is lowered from infinity, Cz
and [by (7)] D, will increase from zero, reaching their
maximum values Cz= —,

' and D& =1 at g=1. Thus, for
rt= 1, C& =0, CO=CI =Cz =—„and by (5),

where p is the probability associated with a'. The sur-
D =ln3/ln2= 1.585 . (8)

(a} (b)

FIG. 1. Formation of spatial scaling structure described by
branching processes. {a) Criticality appears for CO =C2. {b)
From fine graining {Ref. 12).

We notice that since Cz =Co must be obeyed for our
simple branching model [Fig. 1(a)], Cz cannot increase
further as g becomes smaller than 1. To increase the
value of Cz loops must be created. If A denotes the frac-
tion of loops per particle (0 ~ 0 ~ 1), the critical condition
becomes Cz =Co+A. ' Hence the presence of loops al-
lows D to increase beyond the value given in (8). It is not
clear how the relation (7) will change when loops are tak-
en into account.

For q=1 and q=O, D, is known to be D, =1. For
0(g & 1, one has D, ~ 1. This follows from the relation
between the f (a) spectrum for the natural measure and
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the spectrum for the harmonic measure

mH =—~(VP), ~/QJ ~(VQ) ~. The former spectrum is ob-

tained from the latter by a contraction in the a direction
by a factor of g, and a translation. ' ' Thus the informa-
tion dimension D, for the natural measure can be deter-
mined from the spectrum, fH(a), for the harmonic mea-

sure as the value of fH(a), where fH(a)=rl. The infor-
mation dimension DH for the harmonic measure equals
the value of fH(a) where fH(a)=1. Since DH=1 for the
DBM independent of g, " the convexity of the spectrum
ensures that D, ~ 1 for ri ( 1 (and D

&

~ 1 for ri ) 1).
Extensive numerical simulations of the DBM in a cy-

lindrical geometry have been carried out by Evertsz. '

For 0 g 2 the dimension D, for a one-dimensional in-

tersection set was determined at various heights from the
basic growth line. After an initial growth region the di-
mension stabilizes at a value D, =0.59+0.01. The corre-
sponding value D=1.59 is in perfect agreement with (8).
For g & 1 an increasing value of D, and thereby D is
found. However, in accordance with the discussion
above the presence of loops is clear for g & 1.

In a circular geometry, the behavior of D, along a cir-
cular cut has not been studied. For off-lattice diffusion-
limited aggregation (DLA), which is typically identified
with the DBM for g= 1, ' the fractal dimension is found
to be D = 1.7, ' which clearly is above the value in (8). In
contrast, on a square lattice a crossover to a star-shaped
object with four arms is observed at very large cluster
sizes. ' The crossover can be observed at smaller cluster
sizes if noise reduction is introduced. The fractal dimen-
sion changes from a value D = 1.67, which is close to the
off-lattice value, to a value' D=1.57 that is in good
agreement with (8).

In conclusion, branching processes have been used to
probe the underlying mechanism for fractal growth. The
general arguments suggest that growth processes may

evolve toward self-organized critical states, where the ex-
tinction precisely balances the branching. The critical
state is characterized by exponents, which gives informa-
tion on scaling properties beyond that provided by the
f (a) spectrum. In particular, based on a model where
branching processes develop independently, the fractal
dimension is estimated to be D=ln3/ln2 for the DBM
with g = 1. This value is in excellent agreement with the
dimension found in a cylindrical geometry, but does not
agree with the value found for off-lattice DLA in a circu-
lar geometry. It would be very interesting to find the be-
havior of D, in the latter case, and I urge studies in that
direction.

The branching process in Fig. 1(a) has been used to de-
scribe the mean-field dynamics for self-organized critical
phenomena. ' However, the loops might change the crit-
ical exponents. To this end, we have for various growth
models undertaken studies on the distributions of these
branches as regard their sizes and associated lifetimes. '

It will be interesting to see the extent to which the new
critical exponents characterize growth phenomena.

Finally, it is noticed that the critical exponents are ex-
perimentally accessible One. can even estimate the value
ofp*, since the small growth probabilities do not contrib-
ute to p*, and the large probabilities p; can be obtained
by measuring the growth g; along the interface in a small
time period. Then p;=g;/gl gi, p" can be calculated
from (4), and the surviving branches can be identified.
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