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We show that very simple iterative rules for the growth of cells on a two-dimensional lattice can
simulate biological-growth phenomena realistically. We discuss random cellular automata models
for the growth of fern gametophytes, branching fungi, and leaves, and for shape transformations
useful in the study of biological variation and evolution. Although there are interesting analogies
between biological and physical growth processes, we stress the uniqueness of biological automata
behavior. The computer growth algorithms that successfully mimic observed growth behavior may
be helpful in determining the underlying biochemical mechanisms of growth regulation.

I. INTRODUCTION

The field of pattern formation and fractal growth pro-
cesses in physics has attracted much attention in recent
years. ' Some of the interest shown in this subject has
surely been excited by the construction of complex and
beautiful spatial patterns from very simple computer al-
gorithms, as well as by the close match between the
theoretical model results and observations of natural pat-
tern formation phenomena. Physical pattern formation
phenomena have many interesting analogies in biology,
and it is worthwhile to apply the computational methods
which have proven successful in physics to the more
complex problems in biology. In doing so, we hope to
encourage a more quantitative approach to the study of
biological growth and pattern formation.

Problems of biology are more diScult than problems of
physics in the sense that the vast complexity of biological
systems prevents us from describing the processes at
work in any phenomenon in terms of simple equations.
Although biological growth must involve the production,
transport, and chemical transformation of biologically
active molecules, the specific processes and their rates are
unknown. This ignorance forces us to attack the problem
of growth indirectly.

In this paper we use very simple random cellular auto-
mata to mimic biological growth in two dimensions. As
in physical pattern formation, we assume that complex
biological patterns are the result of iterating simple algo-
rithms or rules. Our approach involves parametrization
of growth rules, trial-and-error simulation of growth, and
comparison with observed biological shapes and growth
patterns. When simulations are found which match ob-
served patterns, we assume that we have discovered a log-
ical structure in the growth rules which is possessed by
the actual biological process. We may then speculate on
the biochemical processes underlying the successful
growth rules. In the absence of detailed knowledge of the
mechanisms, the plausibility of the model will be deter-
mined by its simplicity.

The growth rules lie at an intermediate level be-
tween the subcellular genetic-biochemical processes and
the three-dimensional form of the whole organism:

genes~growth rules~organism. Traditional discus-
sions of developmental biology have always attempted to
close the huge gap between the genes and the whole or-
ganism by rather vague speculation. Successful computer
simulation of the growth process narrows this gap and al-
lows us to make more intelligent guesses about the chain
of causation from genes to organisms. Such theoretical
work will be useful if it stimulates new experiments.

A better understanding of biological growth is a
respectable goal by itself, but a broader objective would
include the study of variation and evolution. A set of
parametrized growth rules has limits to the parameter
values which define the allowable shapes which can be
produced by those rules. The shape variations created by
random parameter (i.e., genetic) changes are then acted
upon by environmental conditions (natural selection) to
produce evolutionary change. Theoretical growth mod-
els might thus contribute to the understanding of evolu-
tion.

For physics, the study of biological growth is an oppor-
tunity to attack longstanding and intractable problems
with the rigorous method of computer simulation and to
open up a vast domain of natural phenomena to quantita-
tive study. It is very likely that biological systems exhibit
forms of collective behavior not seen in simpler physical
systems.

II. GROWTH MODEL

A rigorous growth model might represent the growth
of a three-dimensional object by means of modern numer-
ical continuum-mechanics techniques. This would in-
volve I agrangian zoning of the growing tissue and a set
of equations specifying the location and rate of synthesis
of new cellular material, the resulting differential stresses
developed within the tissue, and the plastic yielding of
the tissue to produce a specific pattern of growth. Rezon-
ing of the growing tissue would be required as the zones
expanded and changed shape.

Such a program is unprofitable at present because it is
computationally very expensive and because of our ig-
norance of the governing equations. Instead, we choose a
much simpler scheme for two-dimensional growth. An
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x-y rectangular grid is established in a box of predeter-
mined size, typically 100X100 points. The grid spacing
is set at 1. The grid points may be occupied or empty.
An occupied point is a living "ce11." These model "cells"
are not to be confused with biological cells, but are sim-

ply the discretized points of a growing continuum. Bio-
logical tissue can grow either by ce11 division or cell en-
largement, but this distinction is not made in the mode1.
A model ce11 grows by division in one of the eight
nearest-neighbor directions, as indicated in Fig. 1. In
sliding growth, a growing ce11 creates a new daughter
cell which displaces a line of the existing neighbor ce11s

by one lattice space in the direction of growth. Displace-
ment stops when one of the displaced cells moves to an
empty site. This is illustrated in Fig. 2. In accretion
growth, new cells are placed only at empty sites. These
are Eulerian, as opposed to Lagrangian, growth models.

Rules of growth of the cells are elaborated by specify-
ing certain variables. In general, we allow growth by
choosing the growing cell with a random number. If all
cells are given equal probability, the growth is uniform.
In nonuniform growth, the probability (or rate) of growth
depends on the position of the cell relative to the other
cells in the growing object. Once a cell is chosen for
growth, its direction of growth is then determined with
another random number. If a11 eight directions have
equal probability, the growth is isotropic; otherwise, it is
anisotropic. Additional conditions involving the number
of neighbor cells may be imposed on a cell chosen for
growth. Different types of cells may be specified, and the
different types may have different growth rules. In this
case, the tissue is differentiated. There may also be
boundary-smoothing algorithms which suppress random
spatial fluctuations along the edges of the tissue.

Programming the growth rules is straightforward.
Each cell is assigned an integer number equal to the nu-
merical order of its appearance. Random numbers R, for
which 0 R 1, are called to determine the growth pro-
cess. For an object with X cells, a ce11 numbered M is
chosen for growth according to the rule M =I(RN)+ 1,

(a) 0 n
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(b) Q
2 3

(c) Q

FIG. 2. Illustration of sliding growth in a group of five cells.
In (a), cell no. 2 has been chosen for growth to the right. In (b),
a daughter cell, no. 6, is created and moved one lattice spacing
to the right of cell no. 2. In (c), cells 3, 4, and 5 have been dis-
placed one spacing to the right to make room for the new cell.

where I refers to the integer obtained by truncation of the
argument. If the growth is nonuniform, then the growth
probability P is computed for the chosen cell and a new
random number R' is called. If O~R'(P, then the
chosen cell is allowed to grow; if P &R' 1, then growth
is not allowed and the growth cycle is repeated.

Once a cell is chosen for growth, a direction is deter-
mined. If the growth is anisotropic, the probabilities
P, , . . . , P8 must be specified. Then a random number R
is chosen and if 0 & R & P &, choose direction 1; if
P, (R ~P, +P~, choose direction 2; if P, +Pz (R
~ P, +Pz+ P3, choose direction 3; etc. For isotropic
growth, all of the P values are equal to 0.125.

Random cellular automata models have the advantage
of being easy to program and fast in execution. This al-
lows us to make repeated trials with variable values of
growth parameters in the search for agreement with ob-
served biological-growth patterns. The principal disad-
vantage is that the growth rules are rather abstract and
diScult to relate to actual biochemical mechanisms.

III. AREA GROWTH

FIG. 1. The numbered growth directions on the square lat-
tice.

The simplest two-dimensional growth pattern is uni-
form, isotropic, undifferentiated growth. The rules for
this growth pattern are (1) start with one cell, usually at
the center of the box; (2) pick one of the N cells at ran-
dom; (3) pick one of the eight growth directions at ran-
dom; (4) insert the new cell [the (N + 1)st] at the nearest-
neighbor position in the growth direction from the
chosen cell; and (5) if the new cell overlaps an older cell,
move this older cell one space in the growth direction,
and continue this displacement process until an empty
space is filled. The resulting shape is a circular mass of
cells with a rough boundary, as shown in Fig. 3.

This model produces a fractal boundary as in the Eden
cluster model' because of the random choice of cell and
growth direction. In typical biological tissues, such
boundary structure is unlikely to occur, because the tis-
sue has a "surface tension" or a plastic yielding behavior
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FIG. 3. An example of isotropic and uniform growth without
boundary smoothing. The cluster contains 27000 cells in a
200 X 200 box.

which spreads out the strain resulting from internal cell
growth. We can mimic such boundary smoothing by re-
quiring that the final cell in any sliding displacement
must have not fewer than Nb nearest (live) neighbors. If
this rule is violated, the move is rejected and a new cell is
chosen. If Nb =1, then we have the original unsmoothed
boundary condition, but if Nb=2 or Nb=3, then the
boundary will be smoothed, as shown in Fig. 4. Sus-
tained growth is not possible for Nb&3. Boundary
smoothing is a nonlocal growth rule in the sense that the
growth of a given cell is determined by conditions distant
from that cell.

P (x '
) =Po+ (x '

)"( I Po ), — (2)

where x;„andx,„arethe boundaries of the growing
object in the x direction. The two parameters Po and k
will determine the degree of nonuniformity of growth. If
Pa=1 or if k =0, the growth rate is uniform. If PO=O,
then the growth probability varies over the range 0—I as
x' varies from 0 to 1. The growth probability in any
direction i is P (x ' )P, .

In Fig. 6, we illustrate nonuniform growth. Here the
starting configuration is a small rectangular block of cells
with three types of differentiated cells. The growth direc-
tion is 3 (to the right) only, and the growth probability is
given by P3 =P (x '), as in Eq. (2). Since each cell repro-

Nonuniform and anisotropic growth rules may give
rise to noncircular shapes. In such cases, we have the
counterintuitive result that the shape changes continu-
ously with growth in size. This follows from the various
unequal directional growth probabilities or rates, each
corresponding to exponential growth with a different ex-
ponent. The shape is determined by ratios of exponen-
tially growing dimensions, so that these ratios are them-
selves changing exponentially. For example:, anisotropic
growth in which the 1 and 5 directions have higher prob-
abilities than the 3 and 7 directions wi11 give an elliptical
shape with a steadily increasing eccentricity. This is
shown in Fig. 5.

Nonuniform growth requires that the growth rate or
probability be a function of position, P =P(x,y). Here
for simplicity we make the growth probability of a cell a
function only of its relative position x ' along the x axis:

xmin

x max xmin

and
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FIG. 4. Isotropic and uniform growth with various values of
boundary-smoothing parameter Nb. Each cluster contains
about 2500 cells in a 100X 100 box.

FIG. 5. Anisotropic growth sequence, with Pl =P5 =0.3333,
P, =P, =0.1667, and Nb=3. The box size is 50X200, and the
number of iterations is shown. The elliptical form increases in
eccentricity with growth.
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FIG. 6. Nonuniform growth in differentiated cells. Each
simulation begins with a 16X 18 block of cells containing three
cell types, indicated by the three different symbols. The box size
is 150X20. The growth is in direction 3 only, and the probabili-
ty function of Eq. (2) is used, with PO=O. The exponent k is
varied in the four simulations to produce different distributions
of the three cell types.

(3)

duces only its own type, the nonuniformity of the growth
pattern can be seen in the relative sizes of the three
difFerentiated regions. In Fig. 6, Po =0, and k is varied to
illustrate the spectrum of nonuniform growth distribu-
tions. At k =0.1, the growth is nearly uniform and the
three cell types are nearly equal in number. As k in-
creases beyond this value, the rightmost cell type increas-
ingly dominates the growth. The phenomenon of nonuni-
form growth for different tissues or organs is very com-
mon in biology, and is termed allometry.

A specific example of area growth is that of the fern
gametophyte. This tiny green plant germinates from a
fern spore and develops a characteristic heart shape. We
wish to find a growth algorithm which will produce this
shape starting from a single cell. By trial and error, we
have developed the following rules: (1) start with a single
cell at x =xo; (2) for cells at x =xo, allow all growth
directions except 1, i.e., P& =0, PS=0.3, P; =(i%1,5)
=0.1167; (3) for cells at x &xo, allow only growth direc-
tions 1, 5, 6, 7, 8; (4) for cells at x & xo, allow only growth
directions 1, 2, 3, 4, 5; and (5) for xAxo, vary the direc-
tional growth probabilities according to the rules

fx —x, f

P, =0.2 for [x —xo[&30,

the approximate size of the organism when growth simu-
lation is stopped. By varying the exponent k, we can con-
trol the shape of the "notch" region around x =xo. As
shown in Fig. 7, the value k =0.5 appears to be the best
when compared with an actual gametophyte. The tem-
poral development of the model shape is also in reason-
able agreement with observations on the growth of indivi-
dual gametophytes.

In modeling area growth, our sliding growth models
yield results close to the accretion growth models used in
physics. ' The main difference between the two growth
models is that sliding growth may be used to generate
clones of cells internal to a tissue, while accretion growth
cannot. The appropriate physical analogy to area growth
might be the growth of a crystalline phase from a liquid
or vapor medium. Under uniform external conditions, a
growing crystal is likely to take on a compact, symmetric
form like a snowAake. By applying temperature or con-
centration gradients across the growing object, an aniso-
tropic shape like that of Fig. 5 may be produced.

Many examples of biological growth are not random
but are more nearly deterministic, in that the cell
divisions follow a fixed sequence. ' This is the case in
the fern gametophyte, and deterministic models of
growth have successfully simulated the growth of this or-
ganism. " However, we have found that a random
growth model constrained by probability functions does
an equivalent and adequate job of modeling the growth
pattern. We do not have to write into the program a
complex set of rules governing sequential cell divisions,
but only a simple probability function. A series of simu-
lations with variable k exponent values then generates the
patterns, one of which is selected as a best fit to observa-
tion.

The anisotropic and nonuniform growth patterns

1=1.Q

P, =0.2 for ~x —xo~ &30,

P5 =0.4 P& for all x

(4)

(5)

and

P, =0.2 for all i%1,5 . . (6)

The arbitrary scale value of 30 in Eq. (3) is chosen to be

FIG. 7. Simulations of a fern gametophyte with variable an-
isotropy parameter k. Each simulation contains 5000 cells and
Kb=1. A sketch of an actual gametophyte is shown also for
comparison.
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shown in Figs. 5 and 6 illustrate the importance of
growth gradients in biological pattern formation. The
biochemical mechanisms underlying these gradients are
not known, but the standard theoretical model proposes
that a gradient of cell behavior is a response to a concen-
tration gradient of a biologically active substance. ' The
spatially varying concentration field constitutes a "mor-
phogenetic field. " In the fern gametophyte case, the mor-
phogenetic field might be due to a growth regulator sub-
stance originating from the cells at the apical notch. The
concentration of the regulator decays with distance, cor-
responding roughly to the function in Eq. (5).

(a) (b) (c)

IV. SHAPE TRANSFORMATIONS

In his book On Growth and Form, D'Arcy Thompson
proposed that closely related organisms should be com-
pared quantitatively by a point-to-point mapping of one
onto the other. ' He illustrated this by drawing a rec-
tangular grid over one of the organisms and an appropri-
ately distorted grid over the other. This diagram (Figs. 8
and 9) suggests how to "transform" one organism into
another by differential growth. These transformations
are smooth and are the same for all of the various
differentiated tissues found in the organisms being com-
pared.

Thompson's grids have been admired and commented
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FIG. 9. Simulations of cucurbit fruit forms using anisotropic
growth model with Nb =3. The coordinate transformations are
drawn below. Simulation (a) is generated with A =1.0, B =0,
and k =2.0. Simulation (b) is generated with A=0.95, B=O,
and k = 1.0. Simulation (c) is generated with A = 1.0, B =0, and
k =0.6 (Lower figures are reprinted with permission from Ref.
15.)
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(b)

and

P, =P5=0.5[3 +(x*)"(8—A)], (7)

on for decades, but they have not proved to be of practi-
cal use to biologists. ' The problem is that the grid trans-
formations are not constant, but depend on the size of the
organisms being compared. This follows from the rule
that anisotropic or nonuniform growth produces a shape
which constantly changes with increase in size, as indi-
cated in Figs. 5 and 6.

A more fundamental comparison of two organisms
would be between the two growth algorithms which
govern their shapes. These algorithms are more likely to
remain constant over a range of sizes than the shapes of
the organisms. We can use our simulation technique to
determine the algorithms for two species of tropical fish
considered by Thompson, and shown in Fig. 8. The two
species differ in the ratio of head to tail size.

The anisotropy is given a spatial dependence in order
to provide more realistic simulations. In these calcula-
tions we restrict the growth directions to 1, 3, 5 and 7,
with

P3=P7=0.5(l —2P, ), (8)

FIG. 8. Simulation of one of Thompson's coordinate trans-
formations for two fish species. The upper figure is an "em-
bryo" initial condition for both simulations, which contains
three types of cells. Anisotropic growth rules with Xb =3 are
applied to the embryo, leading to the two forms designed to
mimic the fish species drawn below with their coordinate trans-
formation. Simulation (a) is generated with A =B=0.35, and
simulation (b) is generated with A =0.1, B =1.0, and k =1.0.
(Lower figures are reprinted with permission from Ref. 13.)

where 0 A, B 1. The genera1 nonuniform growth
probability of Eq. (2) is also included in the simulation.

We start with an embryo" containing differentiated
tissues and we apply different growth rules in order to ob-
tain the two adult fish shapes. The "control" shape is ob-
tained approximately with constant anisotropy, A =B
=0.35. This represents growth which is biased in the 3
and 7 directions. The "distorted" shape requires in-
creased vertical growth in the tail region. Our best simu-
lation is obtained with A =0.1, B = 1.0, and k = 1.0. We
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do not need to invoke nonuniform growth for these simu-
lations. Although our model cannot prevent the unrealis-
tic intermixing of diferent cell types, the simulated
shapes of the body and tail fins are in reasonable agree-
ment with the observed shapes. Since these two fish
species are closely related, it is possible to imagine an an-
cestral species which underwent divergent evolution by
stepwise change in the genes controlling the growth prob-
abilities of its tissues. The specific mechanisms control-
ling the growth probabilities are not known, but a mor-
phogenetic field model is plausible.

An example of shape variation among plants is found
in the fruits of cucurbits (squashes and gourds). These
have been studied with Thompson's grids and are also
found to have smooth grid transformations. ' We have
simulated these shapes using Eqs. (7) and (8), starting
from a very simple rectangular embryo, and the results
are shown in Fig. 9. As with the shapes of Fig. 8, it was
not necessary to apply nonuniform growth.

Here we have specified sjmple algorithms for the pro-
duction of varied biological shapes. The algorithms are
more fundamental than the shapes, which change as a
function of size. In confirmation of this, experimental ge-
netic studies of the cucurbit shapes show that it is the
growth rates and directions which are hereditary, and not
the shapes themselves. '

The rather crude shapes of the simulations in Figs. 8

and 9 are the result of the very simple model with a limit-
ed number of adjustable parameters. More elaborate
models with more parameters could certainly produce
better fits to observations, but this is unnecessary for il-
lustrating the principle of the growth model.

growth in this case is not sliding growth but accretion
growth, in which cells are placed at unoccupied points on
the lattice. In Fig. 10, we show the results of isotropic
branching growth for nearest-neighbor number X, = 1, 2,
3, and 5.

The patterns shown in Fig. 10 do not accurately mimic
observed growth patterns because real branching growth
is generally not isotropic. ' Anisotropic growth occurs
because this is the most efficient way to occupy new
space. In modeling this, the probability of growth direc-
tion can be "biased" by giving more weight to certain
favored directions. In a radially growing fungus colony,
there is a bias in the direction radially outward from the
original cell, because this is where the nutrients are.

A radial bias may be introduced by redefining the
directional probabilities P„.. . , PS. At the position of
the chosen cell, the radial direction is defined as direction
1 and is given probability P, . The seven other directions
are arranged with respect to this direction as in Fig. 1

and assigned probabilities P2, . . . , P8. To translate a
randomly chosen direction into one of the eight allowable
directions on the lattice, we compute the tangent of the
angle 8 formed by the chosen direction and the x axis,
and compare this with the tangents of the angles a; cor-
responding to the eight allowable directions. If tang lies
between tan(a;+m/8) and tan(a; —m. /8), then the
growth direction is i

In the case of fungal colonies, the radially outward
direction may be favored, and in Fig. 11, this type of
growth is shown for variable radial growth bias parame-
ter, as indicated by the P, value. Here only the radially
outward growth directions 1, 2, 3, 7, and 8 are allowed.

V. BRANCHING GROWTH

Some organic structures like fungi, plant roots, and
blood vessels have a threadlike, branching growth habit.
Here the important growth rules have to do with the
elongation of the threads and the rate and direction of
branching.

Here we apply the lattice model to branching growth
in two dimensions. For a lattice of points in two dimen-
sions, we consider a set of growth rules: (I) start with a
single cell; (2) choose a cell at random; (3) choose a
growth direction with a random number according to the
assigned probabilities; (4) check to see if the new site is
unoccupied and that it meets neighbor number criteria;
(5) if the criteria are met, then place the new cell at the
specified position and connect it to its origin with a
straight line.

These rules generate a set of connected line segments.
For branching growth, we may assume that the purpose
of the growth is to fill space in an optimal way in order to
absorb nutrients distributed in space or to provide nutri-
tion to other tissue distributed in space. To do this, the
branches must avoid one another and growing tips must
orient away from one another. This can be done by re-
quiring that any prospective cell must not have more
than some number X, of neighbor cells. The simplest
rule specifies nearest neighbors only, but second- and
higher-neighbor numbers can be introduced easily. The

N
1

N
C

FIG. 10. Isotropic branching growth with variable nearest-

neighbor rule. The box size is 100X 100 and the N, values are
shown.



7030 DAVID A. YOUNG AND ELLEN M. COREY 41

P, = 0.24 P, = 0.40 P)
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FIG. 11. Branching growth with radial anisotropy. The P&

value is shown above each simulation. Here P2=P3=P7
=Ps =0.25( 1 P l ). A sketch of an actual fungus colony is

shown in the lower right corner.

The simulations with higher P, values are in moderately
good agreement with a sketch of a fungal colony also
shown in Fig. 11. The simulated colonies are space-filling
structures which have a fractal dimension D. The num-

ber D may be determined from the slope of a log-log plot
of the number of cells in the colony versus the average
linear dimension of the colony. Unbiased colonies fill

space uniformly and have a fractal dimension D=2.
With increasing radial bias, branching is suppressed, the
structure becomes increasingly one-dimensional, and D
approaches 1. Although branching growth is probably
nonuniform as well as anisotropic, for the sake of simpli-
city we have not included nonuniformity.

Growth can also be biased toward a point source of nu-
trient. This is done by specifying the favored growth
direction 1 in the direction of the point source and by us-

ing the tangent method as before. An example of strong-
ly biased growth in the direction of a point source is
shown in Fig. 12. This resembles the growth of fungal
filaments toward a nutrient source or the growth of a
neuron toward a target cell in animal tissue.

Branching growth in biology has numerous physical
analogies, including diffusion-limited aggregation (DLA),
electrodeposition, viscous fingering, and electric dis-
charges. ' ' ' In two-dimensional space, these physical
growth processes lead to objects of fractal dimension D,
with 1 & D & 2, not unlike the branched structures of Fig.
11. The DLA model introduces an inherent radial
growth bias by virtue of its boundary conditions, but this
bias has been specifically introduced as a "tip priority
factor" in modeling the electric breakdown of insula-
tors. '

The fractal dimension of a biological-growth pattern is
unfortunately not very informative about the important
growth mechanisms, which include cell elongation and
branching. Studies of these processes in fungi suggest a

FIG. 12. Growth of a branching structure toward a point
source in a 100X100 box. Here P& =0.96, and P2=P3=P7
=Ps =0.01. The iteration of each growth stage is shown.

complex process of cell wall breakdown and synthesis. '

Slight changes in this process due to mutation may lead
to significant changes in the shapes of colonies and in the
adaptive efficiency of the organism. The usefulness of the
models lies in making the connection between the micro-
growth processes and the macrocolony form.

VI. LEAF GROWTH

The innumerable variety of leaf forms presents a for-
midable challenge to theoretical biology. In modeling
leaf growth, we look for growth rules which are simple,
but which contain sufficient variability in parameter
space that a variety of forms may be generated from
iteration of the rules. In leaves, the growth pattern is
more complex than either simple area or branching
growth. In fact, we model it as a combination of both
types. We consider two types of cells, vein cells and
green photosynthetic cells. The branching vein cells
grow by converting green cells, and the green cells fill

space by accretion. Green cells can grow only if they are
sufficiently close to vein cells, which supply nutrient.
Thus there is a positive feedback linking the growth of
the two types of cells.

Specification of the probabilities of growth and growth
direction of the two types of cell allows for an elaborate
set of rules which may be sufficient to simulate the great
variety of growth patterns found among leaves. Here,
however, we confine ourselves to very simple rules in or-
der to provide a minimal description of one generic leaf
type, the oak leaf.

For vein cells, the rules are (1) start with an embryo
with one vein cell; (2) this cell grows upward to form the
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midrib by converting green cells; (3) if a green cell direct-
ly above the top of the midrib has at least X, other live

neighbors, then it is converted to a new midrib vein cell;
(4) initiate horizontally growing secondary veins at con-
stant intervals y„along the midrib; and (5) secondary
veins grow when a random number selects a vein tip, and
the neighboring green cell in the direction of growth has
at least N, live neighbors. In order to keep the model
simple, we have neglected the formation of tertiary and
higher-order veins.

For green cells, the rules are (l) start with an embryo
containing several green cells; (2) pick a green cell at ran-
dom; (3) pick a growth direction according to the as-
signed probabilities; and (4) if the prospective cell posi-
tion is unoccupied, and if it is within n, shells of neigh-
bors of the nearest vein cell, allow growth by accretion.

By varying the numbers y„and n„the outline of the
leaf can be made to vary from highly lobed or dissected
to roughly circular. These simulations are shown in Fig.
13 and are compared with leaves of several California oak
species. The agreement is moderately good.

Since the oaks belong to the same genus and are closely
related, it follows that the leaf shapes should be the result
of only slight variations on a general growth pattern.
This is consistent with our approach in varying only a
few parameters to obtain the observed shapes.

There is an interesting analogy between the leaf model
and river drainage basins as studied in physical geogra-
phy. ' The patterns of channels and drainage area corre-
spond to the veins and green tissue, respectively. As wa-
ter drains into the river, the stream channels deepen and
the network of channels becomes more elaborate. This is
equivalent to the elaboration of the vein network in leaf
growth. Theoretical work on vein formation in leaves
suggests that veins form in response to flows of auxin, a
growth regulator, which is analogous to water flows
stimulating the formation of stream channels. There is
also an analogy between the growth of dendritic crystals
and of leaves, not only in shape, but in the sensitivity of
the shape to the boundary conditions. ' '

VII. DISCUSSION

Biological growth touches the problems of physical
pattern formation processes at various points, and there
are a number of rather close analogies between the two,
which suggests fundamental topological similarities. "' '

This has been useful in applying cellular automata mod-
els to biological-growth problems. Unlike physics, how-
ever, the immense complexity of biophysical phenomena
makes attempts at exact simulation and mathematical
analysis unrewarding. Instead, we strive to generate the
simplest model which captures the essential features of
the observed phenomenon.

ri
S n =4 ('I

S rt =/
S

FIG. 13. Simulations of oak leaf patterns. Actual leaves with
varying degrees of dissection are compared with best simula-
tions using E„=8,y„=12,and variable neighbor shell numbers
n, .
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Lattice models have the valuable property of simplicity
and ease of programming. Thus they can be used to
simulate complex structures by a trial-and-error process
of adjusting the generating algorithm until the desired
structure is obtained. We have found that intuition rare-
ly gets the right answer at the first trial, since the itera-
tive process of simulation is too diScult to predict. The
trial-and-error process aids in converging to the correct
algorithm, and is an essential part of the research eff'ort.

It is also possible to generate increasingly complex
rules for lattice models if there are sufficient quantitative
experimental data to warrant this. An example might be
Sinnott's extensive genetic work on cucurbit shapes. ' It
would be straightforward to generalize the lattice model
to three dimensions, and three-dimensional growth rules
which accurately mimicked cucurbit growth patterns
might suggest further experimental work to study the an-
isotropic growth rules at the cellular level.

In this paper, we have made only general suggestions
about mechanisms at the genetic level because very little
is known about these mechanisms. However, accurate
modeling of growth and the stating of explicit rules opens
the way to new theoretical and experimental work on
biochemical mechanisms. Lattice models may thus have
a valuable contribution to make in addressing problems
of biological morphogenesis, variation, and evolution.
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