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Self-consistent calculation of localized DNA vibrational properties
at a double-helix —single-strand junction with anharmonic potential
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We study the dynamics of H-bond motion for a model of a replicating DNA fork. The model
contains effects both from the creation of the fork and from self-consistent changes in the H bonds
due to the creating of the fork. W'e use a Morse potential to describe the H-bond interactions. The
anharmonic behavior does alter the 6nal H-bond dynamics. The anharmonic aspect increases the
H-bond fluctuations by more than a factor of 2 over the harmonic fork results in some frequency re-
gions. We also display the frequency dependence of the H-bond motion and suggest spectral
features that can be a signature for the existence of forks in DNA samples.

I. INTRODUCTION

In carrying out its biological function the DNA double
helix is often split into single strands over a finite region
of its length so that the base-pair message can be
efficiently read. For each such open state there are two
regions where the transitions are made between H-
bonded double-helix and unbonded single strands. These
regions are often referred to as the replicating fork or
transcribing fork, etc. , in the chain. In this paper we
study the dynamics of a particularly simple model of such
a region for the DNA homopolymer poly(dG)-poly(dC).
[The notation poly(dG)-poly(dC) means that one strand
contains only guanine (G) bases and the other only cyto-
sine (C) bases. ]

An earlier work examined the dynamics of a similar
fork. ' In that work it was found that the H bonds of the
base pair of the double helix adjacent to the open region
had enhanced H-bond stretch due to being near the open
region. Since that work we have developed self-
consistent methods that show that enhanced stretch
motion by itself causes a decrease in the effective self-
consistent force constant for atoms joined by realistic po-
tentials, in particular, for the Morse potential.

Given that two factors: (i) proximity to an open region
and (ii) enhanced H-bond stretch by itself-each enhance
additional H-bond stretch —we expect a synergistic in-
teraction to occur where the H-bond stretch is further
enhanced over the earlier calculation by including
modified self-consistent phonon approximation (MSPA)
efFects. In this paper we include MSPA effects and show
how much larger the H-bond stretch is due to the syn-
ergistic interaction. We present what we expect to be a
much better description of the fork dynamics and show
the frequency dependence of the H-bond stretch mean-
square amplitude as a crude projection of the possible
spectral signature of the fork.

These forked structures exist in nature in very long
DNA helices. We want to approximate the long helices
as infinite helices and we run into the problem of dealing
with an infinite system that has a defect. The defect des-

troys the helical symmetry usually assumed to hold for
lattice calculations of the double helix. We solve this
problem by constructing a fork which is made out of an
original accumulation of perfect helices that retain helical
symmetry. Since the original problem satisfies Bloch's
theorem that problem can be solved for infinite-size hel-
ices by standard helical lattice methods. We then con-
struct the fork by judiciously cutting and joining parts of
these perfect helices. Because the cuts and joints take
place in a small region of space, the problem is solvable
by Green's-function methods and one can avoid dealing
with infinite matrices. The cutting and joining is symbol-
ically illustrated in Fig. 1. The lines and tick marks are
cartoons for backbones and bases, respectively. The top
line represents a single helix of poly(dC). The second
connected strand is the base-paired duplex poly(dG)-
poly(dC). The next lower line is the' single-helix
poly(dG). In all cases the arrows indicate the 3' to 5'

direction of the various backbones. In diagrams below
the top one show (a) how the long helices are severed and
(b) how they are spliced to form the desired fork. The
atomic structure of double-helix poly(dG)-poly(dC)
around the cut is displayed in Fig. 2 in which the dotted
line represents the cutting plane at which it is believed
that the restriction endonuclease enzymes cleave the
DNA chain. The guanine and cytosine bases are denot-
ed respectively by G and C. The structure of single-helix
poly(dG) and poly(dC) are identical to those in the double
helix, respectively.

In setting up such a calculation one has to first deter-
mine the conformation of the various segments, i.e., the
double-helical section and the two single-strand sections.
The doubled helix has a more stable structure and under
physiological conditions can be assumed in a standard 8
conformation. In 8 conformation, the DNA has right-
handed screw symmetry with pitch angle 36' and pitch
height 3.38 A. The conformation of the single strands is
much more problematic. In fact, it is likely to be found
in different conformations depending on a host of other
factors. To carry out our calculation we need the single
strands to be in some repeating configuration. If a re-
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peating symmetry or periodicity exists, Bloch's theorem
holds, and the dynamic matrix can be block diagonalized.
A band structure can then be calculated even if the
strands are infinite in length. We need such solutions to
write the initial Green s function. If there is no periodici-
ty the initial dynamic matrix is infinite for an infinite
strand with no symmetry reduction to finite blocks. One
would then have to deal with short single helices to
achieve initial solutions needed for the initial Green's
function.

In our calculation we assume that the single strands
are periodic and stacked so as to conform to standard 8
conformation, except that they are not coupled to each
other. We made this choice for several reasons. First, no
other unique conformation stands out as more likely.
Second, this choice was the simplest for us to implement
as the geometrical factors did not require major recalcu-
lation. Third, this choice is essentially the most conser-
vative one considering the dynamics we are exploring.
The single strands are most like the double strand and a
minimum amount of additional fluctuation in the fork
may therefore be expected. This calculation can there-
fore be considered a study of minimum defect-induced
H-bond fluctuation enhanced by the synergistic effects
discussed, rather than a realistic prediction of a known

structural object that occurs in DNA.
There is a further assumption that the conformations

chosen for the double and single strands do not distort
further, i.e., the conformation near the fork is not distort-
ed by the presence of the fork. This is clearly an assump-
tion, as it is likely that some further local distortions
occur at the fork. We do not have a model of such dis-
tortion for the time being and our assumption is again the
most conservative one. The change in H-bond motion we
calculate is thus likely to be a lower limit to the actual
case where local distortions and changes in conformation
of the single strands occur.

The DNA fork is regarded as a defected system of the
original prefect DNA helices. The "defect" involves
both the cutting and joining of related bonds. We shall
describe the defect in mathematic detail later. It has
been generally known that a local defect in an otherwise
perfect periodic lattice can bring about significant
changes in the dynamic behavior of the system, especially
in the region closely surrounding it. New modes may
emerge from band gaps where no vibrations are allowed
in the perfect system. These modes decay faster than ex-
ponentially with distance from the defect and are called
pure localized modes. Also, amplitudes of in-band modes
can be either enhanced or suppressed significantly around
the defect depending on the nature of the bands. Green's
function methods have been known to be very useful in
this field because they greatly reduce the size of the prob-
lem. In many cases the physical quantity of interest can
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FIG. 1. A DNA fork is constructed from three perfect hel-
ices, poly(dG), poly(dG)-poly(dC), and poly(dC) by cutting each
of them in half and joining one half of poly(dG) and poly(dC)
with that of poly(dG)-poly(dC), respectively. The arrows are
along the 3' to 5' direction.
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FIG. 2. Portion of two unit cells of poly(dG)-poly(dC). The
dashed line indicates the position of the cut. (See Ref. 15.)
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be readily expressed by the ensemble average of an ap-
propriate Green's function.

In carrying out the calculations described above we
make use of an important property of the Green's-
function approach. One can "chain" Green's-function
calculations. If two distinct defects are introduced one
can introduce them one at a time. For example, the
perfect-helix Green*s function is generated from the ei-
genvalues and eigenvectors of the perfect helix. One can
generate an intermediate Green's function by introducing
the cuts and joints that create the fork. With this inter-
mediate Green's function replacing the perfect Green's
function one can now introduce those source terms which
arise from self-consistent bond softening and calculate
the final Green's function. From the final Green's func-
tion one can determine the dynamics of the fork.

The reason that this is particularly useful has to do
with the sizes of the various source terms. The initial de-
fect to make a fork involves a large number of altered
force constants. This source need be applied once to gen-
erate the intermediate Green's function. The self-
consistent correction involves only the three H bonds in
the cell adjacent the open region, but this source is ap-
plied many times as it is an iterative self-consistent solu-
tion. The large part is done once and the part needing
many iterations is kept small.

II. GREEN'S FUNCTION
AND SELF-CONSISTENT PROCEDURE

(4)G=g+g &g

and T=C(I gC—) '. Using subscripts IaI and Ib] to
represent coordinates directly affected by and not directly
affected by the defect, respectively, the C matrix can be
written as

—aaC 0

0 0

where C „represents the nonzero part. Then the matrix
(I gC) b—ecomes

I—9 C 0~ aa—aa

Taking the inverse of (I gC), we—get

g aa—aa)

C I— Cg ba aa( — g—an—aa)

The T matrix becomes

0

g to represent the Green's function for the perfect system
and G for the DNA for system, they are defined, respec-
tively, as

g(co )=(co I F—)

G(co )=(co'I F—C—)

where

The general eigenvalue equation to be solved for the
DNA fork system is

—aa( — g aa—aa )

0

0

0
(F a) I+C)q—=0

where I' is the force constant matrix for the perfect sys-
tem, C is the force constant matrix which brings about
the defect to the perfect system, co is the eigenfrequency
of the system to be solved, q is the eigenvector corre-
sponding to the eigenfrequency, and I is the identity ma-
trix. The dimension of the F and C matrices is 3N X3N
in Cartesian coordinates, where N is the number of atoms
in the system considered. For m acr omolecules like
DNA, N is extremely large. But only a small portion of
the C matrix will be nonzero if the defect is confined to a
small region in space. In the presence case, the defect is
confined to the boundary of cell (

—1) and cell (0). Using

Therefore the T matrix has the same size of nonzero ele-
ments as the matrix C. Splitting up the G matrix the
same way, we can write 6 bb as

6 bb g bb+g ba —aag ab (9)

Because of symmetry in the F matrix, g is symmetric and
we have g,b =g b, . In internal coordinates the C matrix
is symmetric and so is the T matrix.

The matrix element g for the perfect helix is calculated
from the eigenvalues co&(8) and the eigenvectors q (8) of
the system by

Re t q,"(8)[(q, )*(8)]e™n)
I

g;, "(co )=—g P f d8
0 co —coq(8)

Re t q,"(8)[(q, )*(8)]e' '

k idcok(80)/d8i
(10)

where i and j are component indices of coordinates, m
and n are unit cell indices, k is branch index of the eigen-
values, 0 is phase shift between neighbor unit cells and is
equivalent to Bloch wave vector in lattice dynamics, and
P stands for the principal part of the integration. In ad-
dition, the sum in the imaginary part is over those bands
which co intercepts and 00 is the position at which the in-

terception happens. These interceptions are singular in
the integral.

It is the imaginary part of Green s function that is re-
lated to the displacement correlation tensor D in self-
consistent phonon theory. It can be derived that the di-
agonal elements of the tensor become thermal rnean-
square displacements in internal stretch coordinates. For
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the ith H-bond stretch in a DNA unit cell,

D, ,
' "'=— dc@ coth(pcoi2)lmG, , (oi )d.f-t

det[ I—g „(co )C „]=0,
and their eigenvectors satisfy

(I g„C„—)q =0

for directly affected coordinates, and

ab =g ba —aaQaC

(12)

(13)

(14)

for coordinates not directly affected by the defect.
The solution to this point creates the fork but does not

involve the additional effect of H-bond softening. Such
an effect is introduced by MSPA. In this approach, an
effective Hamiltonian Hz with a set of adjustable force
constants I i',j I (called effective force constants} is estab-
lished as

HF ——g Vi+ z P 2uij 4ij uij
i tRJ

(15)

where u;. is relative displacement between atom i and j
from their mean positions. By expanding the thermal
average of the difference between true and effective Ham-
iltonians in cumulants and keeping only the first-order
term, the minimization of free energy of the system re-
quires the effective force constants to satisfy

P;, =(VVV(R,j+uj))

fdue " VVV(R j+u)
—1/2u D" .ujJfdue

where R; is the vector joining the mean positions of
atom i and j, D;j = ( u;juj ) is the mean-square displace-
ment correlation tensor, and V is the anharmonic true
potential of the system. In the case of a hydrogen bond
in DNA, we prefer to use R r to represent

~ R;j ~. The sub-
script T indicates that the mean H-bond length is temper-
ature dependent. For each H bond in a DNA unit cell,
R~ is set by requiring that

V(Rr+po) V(Rr jjo) (17}

+ g qz(qz )'coth(Pro&/2),
2cog

where the defect Green's-function matrix element 6;; is
now calculated in internal coordinates. The integral over
cu covers the range of frequency of the in-band modes and
the sum is over the newly emerged pure localized modes
mentioned before. The q& is a localized eigenvector in
internal coordinates too. The frequencies of pure local-
ized modes are determined by

Q
exp

at half maximum, which is 2&D ln4. Rz. is determined
once the explicit form of true potential V and the value of
D for that H bond are known.

Now the self-consistent procedure becomes clear by
writing a set of related equations in the following order:

D =D(G, T),
Rr =Rr(D),

iti =P(R r, D),
G =G(hg) .

(18)

(19)

(20)

(21)

The procedure begins with finding an appropriate initial
value of D by going through the following steps: (a) di-
agonalizing the secular equation, Eq. (1) with C=O, for
an initial set of force constants to get eigenfrequencies
and eigenvectors which fit the available experimental
data; (b) calculate the Green's-function matrix g for the
perfect system with the eigenfrequencies and eigenvectors
just obtained; (c) construct the C matrix according to the
structure of the defect; (d) calculate the T matrix which is
equal to C(I gC} '; —(e) calculate the Green's function
G for the system with defect using 6=g+g T g; (f) get
values of D from Eq. (11).

After the initial values of D are found, they are used in
calculating Rr as well as effective force constants iI}. The
difference between the calculated effective force constants
and the initial assumed force constants hP are then con-
sidered as a defect to the Green's function, which was
used in calculating the D's. These hP's form a new C ma-

trix called C. The new Green's function 6, which corre-
sponds to the C matrix, is then calculated by

6=6+6 T6 (22)

To cut the perfect infinite helix into two independent
halves one has to turn off all existing interactions across
the cutting plane in Fig. 2. Here we assume the plane be-
ing the boundary between unit cells (

—1) and (0). In-
teractions across this plane include valence forces (bond
stretch, bending, and torsion as well as next-neighbor
stretch} on the backbone and nonbonded stacking forces
between stacked bases where no valence bonding exists.
The latter includes short-ranged van der Waals interac-
tions between nearest-neighbor bases and long-ranged
electrostatic Coulomb forces.

The form of potential for the stacking force between
atom i in one unit cell and atom j another cell is the fol-
lowing:

where T=C(I GC) '. N—ew D's are calculated with G
which leads to new effective force constants. Such a per-
son is then iterated until convergence is reached.

III. CONSTRUCTING THE C MATRIX:
SEVERING AND REJOINING THE PERFECT HELICES

where po is a calculated amplitude of oscillation of
thermal phonons. It is taken to be the width of the
Gaussian weight functions

q;q.
Vnb( ij } i/p(ee, ) r,,

+209.2
rlJ

(23)
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where the first term is the Coulomb potential and the oth-
er two terms together are the van der Waals potential.
e; and e are empirical dielectric constants whose values
change linearly with the distance between atoms. This
two-atom potential is summed up for pairs of atoms
which are up to nine unit cells apart (one helical turn).
Such nonbonded interactions are essential elements in
determining characteristics of low-frequency acoustic
modes, but have little impact on high-frequency optic
modes. The resulting dispersion relations of the above
model of nonbonded interactions fitted well with experi-
mental neutron-scattering data. '

While the valence forces involve no more than the
three atoms, as can be seen from Table I, major concern
goes to the nonbonded interactions as they involve a large
number of pairs of atoms on both sides of the cutting
plane. If we would treat each of the above nonbonded in-
teractions between pairs of atoms as an internal coordi-
nate, the resulting C matrix would be extremely large.
However, we realize that although the above interactions
are numerous, most of them are very small and therefore
mainly affect the low-frequency acoustic modes. In these
the motion of whole bases rather than the motion of indi-
vidual atoms is found characteristic. Such gross motions
are commonly described as compression, shearing, and
tilting. We therefore define a new force constant for each
such motion and match its potential to that projected out
from the potential used in the perfect-helix calculation.

I

The strength of these interactions decays as the distance
between unit cells increases. The interactions between
the two unit cells which are immediately adjacent to the
cutting plane [i.e., cells ( —1) and (0)] are more than an
order of magnitude larger than, say, the interaction be-
tween cells ( —1) and (+1). It is for such a reason that
the interactions between cells (

—1) and (0) were singled
out and are treated explicitly. For the double helix, there
are four combinations of such base-base interactions,
G 'G, C 'C, G 'C, and C 'G between cells ( —1)
and (0), where G and C here represents the guanine and
cytosine bases.

For each generalized motion we define a generalized
coordinate which describes it, i.e., compression b Z,
shearing AS,and tilting hv, where hZ is the change in
distance along the helix axis between the centers of mass
of the two cells, ES is the change of distance perpendicu-
lar to the helix axis between the two centers of mass, and
hw is the change in angle between the two normal vectors
by which each base plane is defined. Assuming these
internal coordinates contribute respectively, ,'f, (EZ), —

—,
' f, (b.S), and —,

' f,(hw), to the total potential energy, we
define a new force constant that can then be determined
by setting the newly defined potential equal to the poten-
tial defined in Eq. (23) for that particular motion of
atoms. For example, the matching condition for
compression is

42 X 1.85 +209.2 X 3 7
p10 2

V IJ

(24)

TABLE I. Valence interactions across the boundary of unit cells ( —1) and (0).

Interaction'

P '(G)-01 (G)
P '(G)-01 (G)-C3 (G)
01 (G)-P '(G)-04 '(G)
01 (6)-P '(G)-02 '(G)
01 (6)-P '(G)-03 '(G)
P '(6)-C3 (6)
01 (G)-04 '(G)
01 (G)-02 '(G)
01 (G)-03 '(6)
P (C)-01 '(C)
P (C)-01 '(C)-C3 '(C)
01 '{C)-P (C)-04 (C)
01 '(C)-P (C)-02 (C)
O1 '(C)-P (C)-03 {R)
P (C)-C3 '(C)
01 '(C)-04 (C)
01 '(C)-02 (C)
01 '{C)-03 (C)

Type

Stretch
Angle bend
Angle bend
Angle bend
Angle bend
Nonbonded stretch
Nonbonded stretch
Nonbonded stretch
Nonbonded stretch
Stretch
Angle bend
Angle bend
Angle bend
Angle bend
Next-neighbor stretch
Next-neighbor stretch
Next-neighbor stretch
Next-neighbor stretch

Force constant

+3.451
+0.772
+0.620
%0.670
+0.670
+0.150
+0.170
+0.397
+0.397
+3.451
+0.772
+0.620
+0.670
+0.670
+0.150
+0.170
+0.397
+0.397

'P, 0, and C under this column are notations for phosphorus, oxygen, and carbon atoms, as in Fig. 2.
The superscript indicates the unit cell number, G and C in parentheses denote the guanine and cytosine
strands, respectively.

0
The force constants are in mdyn/A.
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where ti) and I j) refer to atoms in cells ( —1) and (0), re-
spectively. It can be seen from the equation that f, is in-
dependent of hZ. The tilting force constants determined
this way turned out to be much smaller than those for
compression and shearing and are then neglected in order
to save computing time. Since the interactions between
farther unit cells are less significant, we treat the sum of
them as a whole unit. In addition, since compression falls
off more slowly than shearing and tilting (1/r versus
1/r" where n )4), the major effect of this long-range in-
teraction is just a compressional force. Thus we neglect-
ed shearing and tilting between these unit cells and only
constructed a generalized compression coordinate by
summing up individual compression coordinates for pairs
of unit cells up to nine cells away from each other.

Values of nonbonded force constants which are related
to generating the defect are displayed in Table II while
those of valence bonds are listed in Table I. We have also
neglected torsion since it is very small compared to other
valence forces. The above procedure does introduce an
approximation in the formulation of the problem, but we
believe that the error introduced is minor and mostly
confined to the lowest frequencies below the region of
maximum H-bond contribution. To check if the above
simplifications are acceptable we reran the diagonaliza-
tion program of the perfect helix by replacing the old
atom-atom nonbonded potential with that of new force
constants. The resulting dispersion curves matched al-
most perfectly with the old ones on high-frequency bands
and fairly well on low-frequency bands, except that they
were less smooth. To achieve a perfect cut, we used ei-
genvalues and eigenvectors from the latter diagonaliza-
tion as a mismatch between forces in one part of our cal-
culation, and those cut in another part would leave a resi-
due of connections between sections cut.

The C matrix is defined as the change of force con-
stants brought about by the defect. It spans both the
double- and the single-helical coordinates. It is the posi-

tion of the terms in this matrix that determines which
atoms are affected by a particular interaction. Cutting off
an interaction means entering a negative value of force
constant in the C matrix at a location ~here it severs
atoms that are in the chains to be cut. On the other
hand, creating an interaction means entering a positive
value at a location in the matrix where it connects atoms
that previously had no interaction but are on the parts of
the helices that are to be joined. The same absolute value
of force constants is used for cutting and joining since the
atoms are the same and we assume no change in
geometry between the atoms in the original and reformed
helices. Single standard G or C replaces the identical G
or C in the double helix. Joining them to the double helix
introduces the same number of interactions as cutting
them. For either a G or C strand, the number of cuts as
12 as can be found out by looking at Fig. 2 as well as
Table I. In cutting the double helix there are cross-
strand interactions that need to be considered in addition
to interactions within each single strand. That brings the
number of cuts to 27. Therefore the total number of cuts
and joints should be 2X12 (single G) +2X12 (single C)
+27 (double GC)=75. In other words, the number of
nonzero elements in the C matrix is 75.

IV. SELF-CONSISTENT H-BOND CALCULATION

As stated earlier the creation of the fork did by itself
increases H-bond stretch. But weakening of H-bond
force constants due to the fork-induced stretch could ini-
tiate a further synergistic softening of the H bonds and
enhancement of stretch. %'e now use the Green's func-
tion from the fork problem to calculate G with self-
consistent softening also included.

For this calculation of poly(dG)-poly(dC) in B confor-
mation there are three hydrogen bonds in one unit cell:
the bond adjacent to the major groove N(4)—H O(6),
the bond in the middle N(1)—H N(3), and the bond

TABLE II. Nonbond interactions across the boundary of unit cells ( —1) and (0).

Interaction'

G
—1 GO

C
—1 CO

G
—I CO

C
—I Go

G
—I GO

C-'-C'
G

—1 CO

C-'-G'

(C),-(C)„
(GC), -(GC)„

Type

Compression
Compression
Compression
Compression
Shearing
Shearing
Shearing
Shearing
Generalized compression
Generalized compression
Generalized compression

Force constant"'

+0.5040
+0.3805
+0.0381
+0.0082d
+0.2065
+0.2087
+0.0235
*0.0088'
+0.1740'
+0.1754'
—0.5246

'The superscript indicates the unit cell number, 6 and C in parentheses denote the guanine and cytosine
strands, respectively, while G and C without parentheses denote guanine and cytosine bases, respective-
ly.
The force constants are in mydn/A except that the generalized compressions are in mdyn A/rad .

'The force constants are negative for the cutting interaction while positive for the joining interaction.
These interactions exist only in the double helix.

'These interactions exist only in the single helices.
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FIG. 3. Mean-square stretch amplitude of H bond near ma-
jor groove (long-dashed line), near minor groove (short-dashed
line), and in the middle (solid line) at each iteration step of self-
consistent calculation. The initial values are results in harmon-
ic approximation. The triangles are values for the perfect helix.
The two larger amplitudes stretches fall on each other leaving
two perfect-helix values.

near minor groove N(2)—H . . O(2).
We carried out self-consistent calculation for these hy-

drogen bonds in cell (0), which is the nearest to the
double-helix-single-strand junction. All force constants
in unit cells above it were not self-consistently adjusted.

Our calculated initial values of D's in unit cell (0) as
stated does contain the effect of the fork, i.e., the effect of
being adjacent to an open region. They are, however,
limited to the harmonic approximation solutions of that
problem. They do show enhanced H-bond stretch com-
pared to the initial perfect double helix as shown in Figs.
3—5 and Tables III and IV. This is in general agreement
with Putnam and Prohofsky's earlier work on the same
system. ' That is, the hydrogen-bond stretching at the
junction is amplified relative to the interior of the double
helix. But in that work only two frequency bands were
examined and the entire calculation is within harmonic
approximation. In present work, we have scanned the
entire lower-frequency region 0-230 cm, which in-
cludes 27 frequency bands from the double-helix
poly(dG)-poly(dC), 15 bands from single-helix poly(dG),
and 13 bands from single-helix poly(dC). This is the fre-
quency region of large dispersion. Frequency bands
higher than 230 cm ' do not change much with Bloch
wave vector, therefore they are treated in Einstein model.
Our self-consistent calculation showed a further increase
in amplification of H-bond stretch vibration at the junc-
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FIG. 4. Effective force constant of H bond near major groove
(long-dashed line), near minor groove (short-dashed line}, and in
the middle (solid line} at each iteration step of self-consistent
calculation. The initial values are results in harmonic approxi-
mation.

FIG. 5. Mean bond length of H bond near major groove
(long-dashed line), near minor groove (short-dashed line), and in
the middle (solid line) at each iteration step of self-consistent
calculation. The initial values are results in harmonic approxi-
mation.
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Bond type

TABLE III. Initial hydrogen-bond force constants and their Morse parameters.
o —

1 0
Force constant a(A ) Vo (mdyn/A) Ro {A)

N(1)—H . N(3)
N(4)—H . O(6)
N(2)—H . O(2)

0.158
0.242
0.236

2.374
2.881
2.846

0.018 24
0.025 72
0.025 26

2.805
2.694
2.698

tion relative to the interior of the double helix compared
to that of Putnam and Prohofsky.

The total thermal mean-square displacement fluctua-
tion D, effective force constant E„as well as thermal
mean bond length RT of each hydrogen bond at each
iteration step are displayed in Figs. 3, 4, and 5, respec-
tively. In all these figures, we have used a solid line to
represent the central hydrogen bond N(1)—H N(3), a
long-dashed line for the N(4}—H O(6} bond adjacent
to the major groove, and a short-dashed line for the
N(2)—H O(2) bond near the minor groove.

We see convergence for all three bonds after 24 itera-
tion steps. The convergence criterion has been set for a
relative difference between the current force constant and
the previous one to be less than 10 for each hydrogen
bond. That is,

gy(n)
y(n)

I(n) I(n —1)

I(n) (25)

where n denotes the current iteration step.
We have chosen the Morse potential to serve as the

true potential of our DNA hydrogen-bond system as it is
found to agree with calculations by Baird. " He has cal-
culated bond energy for N—H N as a function of the
distance between the heavy atoms by an ab initio method.
The resulting potential fitted very well to the following
Morse potential:

—a(r —Ro) 2V= V()(1—e '
)

—V(), (26)

where r is the distance between the two nitrogen atoms,
Vp is the minimum value of the potential, R p is the po-

sition of the minimum, and a has to do with the width of
the potential well. Vo, Ro, and a are.constant parameters
determined from the following observations: (i) x-ray ex-
perimental data for positions of atoms in DNA from
which hydrogen-bond lengths are known (ii)
hydrogen-bond force constants and dissociation ener-
gies;' (iii) mean-square displacement D for the perfect
DNA helix. Their values in our model are shown in

Table II. The anharmonicity of the Morse potential is
characterized by its asymmetric shape between the near
and far sides of the potential minimum.

For the prefect DNA helix, the mean-square displace-
ment D can be calculated in two ways. One is by sum-
ming up band by band contributions from eigenvalues
and eigenvectors. The other is by integrating the Green's
function over the frequency range covered by the disper-
sion bands. We do both calculations and use it as a check
for our calculated Green's function. The two results
agree within 3% of each other.

In Fig. 3, the initial values of D at the beginning of the
self-consistent iteration (i.e., n=0} are the results from
the harmonic approximation. Those at the end of the
iterations are the anharmonic results. As can be seen
from Table III, the largest increase in total mean-square
amplitude D in the harmonic approximation is about 1.5
times larger than that of the perfect helix [the bond near
the minor groove, N(2)—H O(2}]. A further factor of
2 increase due to anharmonic effect brings the total in-
crease to 3.5 times. This is equivalent to a thermal fluc-
tuation of 0.23 A, which is about 8% of the average H-
bond length (3 A) compared to 4% in the perfect helix.
It is clear that the possibility of H-bond dissociation is
greater around the defect not only due to the presence of
the defect but also due to the anharmonicity of H bond.
From Fig. 4 we see that the anharmonic effect softens the
H-bond force constant near the minor groove by more
than 50%.

V. FREQUENCY DEPENDENCE OF H-BOND
STRETCH MOTION

In MSPA the total mean-square fluctuation D is calcu-
lated. As in Eq. (11) it is determined by the integration of
Im(G)coth(Pco/2) over frequencies. We call this in-
tegrand thermal fluctuation density D(to) since it de-
scribes the mean-square stretch fluctuation per unit fre-
quency. One can get a detailed idea about the frequency
dependence of thermal fluctuation by plotting it as a
function of co.

TABLE IV. Comparison of mean-square stretches of H bond {in units of A ).

Bond type

N(1)—H . N(3)
N(4)—H O(6)
N(2)—H O{2)

Perfect helix

0.01038
0.015 74
0.015 62

Defect helix
(harmonic)

0.01193
0.017 39
0.023 19

Defect helix
(anharmonic)

0.014 38
0.018 94
0.05469
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In Fig. 6 D(co) are shown for frequencies below 40
cm ' in three cases. They are for the H bond near the (a)
minor and (b) major groove and for the (c) middle H
bonds, respectively. The dotted lines represent unit cells

far away from the junction of the fork and are thus re-
ferred to as cell ( oo ); the dashed lines as well as the solid
lines correspond to cell (0), which is the nearest to the
junction. The dashed lines are from the harmonic calcu-
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lines as well as the solid lines represent H bonds nearest to the junction. The dashed lines are from harmonic calculation and the
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amplitude at the junction for all three H bonds with respect to those far away from the junction occur.
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lation and the solid ones from self-consistent calculation
with anharmonic effect. This is the region where the
largest increases (several orders of magnitude) in stretch
amplitude in cell (0) occur for all three H bonds with
respect to those in cell (00). This indicates that large
coherence H-bond stretch amplitudes have shifted from
above 50 cm ' in the perfect DNA double helix to below
40 cm ' near the junction of the DNA fork. This is true
in both the harmonic calculation as well as the self-
consistent calculation. The effect is greatly enhanced in
the self-consistent calculation. The enhancement arises
from the fact that in the fork the effective force constants
are softened. Again the results here do not take into ac-
count the effects of local distortion, possible unstacking,
or other conformation changes of the single-helical
strands.

The frequency-dependent D(to) can be related to a far
infrared absorption "signature" for the fork system. An
effective dipole moment associated with H-bond displace-
ment x could be written as q'x, where q* is an effective
charge. The dipole enters into absorption calculations
and this factor is proportional to (x ) . Since q' may be

assumed independent of frequency, the absorption should
be proportional to D (to).

The perfect double helix would have much less far in-
frared absorption. The low-frequency excitations are
those involving motion of large sections of the helix.
Such modes have long coherence length and ir observa-
tion would be limited by k-conservation selection rules. '

The fork, however, breaks the symmetry of the system
and k selection rules no longer hold. The result would be
greatly enhanced ir absorption proportional to the D (to)
factors plotted. Thus our calculation suggests that great-
ly enhanced far infrared absorption bands are expected
for DNA systems with the fork present. But it is an open
question whether careful analysis of ir absorption for
varying amounts of fork present can lead to detectable
absorption that may be assigned to the fork.
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