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Density-functional approach to the absorption bands in a dense, partially ionized plasma
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Density-functional theory (DFT) for finite temperature (T) is used to account for fluctuations of
the transition energies in the average-atom model. These fluctuations lead to absorption bands in

the bound-bound contribution to the total spectrum. The transition-energy fluctuations are related
to the second derivative of the DFT functional Q[n] with respect to the electron density n (r). In
the numerical example (the spectrum and opacity of iron plasma at T=200 eU and solid density),
the Thomas-Fermi (TF) form of 520[n]/5n(r) 5n(r') is taken. A comparison with a previous ap-
proach based on uncorrelated fluctuations around the TF atom clarifies the meaning of that ap-
proach. The numerical results indicate that the inclusion of interactions significantly diminishes the
absorption bandwidths.

I. INTRODUCTION

The average-atom approach to the atomic physics of
dense, partially ionized plasma close to local thermo-
dynamic equilibrium was initiated a long time ago (see,
for instance, Refs. 1—3}. The development of the density-
functional theory ' (DI I') and, especially, its finite-
temperature version has provided a further
justification to the average-atom models. There are, how-
ever, basic problems in applying the DPI' approximation
to the calculations of atomic photoabsorption cross sec-
tion due to the fact that the photoabsorption cross sec-
tion is connected to the density-density time-dependent
fluctuations or, in other words, to the frequency-
dependent polarization. ' Only recently have there been
some attempts to extend the DFT to the time-dependent
phenomena" (see also Refs. 10 and 12). Even in Ref. 11,
however, the level widths, which are necessary to account
for the bound-bound contributions, were taken from out-
side the DFT formalism. The problem is that
independent-electron polarizability yo(r, r', v) (see Sec.
III) leads to Dirac-function-like transition lines. For this
reason any average-atom model is insuIcient in account-
ing for finite lines or absorption bands observed in dense
plasmas. It is known, on the other hand, that the bound-
bound contribution to the Rosseland opacity may be
dominant, especially in the case of photoabsorption of
higher-Z elements. The methods that go beyond
average-atom models and introduce detailed atomic
configurations 1ead to rather complex computational
schemes. ' ' For higher Z these schemes have to be ad-
ditionally supplemented by some elements of statistical
treatment like, for instance, the Lanczos collective vector
or Monte Carlo methods. '

In the case of high-density plasmas and many-electron
atoms the photoabsorption cross section is often charac-

terized by many lines that merge into broad bands. If
one is not interested in the details of the photoabsorption
spectrum but only in a crude model, an alternative way of
description may be to use, from the beginning, a fully sta-
tistical approach. This idea was at the origin of the pa-
pers by Shalitin, Stein, and Ron' and Stein, Shalitin and
Ron. ' These authors calculate the electron-density fluc-
tuations around the Thomas-Fermi (TF) average-atom
solution' to account for the fluctuations in atomic ener-

gy levels which, in turn, produce the (postulated) Gauss-
ian line shapes. Their derivation is based on some statist-
ical considerations about as they call it "uncorrelated
fluctuations" and they do not use directly the density-
functional character of the Thomas-Fermi atomic model.
As follows from the comparison with our results (in the
simplified TF version}, their final expressions for the level
widths do not include the Coulomb contribution despite
the fact that the Coulomb term may be important (see
Sec. V of this paper}.

In the present paper we follow the same idea but conse-
quently use the density-functional theory at finite temper-
ature. In Sec. II we present the average-atom model. It
is simplified with respect to the DFT atom since, follow-
ing Refs. 3 and 14 we take the contribution of continuum
electron states to the density in the form of the Thomas-
Fermi expression. Section III recalls the standard (gold-
en rule} formula for the absorption cross section stem-
ming from the independent-particle approximation which
is the usual starting point leading to the bound-bound,
bound-free, and free-free contributions.

In Sec. IV we consider the fluctuations around the
DFT solution. The average-atom model which gives only
the equilibrium quantities such as the potential and elec-
tron density may be obtained by minimization of the
grand thermodynamic potential. The DFT formalism is
based on a functional Q[n ], which provides a certain ap-
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proximation to this grand thermodynamical potential in

the vicinity of the equilibrium. We use the same func-
tional to calculate the probability of density Suctuations.
Our procedure is the standard one assuming that these
Auctuations are small and Taylor expanding the function-
al around its equilibrium value we relate this probability
to the second functional derivative of 0 with respect to
the electron density. A brief description of the DFT
theory and the formal derivation of 5Q[n]/5n(r) and
5 Q[n]/5n(r) 5n(r'), [n(r) is the electron density] is
given in the Appendix A.

Our Snal formula for the line "width" is obtained by
averaging the bound-bound cross section with the fluc-
tuation probability. If the dependence of the oscillator
strengths and of the Fermi factors upon the density Suc-
tuations is neglected, our procedure leads to Gaussian
line shapes. In Sec. V we illustrate the method by taking
the Thomas-Fermi form of 5zQ[n]/Sn(r)5n(r'). The
numerical example is given for iron plasma of solid densi-

ty at a temperature of 200 eV. Some details of the
Thomas-Fermi formalism may be found in the Appendix
B.

II. ATOMIC MODEL

In the self-consistent average-atom model we use the
quantum Schrodinger states for the bound-electron densi-

ty, while the free-electron contribution to the density is
treated via the Thomas-Fermi expression, i.e., we set for
the electron density

E.—pn(r)= g 2(21, +1)l+,(r)l f +nf(r), (2.1)
i bound

where

Ze
eV„(r) ~

(rj 0 (r(

dV, ) (po)=0, r po
dT

with ro being the radius of the Wigner-Seitz sphere,
1/3

(2.&)

(2.9)

To
4m.n,

(2.10)

and n, the atomic density. V„,(r} is the exchange-
correlation potential (see Appendix A}. In practical cal-
culations we apply the V„,(r) from Ref. 3 (see also Refs.
21 and 22). The chemical potential p is found from the
condition of neutrality of the atomic sphere.

III. THE PHOTON ABSORPTION CROSS SECTlONS

E; —p

The golden rule formula (see, for instance, Refs. 1, 10,
and 11) gives for the absorption cross section

8m2Vea, (v)= — Im fdrdr'rr'y"(r, r', v),
3c

where y"(r, r', v) is the retarded polarization. In the
independent-particle approximation

y"(r, r', v) =go(r, r', v)

(f, f }0;(r)%—(r)%'(r')%, (r')J I J J I
(32)

hv (EJ E; )+i i—r—

where

n (r)= I dp f — —eV (r) —p
2 p2

E&o T 2m

with

(2.2)
The one-particle states are the bound and free eigenstates
of our self-consistent V„(r). Equation (3.2) may be writ-
ten in the form

E= —eV (r) —
ltJ, ,

P
27tl

(2.3) 0 =cr +cT +crfa a a a (3.3)

and

f(x )=[exp(x )+ 1] (2.4)

The bound states are found from the Schrodinger equa-
tion

$2
V —eV (r) 4;(r}=E,.'l, (r),

2m
(2.5)

by the phase function method. The self-consistent po-
tential V~(r) is

eV~(r)=eV, &(r)+ V„,(r); (2.6}

where V,&(r) is the electrostatic part which is determined
by the electron and nuclear charges via the Poisson equa-
tion

2(f, -f, )l&~, lri~, &I'
ij E bound

X5(hv —E +E, ) . (3.4)

Let us note that the cross sections of Eqs. (3.1), (3.3), and
(3.4) correspond to net processes, i.e., the correction for
stimulated emission is already included. "

IV. THE ABSORPTION BANDS CONSIDERED
AS DUE TO THE FLUCTUATIONS

AROUND THE AVERAGE-ATOM DENS11 Y

where the superscripts b and f denote to which part of
the spectrum (b, bound, or f free) belong the initial and
Snal states (i,j) of Eq. (3.2). This approximation, Eq.
(3.2), leads to the 5-line form for the line (bb ) transitions:

V eV,&(r)=4nen(r), .

with the boixndary conditions

(2.7} Our statistical approach to the absorption band forma-
tion is based on the density-functional theory which may
be seen as justifying the average-atom model. As present-
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ed in Appendix A the atomic density n(r) [and the self-

consistent potential V (r ) ] may be viewed as stemming
from the minimum condition

5Q[n(r)]=0 . (4.1)

(In fact, our scheme is not a full DFT one since we take
the TF free-electron contribution. We disregard in what
follows the difference due to this approximation. ) Let us
now consider an (assumed small) correction to our aver-

age electron density n(r) W. e set

n'(r)=n(r)+5n(r) . (4.2)

According to the fluctuation theory' the probability for
5n may be expressed as

P [5n ]-exp( 5Q/T )—; (4.3)

where 50 is the change of the grand thermodynamic po-
tential introduced by 5n(r). We will now assume that
Sn (r) is small and use the expansion

1 5Q
5Q[n+5n ]=—— [n]52n

5n'

drdr'. . . [n]5n(r)5n(r');5Q

with

—= fdr'K(r, r')5n(r') (4.5)

(4.4)

since 5Q/5n'[n ]=0. Any 5n(r) gives the following po-
tential correction:

e5V(r)=e fdr', + [n]5n(r), 5n(r') 5Vxc

lr —r'l 5n

We will now average the bound-bound transition cross
section, Eq. (3.4), upon the density fluctuations. The
meaning of this operation may be seen as follows. In the
radiative transfer problems one is interested in the spatial
and temporal dependence of radiation intensity. The ab-
sorption mean free path is a macroscopic quantity orders
of magnitude larger in comparison with atomic dimen-
sions. The photons traversing a plasma medium are ab-
sorbed by atoms (or ions) which are in difl'erent states [we
describe these atoms here as fluctuating around an aver-

age atom with different electron-density deviations
5n(r}]. On the macroscopic, hydrodynamical spatial
scale we may use therefore o,(r}, the cross section aver-

aged over all possible fluctuations. In the case of the b-b
contribution, this averaging procedure leads to finite
linewidths. One should stress, however, that we take into
consideration only static fluctuations while dynamic pro-
cesses (collisions, etc.) are beyond the scope of the present
treatment. The statistical approach using the electronic
density as the main parameter is also different from the
methods which are based on detailed structure of the
bound-bound transition arrays. ' ' This problem has
been discussed in Ref. 16. Let us remark finally that the
broadening connected with the Stark effect due to the

neighboring ions could be, in principle, included in the
present statistical approach if one follows Refs. 8 and 24
and introduces the functional Q[n, p] with p(r) being the
ionic density inside the correlation sphere.

In order to simplify our model we will neglect the
dependence of the oscillator strengths and of the Fermi
factor upon the density (or energy} correction. So we will

take into account only the Dirac 5's and their depen-
dence on the initial and final energies E; and E . In other
words, we set

o (v)—= jtP[5n]d5no "(v)

e V„,
K(r,r')=, + [n]5(r—r') .

lr —r'l 5n
(4.6)

8 ve
2(f; —f, ) l & +; lrl+, & I'

ij:bound

The potential correction e5V(r) leads, in turn, to the
first-order corrections to the eigenvalues E;:

5E; =f l%;(r)l e5V(r)dr; (4.7)

i denotes here any state, bound or free, which we write as
i ES (S is the whole spectrum). Equations (4.5)-(4.7) pro-
vide a linear relation between 5n(r} and 5E, . Since we
have

Xf, (hv E+E;), "—
where

f; (hv E+E,)—
=C Ekexp —— A E, E,

1

keS r, sGS

(4.1 1)

P[5n ]—=exp( 5Q/T ), — (4.&)

X 5( h v E+E; 5E +5—E; } . — .

with 5 Q given by Eq. (4.4), i.e., bilinear in 5n(r), the
probability of 5E;; i ES, will be a generalized Gaussian:

(4.12)

P[5Ek, k ES]=—exp ——g A,J5E,5EJ.
1

ij

(4.9)

C in Eq. (4.12) is the normalization constant. The in-

tegration of Eq. (4.12) is performed in Appendix C, and it
is found that

We have assumed that the operator from Eq. (4.7) is in-
versible, and set

1;.(x)= exp'1 [2 ( gE )2]1/2
X

2(bE;).(4.13)

1—5 Q= —,
' g A; 5E;5E

ij ES
(4.10)

where
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(4.14) (5E,.5E. ) =( A) 'ij (4.15)

In Eq. (4.14) A ' represents the inverse of matrix A

from Eq. (4.12). The matrix A ' is the covariance ma-
trix (5E;5E ) (see Ref. 23, pp. 13 and 25):

Thus b,E, is"totally determined by the covariance matrix
(5E;5EJ ). We will now calculate this average directly
using Eqs. (4.5)—(4.8):

where the "covariance matrix" of the density correlations may be identified as
' —150(5n(r, )5n(rz)) =T

n r( n rp
= Ty(r„rz);

(5E,5E &=f f f fdrdr'dr, dr2~%, .(r)~ K(r, r, ) &5n(r, )5n(r2))K(r2r')(4 (r')~', (4.16)

(4.17)

[see Eq. (A20), Appendix A]. Hence the final conclusion is

(AE; ) =(5E;5E; ) 2(5E—;5E )+(5EJ5E );
where

&5E,SE &=Tf f f fdrdr'dr, dr2(e;(r)~ K(r, r, )y(r, , r2}K(r2,r')(0 (r')~

(4.18)

(4.19)

V. EXAMPLE: THOMAS-FERMI FORM OF yo(r, r')

The Thomas-Fermi theory leads to (Appendix B)

(yo") '(r, r')=, 5(r —r'),5eV
(5.1a)

5eV 2m
(2m ) T' II 3h

—1/2

e V~(r)+ p,

T
(5.1b)

According to Eq. (A20) (Appendix A) we set for the in-
verse of the linear-response function

5V„,
'(r, r') =(yo") '(r, r')+, + ",

'
5(r —r') .

fr —r'/ 5n'

(5.2)

The exchange-correlation potential V„, at nonzero
temperature has been calculated in Ref. 21 (see also Ref.
22). We use, however, the simpler expressions taken
from Ref. 3 (the exchange correction interpolated be-
tween T=O and T= ao, asymptotic values of the correla-
tion correction at T=O), since, as our numerical example

This is our main result. It allows one, in principle, to cal-
culate separately the "linewidth" for each particular
transition i ~j, provided that the static linear-response
function y(r„r2) is known. Let us note, however, that
even in the DFT with local expression for V„„the calcu-
lation of y(r, r') and even of y '(r, r') is not straightfor-
ward since in order to get it one should invert go(r, r')
[Eq. (A13)]. In the numerical example below we will
focus our attention on the Thomas-Fermi approximation
to yo(r, r').

We remark finally that the Gaussian form of lines [Eq.
(4.13)] is due to the approximation when we neglect all
dependence of o "~(v} upon 5n(r) except that of E; and

EJ in the Dirae 5's. In general, if the full dependence of
the oscillator strengths and of the Fermi factors upon
5n(r) is taken into account, the line-shape function may
be different from the Gaussian one.

indicates, the contribution of dV„, /dn to the statistical
broadening seems to be small. By keeping only the first
terms in Eq. (5.2} and neglecting consequently the
exchange-correlation part of Eq. (4.6}, we get from Eqs.
(4.18)—(4.19} the result derived by Shalitin, Stein, and
Ron. ' These authors have obtained it in a different way
with no direct reference to the formalism of the DFT.
For instance, they do not get the Gaussian form of f,, (x ),
Eq. (4.13), and only suppose it because of the statistical
nature of their considerations. From the point of view of
our derivation Shalitin et al. took into account only the
noninteracting part of electron response treated in TF ap-
proximations [go"(r,r')]. Actually, the Coulomb part
[the second term in Eq. (5.2}] cannot be neglected as we

will see later on. This Coulomb term complicates the cal-
culation since y '(r, r'), given in Eq. (5.2), cannot be so
easily inverted as the independent-particle part
(yo") ' (r, r'). If one neglects the second and third
terms in Eq. (5.2) one gets immediately

y(~) "(r,r') = 5(r—r');5n(r)
5eV

(5.3)

R„ I (r),1

4~
(5.4)

where R„ t(r) denotes the radial wave function. Thist'i
step seems to be justified since anyway the Thomas-Fermi
go"(r, r'), with its local 5(r —r')-like dependence cannot
give a realistic model of the splitting of lines [we believe
that yo(r, r'} from DFT, Eqs. (A13), may be more useful

with 5n/5eV(r) being the inverse of the right-hand side
(rhs) of Eq. (5.2). This leads to the result of Ref. 16.
When the full form of Eq. (5.2} is retained the inverse of

'(r, r') has to be calculated numerically. In order to
do it let us first simplify our problem by taking the
squares of the wave functions [Eq. (4.19)] already aver-
aged with respect to the magnetic quantum numbers m;
and m . That iswetake
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(5.6)
I

for this purpose]. Another point is that we are interested
in transition lines as provided by the average-atom model
which obviously leads to the degeneracy with respect to
the magnetic quantum number. Now it is easy to see
from the form of Eq. (4.19), that the approximation, Eq.
(5.4}, reduces our problem to a spherically symetric one.
Denoting symbolically integral operators V and H,

(Vf)(r)= f dr'r' V(r, r')f(r'), (5.5)

(Hf)(r)—= fdr'r' H(r, r')f(r'),

1 5e V 5(r r—')
H r, r

e 5n(r ) 4mr

we write Eq. (4.17) as

(5.6')

where f(r) denotes any function and

5V„,[n ]
V(r, r'}= , +

2 2
5(r —r'),

max(r, r') 5n 4n e 2r 2

(5.5')

(5E;5E ) =e Tfdr r fdr'r' R„& (r)[V(V+H) 'V](r, r')R„& (r') . (5.7)

The most convenient representation for calculating the
operator product in square brackets will be of course
[R„&(r)],with n;, I; belonging to the whole spectrum.

It corresponds to the expansion

5n(r) = g a„ I (5.8)
n, , l, E'b, f

which may be viewed as natural, with a„& being thei'i
correction to the Fermi-Dirac occupation number [see
Eq. (2.1)].

Our formulas Eqs. (4.14), (4.15},and (5.7) allow one to
calculate independently the linewidth b,E," for each pair
i,j We ha. ve found moreover that the matrix operations

I

l

of Eq. (5.7) are in practice independent of the number of
elements of the basis R„ I (r), i ES. In particular, the

results for EE;. have been found to be independent of the
presence of the R„ I (r) belonging to the free spectrum.

This part of the basis has therefore been neglected and we
took only R„& (r),i E bound states.

Below we present some results obtained for iron plas-
ma at T=200 eV and of solid density: p=p0=7. 8

g/cm . In Table I we list the following.

(i) The energies of transitions.
(ii} hE;, the linewidths calculated from the expression

corresponding to that of Shalitin, Stein, and Ron' with

(5E;5E )'=e Tf dr r fdr'r' R„ I (r)(V'H V')(r, r')R„ I (r'),

where

(V'f )(r)= fdr'r' V'(r, r')f(r'),

V'(r, r'): 1

max r, r'

(iii) b,E;, the linewidths obtained with the full expression, Eq. (5.7).
(iv) hE;, , the linewidths obtained from Eq. (5.7) but with the exchange term in Eq. (5.5 ) neglected:

(5E;5E&)*=e Tf dr r fdr'r' R„& (r)[V'(H+V') 'V')(r, r')R„ I (r') .

(5.9)

(5.10a)

(5.10b)

(5.11)

TABLE I. Transition energies and half-widths b,E;;*[Eqs. (4.14) and (5.9}],b,E;, [Eqs. (4.14} and
(5.7), and b E;» [Eqs. (4.14) and (5.11)].

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15

1$~2p
1$~3p
1s~4p
2$ ~2p
2$ ~3p
2$ ~4p
3$~3p
3$~4p
4s ~4p
2p ~3$
2p ~4$
2p ~31
3p ~4$
3p ~31
31~4p

Energy (eV)

6339
7128
7307

97.8
886.5

1066
31.4

210.&
10.96

757.2
957.1

834.7
168.4
46.0

133.5

hE;; (eV)

72.1

126.1
158.9
10.72
59.54

100.42
2.13

43.70
2.80

70.4
106.5
62.9
43.2
7.74

52.1

AE;~ (eV)

57.7
97.3

117.6
7.65

41.4
67.7

1.46
27.8

1.76
49.8
73.1

45.3
27.5
4.30

32.7

hE;,*.

65.6
104.6
123.9

9.21
45.4
71.8

1.65
30.0

1.81
54.1

77.3
49.1

29.9
6.07

36.1
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TABLE II. Planck (k~) and Rosseland (kz) opacities for
iron (Z=26) at T=200 eV, p=p0=7. 8 g/cm . The transitions
taken into consideration are listed in the Srst column. b denotes
"bound, " f is "free." The values from the Astrophysical Li-
brary SESAME (Ref. 27) are {see Ref. 28) k„=2679 cm /g, kc
(without lines) =988 cm /g.

Transitions included kp (cm'/g) kR (cm /g)

The inclusion of the operator V' into the linear response
[compare Eqs. (5.9) and (5.11)] lowers all the "half-
widths. " This is obvious since both operators H and V'
are positive definite. The contribution coming from the
operator H [Eq. (5.6}] is dominant. This e(Feet is even
more visible at higher temperatures. For instance, at
T= 1000 eV and at p =po the difference between hE . and
hE,'is m. . ainly of the order of 5—10% of bEJ. We have
tested the domain of temperatures T, 10-1000 eV, and
densities p, po/10-10po, and found that for most cases
and transitions this difFerence was smaller (but of the
same order) than bE'J. A typical value was 20-70%',
however, there were still some transitions with 100% and
more.

The local exchange-correlation term also diminishes
the bandwidths. The di(Ference between hE; and b,E,' is
of the order of 10%. The same order of contribution due
to the local exchange-correlation part of the linear
response has been observed in Ref. 10 where the authors
used the De l' formalism to approximate the frequency-
dependent polarization.

In Table II we present some opacity results calculated
using the b-b contribution obtained from the above
values of "level widths" (hE; ). The description of the
numerical methods and the formulas for the b-f and f-f
cross sections may be found elsewhere. ' The formulas
for the total Planck (k ) and Rosseland (ka ) mean opaci-
ties' (see, also, Refs. 25 and 26) are

15 h d v v'k'(v}
~4 T o exp(h v/T) —1

5
15 h ~ dvv exp(hvlT)

4m T o [exp(hv/T) —1] k'(v)

where k'(v)=[tT, (v)+cr „]/m, . In our example the
scattering term is very small and in fact can be neglected.
The absorption cross section cr, (v ) consists of the
bound-bound (bb), bound-free (bf ), and free-free (ff )

contributions [see Eq. (3.3)]. The importance of these
contributions may be inferred from the Rosseland and
Planck mean opacities calculated with some of these con-
tributions neglected. As follows from Table II the dom-
inant are the bound-bound transitions (see, for instance,
Ref. 13). The result from the SESAME Astrophysical Li-
brary is kz (Rosseland opacity)=2679 (cm /g) and kc
(Rosseland opacity without the contribution of
lines)=988 (cm lg) (see Ref. 28). The agreement seems

10

F

10

k(v) frequency-dependent
total opacity for Z = 26
(IRON), T = 200 (ev)

E 10
LJ

10'

10 F

10 10' 10 v (e V)

FIG. 1. Frequency-dependent total absorption spectrum
k(v)=[cr, {v)/m, ]/[1 —exp( hv/T)—] for Z=26 (iron),
T=200 eV, p =ps =7.8 (g/cm ). k( v) is in cm2/g and v in eV.

to be relatively good.
In Fig. 1 we show the total absorption k ( v)

=[o,(v}/nt, ]/[I —exp( hvlT)]—(with rn, the atomic
mass) in cm /g as a function of the photon frequency v
(in eV}.

VI. CONCLUSIONS

We present a statistical approach to the absorption
bands in dense, partially ionized plasma. Our formalism
is based on the finite-temperature density-functional
theory. It allows us to preserve a consistent model in
which the probability of fluctuations around the average
atom is obtained from the density dependence of the
Dt l' functional Q[n ]. This functional is minimized with
respect to the electron density n(r) when one looks for
the DFl' equilibrium solution, i.e., the average-atom
model.

In the simplest version of Dt' l', which is the Thomas-
Fermi expression of Q[n ], the presented formalism leads
to closed formulas for the hE;—the widths of the transi-
tion lines. In this case, when the Coulomb and ex-
change-correlation contribution to 5 Q[n]/5n(r)5n(r')
is neglected, our results reduce to that of Shalitin, Stein,
and Ron. ' The numerical example of iron at T=200 eV
and solid density shows, however, that especially the
Coulomb contribution is non-negligible. Our formalism
may lead to interesting conclusions when a more involved
form of the linear-response function yo(r, r'} is retained.
The inclusion of the dependence of the oscillator strength
and of the Fermi factors upon the density perturbation
can lead, in principle, to non-gaussian shapes of lines.

In its simplest Thomas-Fermi version the formalism al-
lows us to estimate the bound-bound contribution to the
opacity of dense, partially ionized plasma close to the lo-
cal thermodynamic equilibrium.

bb, bf, ff, scattering
bb, bf, scattering
bf, scattering

ff, scattering
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APPENDIX A: THK FORMALISM OF DKNSI1 Y-

FUNC. TIONAL THEORY AT l iNll K TEMPERATURE
AND THE FORMULA FOR S Q[n ]/Sn(r)Sn(r')

As proved in Refs. 6 and 7 in a grand-canonical ensem-
ble at a given temperature T the density distribution n (r }
uniquely determines the quantity ev(r)+p, (e positive)
where U is the external potential and p is the chemical po-
tential. For a given u(r) and p there exists a functional of
n'(r):

5Q [n]=0, (A9)

where

+ V„,[n(r)]; (A10a)

which leads to the self-consistent scheme by connecting
eu,q(r)+ p,q

to the electron density n (r):

—ev q(r) p—q
= e—u(r) p—+e dr', n'(r}

Q,„+„[n'(r)]=—f [eu(r)+p]n'(r)dr'+F[n'(r)),

{Al}
5F„,

V„,[n(r )]=, [n(r )] .n' (A10b)

F[n'(r)]=6, [n'(r)]+ Jt dr dr'
2

+F„,[n'(r)],
where

(A2)

G, [n '(r) ]=C, [n'(r) ]—TS, [n '(r )]; (A3)

is the F[n'(r)] corresponding to the noninteracting elec-
tron gas where S,[n'(r)] denotes its entropy. This elec-
tron gas may be described in terms of one-electron
Schrodinger states:

which has an absolute minimum for n'(r)=n(r) [the
correct density corresponding to u(r) and p]. This
minimum value is equal to the grand potential.

As proved in Ref. 6 for any n'{r) difFerent from n (r),

Q,„+„[n'(r)])Q,„+„[n(r}].

In the local-density approximation one writes F[n'(r }]as

5n'(r)= Jtdr'yu(r, r')e5v'(r'), (A12)

where yu(r, r'} is the static linear-response function of
noninteracting electron gas. It may be calculated as the
real part of retarded polarization at co =0:

In the case of the atom v(r)=Ze/LrL. Following Ref. 7
we note that the condition Eq. (A10a) leads to the equa-
tion for ev'(r }+p,

' and not for ev'(r }alone.
Using Eq. (AS) we get for the second derivative

5 Q 5[ev'(r)+p, '] e
5n'(r)5n'(r') Sn'(r') Lr

—r'L

5F„,
5n '(r )5n '(r')

The first term on the rhs of Eq. (All) may be written ex-
plicitly. eu'(r) is the trial (external) potential and n'(r)
the inhomogeneous density of an noninteracting electron
gas immersed in the Seld of this potential. Hence we
have

1 A'

V —ev'{r} %",(r)=E I)(lr), (A4) go(r, r') =ReII"(r, r', co =0}

where the relation between n'(r) and u'(r) is given
through

n'(r) =2 g f,'I@,'(r) I (A5) where )p (r}are the eigenstates of the potential u, (r). A
useful relation used in Ref. 30 (see also Ref. 10) is

El i

f =f;(E p')= exp—

The entropy of the ideal electron gas is

S,[n']= —2 g f lnf, '+(1 f )ln(1 f )— —

(A6)

(A7)

(A14)

relating yv(r, r') to the retarded noninteracting Green
function of the potential eu,q(r):

F„,[n'(r)] is the correction so that F,[n'(r)]+F„,[n'(r)]
gives the full exact F[n'(r)]. It is approximated here by
a local expression. From the above formulas one may
calculate formallyQ, , 2, n'(r')

5n'(r)
=ev'(r }+p' ev (r ) p—+ e —dr'

Lr
—r'i

)IIJ'(r')+J (r)
Go (r, r', co) =2

(E p, )/fi+iq—}.—
f{Ace)= 1+exp Ace

T

Go (r, r', (u} fulfils the equation

(A15)

(A16)

5F„,+, [n'] .5n' (AS} fi
V —eu,q(r) —%co Gu (r, r', co)= —5(r —r'),

The condition for minimum is obviously (A17)
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=5eu dr(r):—ev'(r) —euq(r);
0

5n' r

(we set p,q
=p) and, at n'(r) =n (r);

(A8')

6Q
5n'(r)5n'(r')

5eu', ~(r)
5n'(r') (A 1 1')

(see Ref. 29} where the rhs is the inverse operator to the
DFT linear-response function y(r, r') since

with the "outgoing-wave" boundary conditions. Let us

also remark that Eq. (A8) may be viewed as

5Q
i( )5 g( g)

[n]=X
2

=y, '(r, r'}+
Ir —r'I

52F„,
+ 5n'(r)5n'(r')

' (A20)

In the local-density approximation we obviously have

go(r, r'), and the second functional derivative of the

grand thermodynamic potential with respect to the elec-
tron density 5 Q[n ]/5n(r)5n(r'):

5n'(r)
, [n]=X(r,r') .

5ev', s (r')
(A18) 5F„,

5n '(r)5n '(r')
5'I'„,

5(r—r') .
5n' (r)

(A21)

The inverse operator is defined in the standard way:

fdr"y '(r, r")y(r",r')=5(r —r'} . (A19) APPENDIX B: THOMAS-FERMI MODEL AS DFT

From Eqs. (All), (All'), and (A12) we get the following
relation between the DFT linear-response function
y(r, r'), the independent electrons response function

I

As noted by Mermin the finite-temperature Thomas-
Fermi theory (see Ref. 18} may be obtained through
minimization of the following Q[n'(r)]:

Q[n'(r)] =
'I

2 p2
3

dr dp T ln 1 f —— eu'(—r) p'—
T 2m

I I

2

+ [ev '(r ) p']f — ——eu'(r ) —p'
T 2m

rev r+p n'r+ r r'
r —r'

(B1)

with n'(r) and eu'(r)+ p being connected by

2 2

n'(r)= f dp f — —ev'(r) —p'
A T 2m

where

f(x)= l

exp(x)+ 1

(B2)

(B3)

where

oo lI„(x) = dy y"
o exp(y —x )+ 1

with the boundary conditions

Ze dvgFeUTF, UTF(ro }=0, (ro)=0,
r 0 I' dI'

(B6)

(B7)

By straightforward di6'erentiation we get the TF version
of Eq. (A20):

5Q. . . , , n'(r')
n' Ir —r'I ', [n']=e u(r) +p' —eu(r) —p+e f dr'

(B4)

where ev'(r)+ p are the functional of n'(r) because of Eq.
(B2). Also

Ze
eu(r) =

Irl

and r0 the atomic radius. Similarly, we get

5 Q 5eu'(r) 5, + e
5 r —r' +

5n '(r }5n '(r') 5n'(r' } I
r —r'

I

comparing with Eqs. (Al 1), (A18), and (A20) we get

yo (r,r')=, , [nT„]5(r—r')TF, 5n'(r)
5eu' r'

2vr(2m )' T'
h

ev+F+p+F
6(r —r') .

(B8}

(B9)
is the potential of the nucleus (Z atomic number). The
condition 5Q[nTF]/5n'=0 may be easily transformed
into the usual form of the TF equation. In the case of a
finite, spherically symmetric neutral atom we have

The independent-electron linear-response operator is lo-
cal in the Thomas-Fermi model.

16&e (2mT) i
eUTF r

h 3 1/2
evTF(r )+PTF

T

(B5)

APPENDIX C: PROOF OF EQ. (4.13)

A simple way to prove Eq. (4.13) is to make use of the
formula (see Ref. 23, p. 25}
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N

exp $ T~ Q T
GO

The term that is linear in 5E in the exponential may be
written as

=(2n ) (detQ) ' exp( —
—,'8 4 '8), (Cl)

—ik(5E) 5—E, )= i—k g B"~'5E
pES

(C3)

where 4 is an N XN positive definite matrix, and x and 8
are vectors in the R space. Equation (C 1) may be easily

proved by diagonalization of the quadratic form in the
exponential.

Substituting the Fourier transform for the Dirac func-
tion we get immediately for f; (x ) [Eq. (4.12)]

where the vector B"~' is defined as

B(,j)—g
JJ &P JP (C4)

We are now able to perform the integration over

g, d5E, by applying Eq. (Cl). We get

f dk f ff d5E, exp ——g A„,5E„5E,l

rGS I', S

f,"(x)= dk exp ikx —
—,'k +B„""(A ')„,

I;S

(C&)

+ik(x 5E, +—5E; ) (C2) Using again Eq. (Cl) in Eq. (C5) we find Eq. (4.13).
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