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Linear theory of uncompensated thermal blooming in turbulence
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A linearized theory of small perturbations in thermal blooming gives a surprisingly accurate
description of the initial evolution of a plane wave propagating through an absorbing fluid medium.

In the case of constant absorption and fluid velocity, a sinusoidal perturbation of the optical field

grows quasiexponentially at a rate determined by its Fresnel number and the accumulated optical-
path difference due to blooming. Perturbations with small transverse length scales grow more rap-
idly than those with large length scales. The evolution of the optical field and spectrum in the pres-
ence of optical turbulence is accurately described. The growth of the small-scale fluctuations even-

tually leads to a decrease in plane-wave amplitude. This growth puts an ultimate limit on the
amount of power that can be propagated through a turbulent medium such as the atmosphere.
More complicated cases with varying absorption and velocity profiles can be analyzed using a WKB
approximation. Numerical simulations show growth suppression when the velocity varies along the
optical path. These predictions from the linearized theory agree well with results from numerical
simulations of the full nonlinear system and thus provides a standard for comparing di8'erent nu-

merical codes.

INTRODUCTION

A laser beam propagating through a weakly absorbing
fluid medium heats the fluid, changing the local density.
This causes variations in refractive index, which result in
phase and irradiance fluctuations of the beam field. For
low-power lasers these fluctuations do not significantly
affect the propagation of the beam. However, as the
power is increased, these self-induced refractive-index
changes can degrade the ability to focus or aim the beam.
The details of this self-induced distortion, known as
thermal blooming, depend on the irradiance and diameter
of the beam and the magnitude of the temperature
change.

For high-irradiance, small-diameter beams, the initial
irradiance distribution and edge effects dominate, leading
to large distortions on the scale of the whole beam.
These whole-beam effects have been extensively studied
both analytically and numerically by many researchers
(see Walsh and Ulrich'). In particular, perturbative
whole-beam solutions for homogeneous media have been
obtained by Gautesen and Morris.

For larger-diameter beams, irradiance changes induced
by whole-beam blooming are less, and small-scale irradi-
ance scintillations from inhomogeneities in the medium
become important. The blooming intensifies these inho-
mogeneities in a process called stimulated thermal Ray-
leigh scattering (STRS). This phenomenon occurs for
collimated beams with large Fresnel numbers NF when
the total amount of phase distortion from whole-beam
blooming remains much less than XF. The Fresnel num-

ber NF=m-D /4A, L is proportional to the ratio between

the length at which diffraction becomes important for the
whole beam D IA, to the total path length L, where D is
the diameter of the beam and A, is the wavelength.
Small-scale distortion is also important when adaptive-
optics systems are used to correct for turbulence and
whole-beam blooming. These systems generally correct
only large-scale distortions, leaving the smaller-scale scin-
tillations unaffected. The growth of these uncorrected
small-scale scintillations puts an ultimate limit on the
amount of power that can be propagated by an adaptive
system through a turbulent medium such as the atmo-
sphere. The magnitude of the growth depends on laser
wavelength and path length through the Fresnel number
of the small-scale perturbations N =nA/4AL, wh. ere A
is the length scale of the perturbation. Growth is small
for large Fresnel numbers (N~ ))I) and large for small
Fresnel numbers (N « 1). This effect has been observed

by Karr et al. in the propagation of an argon laser (1—3
W, 2 —5-mm diaineter) through a 1.2-m cell of CCL4
scaled to reproduce typical atmospheric Fresnel numbers.

Analytical results for small scale thermal blooming are
extremely difficult to obtain due to the nonlinear coupling
between the induced refractive index variations and the
beam field. This makes a numerical approach necessary
for most problems of practical interest. However, in this
paper analytical results based on linearization around a
known solution are shown to describe much of the phe-
nomenology of thermal blooming in turbulent media
when whole beam effects are small. Small-scale phase
and amplitude perturbations are found to grow quasiex-
ponentially in a fluid medium with constant absorption in
agreement with previous results. In addition, the evo-
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lution of the optical spectrum is obtained for propagation
through an optically turbulent absorbing fluid. The
linearized theory agrees well with numerical solutions of
the full nonlinear equations, accurately predicting the
evolution of phase and amplitude fluctuations up to satu-
ration.

LINEAR THEORY OF THERMAL BLOOMING

n +(u.V)n = CI+dV—n (2)

where I= ~E~ is the optical irradiance, d is the
diffusivity, u(z) is the mean transverse fluid velocity, and
C(z) is a material parameter proportional to the absorp-
tion coefficien of the fiuid a(z), C=(r}n/Bp)tzpz/C~.
These governing equations are valid for weakly absorbing
mediums such as the atmosphere where density changes
are too small for buoyancy to affect the velocity Geld
(heated parcels of fluid are convected out of the beam be-
fore buoyancy can significantly change their velocity).

Equations (1) and (2) are separately linear equations for
E and n The coup. ling terms, though, are nonlinear,
making analysis of the full system extremely difficult.
However, one can calculate the behavior of small pertur-
bations away from some nominal solution using linear
analysis. ' Consider the case of small perturbations from
the solution for a plane wave E=ED+E„where Eo is
the plane-wave solution and E, is a perturbation
~Ei~ &&Eo. The irradiance in the plane-wave solution
remains constant ID=ED. In terms of irradiance and
phase the full electric field (plane wave plus perturbation)
can be written

E =QI (10F+)e (3)

where F is the irradiance perturbation and P is the phase
perturbation. Substituting this into the governing equa-
tions and retaining only the terms linear in F and P gives

BF 1= ——V P,
Bz k

a~
Bz 4k

(4a)

(4b)

Bp
at

+(u V)p, = I F+dV p, —

The optical field in thermal blooming is described by
the paraxial wave equation

a2 82
2ik =V E+2k (n —1)E, V = 2+

Bx Bp

where E is the electric field amplitude and n is the ratio
of the actual refractive index field to the constant back-
ground refractive index. This ratio is assumed to vary lit-
tle from unity so that the approximation n 1=2(n ——1)
in the paraxial equation is valid. The beam propagates in
the +z direction with a wave number k =2m/A, whe, re A,

is the wavelength in the medium. The refractive index
field is described by the hydrodynamic equation for a pas-
sive contaminant in a fluid,

where I =CID and p =n —1 is the refractive-index per-
turbation associated with the field perturbation. These
equations determine the growth (or decay) of the pertur-
bation as a function of z and t.

Equations (4) and (5) are solved given initial perturba-
tions in the optical fields F and P, and/or perturbations in
the refractive index field p. The equations are Fourier
transformed in the transverse xy plane, then Laplace
transformed in time to obtain

K K
2

az
(6a)

=k — F
az "' 4k' (6b)

VP„+i(K u)P.„=—I P„dK~P„—+pa (7)

where a is the transverse wave vector, v is the conjugate
Laplace variable for time, and p, is the initial perturba-
tion of the refractive-index field. In atmospheric propa-
gation p represents the natural turbulent fluctuations of
refractive index. The ~ subscript indicates the Fourier
transform while the caret indicates the Laplace trans-
form. These equations can be combined to obtain a sin-
gle equation for F„:

d2F K2 0

+a P (v)F„= (8)

where

P (v)=1+
a„v

V(Z) =V+ d K + l [K'll(Z) ],

The solution for the phase fluctuation P„can be obtained
from (9) using (6a). Note that the function K„ is indepen-
dent of the turbulent refractive-index fluctuations.

The function K, can be written in closed form for only
a few cases of absorption I (z) and mean velocity profile
u(z). The problem can be simplified somewhat by noting
that the diffusion term d~ in v represents a multiplica-
tive factor of exp( dK t ) in the express—ion for
K, (z,z', t), i.e., if K„(z,z', t) is calculated for d=0, it is
K, (z,z', t)exp( dK t ) for nonzero —d. If u(z) is constant,
the problem can be simplified further by rewriting the
equations in terms of the retarded time t —x u/u, elim-
inating the term ix-u from v so that 7=v. However
these simplifications still do not allow closed form expres-
sions for K, for general absorption profiles I (z). In a
later section, a method of obtaining approximate solu-

and a„=K /2k. Let J„(z) be the solution of (8) for the
special case of p,„=O, F„(0)=0, and F„'(0)= 1, where
F„'=dF„/dz. The solution to (8) for general initial condi-
tions F~ and P~ at z =0 can be written in terms of J„(z)
and the function K„(z,z')= J„(z,z')/v(z'), where J,(z,z')
is the Green's function for (8) (Ref. 11):

P„(z)=J'„(z)P~+2a„J„(z)/~+K f K„(z,z')p„(z')dz' .
0

(9)
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tions to (9) for general absorption and velocity profiles is
presented.

UNIFORM MEDIUM

For constant absorption and constant velocity, the in-
tegral in (9) becomes a convolution with

K„(z,z', t) =K,(z —z', t). A simple analytic forin for
K,(z, t) can be derived for this case:

K(z, t)= g 2 [zj„(a„z)],(
—rtkz )"

„=p (n! )

sin(a „Pz )
K(z, v)=

va,

(10)

' 1/3
3m N~z

K(z, t)- exp
m +12Ni /N

3v'3
Xsin

2 4N

for N N& ))1 with N& ))N, and

2 4N
' 1/3

2

~ (2mN )'

(12}

(13)

for N N& «1 with N&) 1, where N =sr k/2~ z is the
Fresnel number for perturbations with transverse wave
number x. These asymptotic limits were first obtained by
Glass' and Briggs using different methods. They show
that perturbations in the linearized theory grow without
bound for increasing Ni. The first result (12} is applic-

where t is the retarded time in the convected frame, j„(x)
are spherical Bessel functions, and I'tkz=2mN& is the
phase shift in radians caused by thermal blooming. The ~
subscripts have been dropped with the understanding
that all subsequent analysis will be in the Fourier domain.
This expression for a uniformly absorbing medium was
first derived by Glass. ' The form of (10) makes it
difficult to determine at first glance whether the initial
perturbation will grow or decay in time under the
influence of thermal blooming. This question is critical in
determining the degradation of a laser beam propagating
through the medium.

The rate of phase-shift accumulation at a constant alti-
tude for a typical case of high-energy atmospheric propa-
gation is several to tens of waves per second. For exam-
ple, a 1-pm-wavelength laser with an absorbed power of
10 ' W/cm accumulates phase change at a rate of 10
waves per second for zero wind after propagating 1 km.
For constant nonzero wind, the phase change accumu-
lates as a parcel of air is convected across the beam. The
rate of phase accumulation for a constant wind of 1 m/s
in the previous example is 10 waves per meter. The total
distortion at the downwind edge of the beam is propor-
tional to the beam diameter and its duration.

The method of steepest descents can be used to evalu-
ate the Laplace inversion integral of (11) for large time t.
The results for two different limits are

able for perturbations with large Fresnel numbers (large
spatial scales) while the second result (13) applies to small
Fresnel numbers (small spatial scales). These approxima-
tions appear to work well for N& of order 1 and greater.
The result for small spatial scales remains valid even for
Ni less than one (see Fig. 5). The growth of the smaller
scale perturbations is faster than the growth of the larger
scales and independent of Fresnel number. However, for
much larger N& the growth rate of the small scales
should approach that given by (12). This is reflected in
the upper bound for K(z, t) (see the Appendix}:

1 /3 ' 1/3

~K(z, t) &9z

2
(14)

Eventually the amplitude fluctuations become so large
that the linearized analysis in invalid and the growth lev-
els off. This regime of growth saturation with large fluc-
tuations is not of much practical interest, however, since
the quality of the beam is poor.

Physically, the growth of the perturbation can be un-
derstood as a self-stimulating scattering process. Initial
phase perturbations in the beam are converted into irra-
diance fluctuations one Fresnel length down the propaga-
tion path. Absorption results in differential heating and
refractive-index fluctuations which cause more scattering
and phase fluctuations. At large scattering angles this
process has long been known as stimulated thermal Ray-
leigh scattering. Roughly speaking, the beam writes its
own diffraction grating into the medium. For small-scale
perturbations the plane wave diffracts off the perturba-
tions. Interference between the diffracted wave and the
plane wave creates a more intense heating pattern further
down the propagation path. The second heating pattern
is opposite to the original perturbation so that spots
which were initially hotter than average propagate to
spots which are cooler than average. However, the mag-
nitude of the temperature difference increases as the
beam propagates, leading to oscillatory growth of the
perturbations (Fig. 1). The rate of growth depends upon
the coherence of the scattering patterns. The highest
growth rates occur when the heating patterns burned into
the fluid remain strictly aligned along the propagation
axis, i.e., a uniform velocity field. Variations in fluid ve-
locity along the z direction disrupt this alignment and
can reduce the growth rates.

For perturbations with large spatial scales a,z «1 the
process can be described in terms of geometric optics as
an alternating focusing and defocusing of the perturba-
tions. Any small perturbation that tends to focus a part
of the beam causes a hot spot to form some distance
down the geometric ray through the perturbation. This
hot spot creates a local-density minimum which acts as a
divergent lens which produces a cool spot further down
the path. The coo1 spot focuses the beam again into
another hot spot. As in the diffractive case the resulting
focusing and defocusing is unstable, causing unbounded
oscillatory growth of the perturbations.
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FIG. 1. FoURD calculation of oscillatory growth of intensity
perturbation for a 2-m-wide infinite slit beam (A, = lcm) propa-
gating through a uniform atmosphere with constant wind of
2.63 m/s perpendicular to the slit. Initial intensity perturbation
was 0.001% with a period of 1 cm. Blooming rate was 5.7
waves per kilometer, or 7.5 waves per second at 1 km.
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The linearized theory was tested against the results
from ORACLE, a numerical code for thermal blooming
developed by Viecelli' at Lawrence Livermore National
Laboratory. ORACLE solves the full nonlinear-
propagation problem [Eqs. (l) and (2)] on a discrete four-
dirnensional mesh in which the Quid medium is represent-
ed by discrete layers. The fluid density field is a set of
two-dimensional real arrays, one for each layer. The
electric field is a single two-dimensional complex array
which propagates through the density arrays. Tur-
bulence is represented by using random phase screens
with Kolmogorov spectra to initialize the density ar-
rays. For each time step ORACLE propagates the elec-
tric field forward using a split-operator Fourier method.
It then convects the density arrays for one time step, cal-
culates the heating, and repeats the cycle. The density
arrays are convected by multiplying their Fourier trans-
forms by a complex phase factor. Specifically, the com-
putational domain consisted of multiple square meshes
spaced evenly in the direction of propagation (+z). The
mesh resolution varied from 32 X 32 for Figs. 2 and 10 to
128 X 128 for Figs. 7 and 8. The number of z steps varied
from 40 for the large mesh to 400 for the smaller mesh.
The solutions obtained using the Fourier method are
periodic in planes transverse to the propagation direc-
tion, with periods equal to the mesh width. ORACLE is
closely related to the thermal-blooming code FOURD used
by Fleck, Morris, and Feit. '~

Comparisons between numerical simulations and linear
theory were made for two eases of interest: constant ini-
tial conditions with no index fluctuations, and zero initial
conditions with index fluctuations corresponding to at-
mospheric turbulence. The first case demonstrates the
validity of the linear theory and the asymptotic forms of

1Q
10

t

10
Time (sec)

\ k

10

FIG. 2. Growth from a small initial sinusoidal log-amplitude
fluctuation. Solid line is linear theory, symbols are oRAcLE re-
sults. Blooming rate was 112.8 waves per second. (a) N~ =3, (b)

Np =0.39.

P(z, t }= K"(z, t }y,+K'(z, t)P, ,
1

(l6)

K (z, t) for large time. The second demonstrates the abili-
ty of the linear theory to predict the arnplification of tur-
bulent index fluctuations for a physically interesting case.
Agreement between numerical simulation and theory is
found to be an important criterion for determining the
validity of any numerical code for thermal blooming.

Consider the case where the electric field at z =0 has a
sinusoidal perturbation with constant amplitude and spa-
tial wave number a. The initial conditions in (9) are
F~ =2yolv and /~=Pc/v, where yo and tI)o are the log-
amplitude and phase of the Fourier transform of the per-
turbation. The solution for the Fourier-transformed log-
amplitude y(z, t) and phase P(z, t) are obtained from (6a)
and (9):

y(z, t) =K'(z, t)y, +a.K(z, t)P, ,
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tween numerical simulations which differ only slightly in
their initial parameters. A range of Fresnel numbers and
time intervals must be investigated to establish the
overall growth of perturbations in the field. In the case of
ORACLE, the agreement between ORACLE results and
linear theory confirms the accuracy of the numerical
code. Thus linear STRS theory provides the first oppor-
tunity for independent confirmation of numerical models
of small-scale thermal blooming.

I 10-~.:-
4x

qo-2 qp-1 q qp
N), {waves blooming)

~ ~ ~ ~ ~ ~ I

'(b)

jp2

AMPLIFICATION OF OPTICAL TURBULENCE

The interaction between thermal blooming and a ran-
dom field of refractive index fluctuations can be investi-
gated by choosing zero initial conditions in the solution
given by (9}, i.e., F~=O and /~=0. For this case the
log-amplitude and phase are

y(z, t)=a„kf K(z s, t)p„(—s}ds, (18a)
0

P(z, t)=k f K'(z s, t)p„—(s)ds . (18b)
0

Since the refractive index is a random field, appropriate
measures of the optical field are the spectra of the log-
amplitude and phase:

(yy'(z, t)) =a„k f f K(z s, t)K(z —s', t)—
0

101:
4
X

2
102 10-1 1 10 1Q2

N&{waves blooming}

X (p„(s}p„( s))ds ds',

(pP'(z, t)) =k'f f K'(z s, t)K'(z —s', t)—

X (p,„(s)p„(s'))ds ds,

(19a)

(19b)

FIG. 3. Growth from a small initial sinusoidal phase fluctua-
tion from linear theory. {a)N~ =3, (b) N~ =0.39.

where the log-amplitude y(z, t)=F(z, t)/2. From these
the normalized electric field magnitude of the perturba-
tion is

where the brackets ( ) indicate an ensemble average over
realizations of the field p„. For the special case of atmos-
pheric optical turbulence, the index fluctuations have a
Kolmogorov spectrum with an amplitude characterized
by the structure constant C„(z), which is generally a
function of position along the optical path. Following
Tatarski, ' the log-amplitude and phase spectra are given
by

lE„(z,t)l'
=y'(z, t)+P'(z, t) .

0
(gg*) =

'&&&3 a„k f C„(s)K (z s, t)ds, —(20a)

This expression can be calculated using the exact series
representation or the large-time asymptotic expressions
for K(z, t). The exact series result is shown in Figs. 2 and
3 along with numerical results for the full nonlinear prob-
lem from ORACLE. Phase and log-amplitude perturba-
tions are considered separately.

In both phase and log-amplitude perturbations, the
electric field magnitude generally increases with time.
Oscillations of the magnitude are present in both cases
but are larger for phase perturbations. Both the full
series representation and the asymptotic expression
reflect this behavior. For large spatial scales (large
Fresnel number) the oscillations can be so great that the
perturbed field is smaller than the initial field in certain
intervals of time. This could cause wide disagreement be-

(PP*)= '„z3 k f C„(s)K (z s, t)ds, —(20b)

where 0.207 is the approximate numerical value of
5/[9I (1/3}]. Their sum in the linearized theory gives
the spectrum 4 of the electric field perturbation as a
function of the transverse wave vector a, the propagation
distance z, and the retarded time t (The sum of. the vari-
ances does not give 4 when the linearized theory breaks
down. ) Substituting the series expansion (10} for K(z, t)
into the sum gives a power series in radians of blooming
0=2~%& with coefficients proportional to integrals of
products of spherical Bessel functions. These integrals
can be evaluated in closed form as sums over products of
spherical Bessel functions. ' The result is
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0.0243z 8 sin(21 )
kN5/6/11/6 IT

+ g 2"[Ij„(1)sinl —h„(1)cosl ]
( —8)"

2
n!(n+1!

n n
+(n+1)1 g +1 a (n —l)[h (l)j„&(l)

m=0

—j (I)h„,(I)]

XI (281/z —i n/4)

The growth rate of the spectrum in the range of Nz
' & 6

is independent of the Fresnel number and agrees with (22)
evaluated in the limit of large 8:

~se g
1 ——

4n8&2 I
4(1,8)
4(I,O)

where I =a„z=H/4N, h„(I)=nj„(l}—Ij„,(l), (" ) are
the binominal coeScients, M„ is the integer part of
n /2 —1, Nr =

pro�

/4hz is the Fresnel number of the opti-
cal turbulence with coherence length' ro, and a (n) are
numerical coeScients given by

a (n)= f [(1—t) (1+t}" —(1 t)" —(1+t}"]dt
0

The series converges slowly, requiring over 20 terms to
obtain convergence for N& =5. The resulting spectrum is
shown in Fig. 4 for N&=0 to N&=10. The low-wave-
number end of the spectrum is initially damped before
starting to grow while the high-wave-number end grows
exponentially from the start. For large I the series can be
summed explicitly to obtain the asymptotic result

e(I 8)
1

8
Re

'""
I (28/e, ./. )4(I,O) I v 8

I

The exponential factor in (23) is the square of the ex-
ponential factor in (13), the asymptotic form for K(z, t)
when NpN& «1, N~ & 1. A comparison between the full
series and the asymptotic expression shows that the
asymptotic result becomes valid for large wave numbers
for N& &0.2 (see Fig. 5}.

The wave structure function' (Fig. 6) can be calculat-
ed from (21) using

D(a) = I 4(I,8)[1—Jo(a&I )]dl,
Z 0

(24)

where a is a nondimensional length related to the separa-
tion distance r by a=rv'4n/Az. The initial r~/ Kolmo-
gorov behavior remains undisturbed for r »&Az until
the spectrum begins to grow for small wave numbers.
For r(&&Az the structure function retains the r /

dependence but with an exponentially growing ampli-
tude. Alternatively, the structure function could be writ-
ten in terms of (r/R) / where R continually decreases.
However, the temptation to interpret R as Fried's coher-
ence length' ro must be resisted since the definition of ro
is specific to atmospheric propagation with no blooming.
For r- 0(VAz ), the structure function develops a pla-
teau which increases in extent as Nz increases.

The mutual coherence function' is proportional to

g I I I I I Illi I I I I I IIII I I I I I I I'~

I-

E

g 1

~ 10-'
K
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to io~
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gp 2

q 0-1 10 %0
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q 0-1 10 19

Normalized spatial frequency xI L /2 k
Normalized spatial frequency xIL /2 k

FIG. 4. Evolution of the optical spectrum during thermal
blooming with Kolmogorov optical turbulence.

FIG. 5. Initial evolution of the optical spectrum showing
agreement between the exact linear analysis (solid line) and the
asymptotic expression (dashed line) for high spatial frequencies.
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FIG. 6. Evolution of the wave structure function during
thermal blooming with Kolmogorov optical turbulence.

FIG. 7. Evolution of the Strehl ratio with Kolmogorov tur-
bulence (NT =785). Linear analysis (solid line) agrees with ORA-

CLE results (symbols). ORACLE points are ensemble averages
over 20 turbulence realizations.

exp[ —D(a)/2 j for propagation through turbulence with
no blooming. This result also holds for the linearized
theory of thermal blooming since the phase and log-
amplitude fields remain Gaussian when the initial
refractive-index field is Gaussian. The applicability of
this result at later times when the fields evolve nonlinear-
ly is problematic. The crucial question is whether the
fields remain Gaussian in this nonlinear regime; nothing
conclusive is known about it.

The Strehl ratio will be defined as the ratio of the
mean-square amplitude of the plane wave component of
the spectrum (v=0) at a fixed distance L along the prop-
agation path to the initial value of this component at
z =0. The initial (t =0) value of the Strehl depends on
the Fresnel number of the optical turbulence for z =L.
The evolution of the Strehl with increasing t, however, is
given by the integral of the spectrum (21) over all wave
vectors excluding ~=0, and is independent of NT. This is
seen in the Strehls calculated from the numerical simula-
tion shown in Fig. 7. The Strehl increases initially due to
the suppression of the low-wave-number end of the spec-
trum. It then falls rapidly due to the exponential growth
of the high wave numbers in the spectrum. After the
point at which the Strehl falls off the linearized analysis is
suspect since the perturbations are no longer small com-
pared with the plane wave.

The spectrum from the linearized analysis is compared
with the result from ORACLE in Fig. 8. The substantial
agreement between the two verifies the accuracy of the
numerical code and the applicability of linearized
analysis to the problem. The exponential growth of the
spectrum leads inevitably to the breakdown of the linear-
ized theory. Numerical results for longer times show
that the linearized theory generally holds out to the point
at which the Strehl begins to fall off. After this point the
linearized analysis will eventually break down and non-
linear effects will become evident. Figure 9 shows one
case for which the linear analysis disagrees quantitatively

with the fully nonlinear numerical simulation. In this ex-
ample the initial turbulence was quite strong, and the op-
tical fluctuations were saturated at t =0. The growth of
the high wave numbers in the spectrum is less than the
linear prediction and can be attributed to nonlinear satu-
ration effects. Note however that the form of the spec-
trum is in qualitative agreement with the linear theory.

NONUNIFORM MEDIUM

In the previous section the absorption and velocity of
the medium were considered to be constants. Consider
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FIG. 8. Comparison of ORACLE results (symbols) with the ex-
act linear analysis for the evolution of the optical spectrum
{NT=19,600). ORACLE points represent averages over 20 reali-
zations of turbulence.
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FIG. 9. Comparison of ORACLE results (symbols) with the ex-

act linear analysis for large turbulent fluctuations (NT=7. 85).
Note the nonlinear saturation of the high frequency end of the
spectrum. Linear analysis agrees qualitatively with numerical
result. ORACLE points are ensemble averages over 20 turbulence
realizations.

now the more general case in which the absorption and
velocity can vary along the direction of the beam, i.e.
I =I (z},u=u(z). The quantity P in Eq. (8) for the field
F(z) becomes a function of z and no general solution ex-
ists. However for ~(dP/dz)/a„P

~
&(1, a WKB approxi-

mation to the function J(z}can be obtained

J(z) = sin a„f P(z')dz'
a„P(0)P(z)

(25)

The WKB approximation would generally be valid in the
cases of strong blooming or medium to high spatial fre-
quencies.

Consider the case where the absorption is constant but
the magnitude of the fiuid velocity varies linearly with z.
The shearing by the velocity profile misaligns the heating
patterns created by absorption and reduces the growth
rate of the perturbations. Perturbations with transverse
wave vectors s perpendicular to the velocity direction are
not affected by the shear since their heating patterns are
linear stripes of alternating hot and cold regions aligned
with the velocity. For perturbations with wave vectors
parallel to the velocity the heated stripes lie transverse to
the velocity vectors. Velocity differences between quid
layers cause stripes which were initially aligned in the z
direction to become shifted relative to one another. The
growth rates for these perturbations are strongly affected
by the shear. The time needed to shift the heating pat-
terns between two layers a distance of one Fresnel zone
2&hz/m is t, (z)=2&(Azln)/du(z), bu(z)=u(z) —u(0).
The number of waves of blooming accumulated during
this time is Ni(t, )=I t, kz/2m The inverse .of Ni(t, ) is
the ratio of shearing rate to blooming rate S. If S is
much greater than 1, the shearing is stronger than the
blooming and growth suppression can occur.

Equation (25) gives an approximation to the Laplace
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FIG. 10. Time averaged intensity spectra along the Ky axis
(~„=0) for single ORACLE realizations with linear velocity
profiles in the y direction. Curves are for NT=0. 785 and shear
parameters of S=0 (0), S=0.866 ( 0 ), and S= 1.77 (6 ). Time
averaging was over the interval from 4.5 to 9 waves of bloom-
ing. Shearing suppresses the growth for wave vectors parallel to
the shear. The growth of the intensity spectrum along the ~„
axis is una8'ected.

CONCLUSION

The linearized theory of small perturbations in thermal
blooming gives a surprisingly accurate description of the
initial evolution of a beam propagating through an ab-
sorbing medium. For the case in which the absorption
and velocity of the medium are constants, the theory is
analytically tractable and correctly predicts the growth
rates of perturbations. A sinusoidal perturbation of the
optical field grows exponentially at a rate determined by
its Fresnel number and the accumulated optical-path
difFerence (OPD) due to blooming. The growth rate for

transform of the blooming function J(z} for the case of
linear shear. However, obtaining estimates of growth
rates from J(z) is itself a difficult analytical problem. Nu-
merical results from oRACLE are easier to obtain. Figure
10 shows a single realization of the irradiance spectrum
as a function of ~ (a„=0) for a linear velocity profile in

the y direction. The spectrum for this case is a function
of the full wave vector z. Its growth is strongly
suppressed for wave vectors parallel to the shear for
S=0.886 and 1.77. Though not shown, the spectrum for
Ky 0 is unaffected by the shear. In practice, for a given
S there exists a critical rate of blooming below which
STRS growth is suppressed. This critical value changes
with different velocity profiles and must be determined
empirically. Equivalently, for a specific family of velocity
profiles parameterized by S, there exists a critical value of
S above which STRS growth is suppressed for a fixed ir-
radiance. For the previous case of a 1-pm beam propaga-
ting 1 km with a blooming rate of 10 waves per second,
the shear ratio given hu = 1 m/s is S=2.8.
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APPENDIX: DERIVATION OF UPPER BOUND
FOR it (z, t)

The steps used to obtain the upper bound [Eq. (14)] for
the blooming function K(z, t) are briefiy outlined here.
The first step is to write K(z, t) in terms of the Bessel
functions Jo(x) and Io(x):

K(z, t) =zh(g, q)/3/g,

h (g, g) = f f'(x}Jo(3/rt(g x))dx, —
(A 1)

(A2)

perturbations with very small length scales reduces to a
function of the accumulated OPD only. More complicat-
ed cases with varying absorption and velocity profiles can
be analyzed using a WKB approximation. Numerical
simulation of a linear velocity profile shows suppression
of the growth rates governed by the magnitude of the
nondimensional shear.

The evolution of optical turbulence in the medium is
also correctly predicted by the linear theory, as well as
the evolution of the Strehl ratio. The optical turbulence
appears as an initial condition and does not affect the
evolution of the spectrum to first order. The initial
damping of the large-scale turbulence leads to a small in-
crease in the Strehl. However, the small-scale turbulence
fluctuations always grow and are eventually joined by
large-scale fluctuations leading to a rapid drop in Strehl.
The spectrum eventually saturates when the nonlinearity
of the full system becomes important. However, up to
saturation the predictions from linear theory agree well
with results from numerical simulations of the full non-
linear system and thus provides a benchmark of compar-
ison between different numerical codes. Finally, the
growth of small-scale perturbations limits the amount of
power a laser can transmit coherently through a tur-
bulent medium such as the atmosphere. This holds even
for propagation using adaptive optics correction schemes,
which can correct only larger scale distortions.

f(x)=2 x' Re e' / f e ~~ Io(gy}dy
L (A3)

2 x
(A6)

From these results, an upper bound for h (g, tl) for g & 1

can be calculated:

lh(g, q)l & f 'I f'(x)ldx
1/3/24/3

1

c 1/2 9x /2+cg, e 2/3

&1+22 1~'/6 3&'"/3"
(A7)

where

22. 1=2 / (a+ —', ce )

The bound for K (z, t) is obtained from (A7):

& 22.4z 3(»3/24»
(A8)1/3

where 22.4 = 22. 1 + exp (—3l2 ). The upper bound
in the text, Eq. (14), can be obtained from (AS} by using
the identity (=nN3 /2N~. .

4( 2 )
1 /3 —i vr/3

where (=I ta„kz, rt=a„/I tk, and f'(g)=df id/. An

upper bound for f ' can be calculated using the upper
bound for Io, lIo(girl)l exp(Pirl )/3/Pl~I, P=«(g):

/2 2p( )2

(2x)

yo = 1/2 . (A4)

For 1 & x & g, the integral is split into an integral over the
range 0 to yo/2 and an integral over the range yo/2 to
~. An upper bound is calculated for each integral sepa-
rately and combined to obtain

1/2

X 2/3 + 2/3 e
X

where a = (2 / + 1)3/m/3 and c =—', +(—,
' } / . A series ex-

pansion for f'(x) gives an upper bound in the range
0+x(1:
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