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A fast and numerically stable technique has been developed for the numerical simulation of
parallel-plate rf glow discharges, operating at frequencies exceeding ~10 MHz. In such discharges
the ion concentrations do not vary on the time scale of the rf cycle. Thus the transport equations
for charged particles can be decoupled into a set of time-averaged and time-dependent equations.
Rather than follow the evolution of the discharge following initiation, a solution of the time-
averaged equations provides the steady-state solution directly. Once the time-averaged solution is
known, a solution of the time-dependent equations yields the modulation of the time-dependent
variables about their time-averaged value. Decoupling of the equations also reduces the number of
variables at each step, thereby enabling optimization of matrix solutions for the system of nonlinear
equations. Finally, good initial guesses are provided by solutions of simplified models. Electron ki-
netics and transport data are obtained by solving the zero-dimensional Boltzmann equation for elec-
trons in conjunction with a model for the kinetics of excited states. Simulations have been per-
formed for discharges in Ar and SF,. A typical case for an argon discharge is executed in 6 min on
a Micro Vax II Computer as compared to twice as many minutes on a Cray computer for similar
models reported by other workers. Results of the simulations are in agreement with those reported
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elsewhere and with measurements made using a tuned Langmuir probe.

I. INTRODUCTION

The widespread use of parallel-plate rf discharges for
dry processing has stimulated numerous papers on nu-
merical simulation of these discharges. While many of
the models developed do not treat the entire problem in a
self-consistent fashion, recent efforts have partially
rectified this shortcoming.!”® Continuum models are
based on a self-consistent solution of the transport equa-
tions for charged particles coupled with Poisson’s equa-
tion, for specified discharge conditions. A self-consistent
solution of the discharge is essential in order to qualita-
tively reproduce many of the experimentally observed
features of time- and space-resolved electron-impact exci-
tation.” Long solution times and a tendency towards nu-
merical instability make traditional solution techniques
for the fluid equations unsuitable for use in a robust rf
discharge simulator.

This paper describes a fast and numerically stable tech-
nique for solving the fluid equations for a high-frequency
(>10 MHz) rf parallel-plate glow discharge in a variety
of gases. The technique was first developed for electro-
positive gases,8 and has since been extended to elec-
tronegative gases. In particular, discharges in Ar and
SF¢ have been considered. Typical solution times are of
the order of 6 min on a MicroVax II computer for
discharges in electropositive gases, and twice as long for
discharges in electronegative gases. This represents
significant savings in computer time compared to several
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minutes on a Cray computer for similar models reported
by other workers.® The algorithm is between two and
three orders of magnitude faster than existing schemes.
Three advances have made this possible.

(i) Limiting the domain of applicability to frequencies
above the ion plasma frequency ( > 10 MHz) permits the
systematic decoupling of the equations into a set of time-
averaged and time-dependent equations. By recognizing
that in high-frequency rf discharges, many of the vari-
ables do not vary on the time scale of the rf cycle, the set
of equations can be simplified through time averaging.
By solving the set of time-averaged equations, the period-
ic steady-state solution can be obtained directly, rather
than having to follow the evolution of the discharge.
Once the time-averaged solution is known, the time-
dependent equations for those variables that are modulat-
ed on the time scale of the rf cycle are solved in order to
determine the extent of the modulation about their time-
averaged values. Thus the principal saving in computer
time arises from proceeding directly to the steady-state
solution rather than following the evolution of the
discharge, which occurs over thousands of rf cycles.
With the approach described here, periodic steady state
is achieved within ten rf cycles, compared to 10 000 using
the conventional approach.>° The other disadvantage of
following the evolution of the discharge is that eventually
changes in discharge parameters from cycle to cycle are
so small that one might assume that harmonic steady
state has been achieved. Even after prolonged execution,
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numerical error may prevent periodic steady state from
being achieved. This may be the cause of the nonphysical
dip in the electron concentration at center of the
discharge, in the simulations presented in Ref. 10.

(ii) The decoupling reduces the number of variables at
each step, and matrix solutions of the nonlinear equations
can be optimized. If the equations are not decoupled, one
has to solve for eight variables simultaneously; one for
each of the eight equations. In the algorithms developed
here, at most two parameters are treated as variables
simultaneously.

(iii) The number of rf cycles required for convergence is
significantly reduced if a good initial guess for the solu-
tion is available. Solutions of simplified models can pro-
vide these estimates. Simplified models have been formu-
lated for discharges in electropositive and electronegative
gases. These models capture the essential physics, and
provide reasonable accuracy in estimating certain
discharge parameters. If such accuracy is acceptable, a
solution of the comprehensive model is avoided. Simula-
tions performed for the simplified models are an order of
magnitude faster than the full simulation.

II. MODEL DESCRIPTION

In many gases a continuum description is appropriate
at pressures exceeding~300 mTorr. The continuum
model consists of equations, which for a one-dimensional
(1D) Cartesian coordinate system are
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Here x (cm) is the distance from the grounded electrode,
t(s) is the time coordinate, and the subscripts e, p, and n
refer to electrons, positive ions, and negative ions, respec-
tively. Charged-particle concentrations (cm™3) are
denoted by n, charged-particle fluxes (cm™2s™!) by T,
charged-particle velocities (cm/s) by v, charged-particle
mobilities (cm?/Vs) by u, and the electron diffusion
coefficient (cm?/s) by D,. Also u, (eV) is the mean elec-
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tron energy; E (V/cm) is the electric field; K, =3n,kD, /2
is the electron thermal conductivity (W/cm K); r;, r,, and
ry are the ionization, attachment, and detachment rates
(cm™3s™Y); k, is the rate constant (cm®/s) for recombina-
tion; k. (u,) is the electron-energy-loss rate (eV cm?®/s);
k (J/K) is the Boltzmann constant, e(C) is the electronic
charge, €,(F/cm) is the permittivity of free space; and N
(cm %) is the gas number density.

This general formulation was first suggested by Graves
and Jensen,! but for a symmetric discharge in an electro-
positive gas. Additional terms in the continuity equa-
tions arise from attachment? and detachment.!! At pres-
sures below ~300 mTorr and in regions of intense fields
where the ion and electron velocity distributions are
highly anisotropic, the fluid equations provide only a par-
tial representation of the physics.

Equations (1)-(3), which are the continuity equations
for charged particles, involve terms arising from ioniza-
tion, attachment, detachment, ion-ion recombination,
and ambipolar diffusion. The recombination of electrons
and positive ions is negligible in low-pressure glow
discharges. In SF discharges negative ions are lost pri-
marily through ion-ion recombination, while in O,
discharges collisional detachment of negative ions dom-
inates over ion-ion recombination. The time-averaged
ionization and attachment rates r; and r,, which appear
in the continuity equations, are calculated iteratively (ex-
plained later) according to
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where k; and k,, the rate constants (cm ~® s ™) for ioniza-
tion and attachment, respectively, are functions of the
mean electron energy, and are derived from the Town-
send ionization and attachment coefficients. In O,
discharges, the detachment rate may be expressed as
kqn,N*, where N* is the concentration of excited 0,,
and k; is the rate constant for detachment. Using the
time-averaged rates rather than the instantaneous rates in
the continuity equations is adequate since fluctuations in
electron concentration are due primarily to changes in
the electric field and not due to modulation of the ioniza-
tion and attachment rates. However, since the electron
energy may be modulated quite significantly, it is essen-
tial to account for the time-dependence of the ionization
and attachment rates, in order to evaluate the time-
averaged quantities.

In Eq. (4), which is the momentum conservation equa-
tion for electrons, the inertia terms have been neglected.
In the collision-dominated regime, electrons respond to
the instantaneous field at rf frequencies, and inertia terms
are unimportant. In contrast the ions, being massive, do
not respond to the time-varying field, but rather to the
time-averaged field. However, depending on the frequen-

cy, their velocity is modulated somewhat. Thus in
Egs. (5) and (6), the momentum conservation
equations for ions, the local acceleration term

(n, /v,0v, /dt,n, /v,dv, /dt) is retained.> For the
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domain of this model the convective acceleration term
[v,(3v, /0x),v,(dv, /3,)] is negligible compared to ion
drift and has been neglected. Also ion diffusion is negligi-
ble compared to ion drift, and the ion diffusion term can
be ignored. Since the magnetic fields have negligible
effect on electron and ion motion, of the set of Maxwell’s
equations, only Poisson’s equation [Eq. (7)] is relevant.

In the electron-energy balance equation [Eq. (8)], the
second term refers to enthalpy transport through electron
convection, the third to heat conduction, the fourth to
joule heating and/or cooling, and the fifth refers to the
electronenergy loss through elastic and inelastic col-
lisions.

Instead of using the complete electron energy balance
equation, the local field approximation has been used by
several workers.>* In the local field approximation the
electrons are assumed to be in equilibrium with the local
field, and the electron swarm parameters are then a func-
tion of the instantaneous local reduced electric field
(E/N). The local field approximation fails under two cir-
cumstances. In the sheath regions the elastic field is
large, but the Townsend ionization coefficient is low since
the electrons are diffusing against the field. Also, at
sufficiently low pressures or for high excitation frequen-
cies, the electron energy distribution function may not be
modulated very strongly, and the electrons may not be in
equilibrium with the field. In short, the concept is valid
provided the length scale of variations in the electric field
is much longer than the electron mean free path. The lo-
cal field approximation is improved by using the concept
of an effective electric field. The effective electric field is
an equivalent dc field that sustains the same electron-
energy distribution function as exists in the rf discharge.®

The electron-energy distribution function in glow
discharges is significantly non-Maxwellian, and ideally,
the traditional electron-energy balance equation should
be replaced by the time and space-dependent Boltzmann
equation. Rather than adopt this computationally expen-
sive approach, one can use electron transport data and
Townsend ionization coefficients generated from a zero-
dimensional solution of the Boltzmann equation for elec-
trons. These data are usually parametrized in terms of
the mean electron energy® or expressed in terms of an
Arrhenius-type expression.! Rather than base k. on the
local field, it is based on the mean electron energy. This
is because in the regions of maximum power deposition,
both the mobility (drift) and diffusion terms (rather than
the drift term alone) are important in the expression for
the electron drift velocity. Since the drift and diffusion
terms oppose each other, the actual electron velocity is
less than that calculated by the Boltzmann code for the
same E/N. The Boltzmann equation solver essentially
performs a zero-dimensional electron energy balance for
an implied power deposition density of ev,E (=eu,E?).
Thus, for a given E /N, the effective power deposition
density calculated using the Boltzmann equation is higher
than the power deposition density in the sheath of an rf
discharge. In other words, for a given E /N, electrons are
likely to be more energetic in a drift tube compared to
the sheath of an rf discharge. On the other hand, the
electron-energy distribution functions in a drift tube, and
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in the sheath of an rf discharge are likely to be equivalent
to first order, if the mean electron energies in the two are
the same. This suggests that rate constants for electron
impact processes based on the mean electron energy,
rather than the local field, are likely to be more represen-
tative. Characterizing the electron-energy distribution
function in terms of the mean electron energy is inaccu-
rate in regions of sharp gradients in the electron number
density and the electric field. In such regions, the elec-
tron velocity distribution is quite anisotropic. This
difficulty might be circumvented by specifying additional
properties of the distribution function, or by solving the
spatially dependent Boltzmann equation. Both options
are infeasible at the present time. Another limitation of
the electron-energy balance equation arises from the
difference in characteristic times for energy relaxation be-
tween different parts of the distribution function. Fre-
quently the tail of the distribution relaxes faster than its
low-energy portion.'? The higher the mean electron ener-
gy, the shorter is the energy relaxation time. Conse-
quently, when the mean electron energy is high, the ion-
ization rate is more nearly in equilibrium with the local
field. Excited atomic and molecular states can have a
profound impact on the electron swarm parameters. By
coupling the zero-dimensional solution with a model for
the kinetics of excited states, more realistic swarm data
can be derived.®®

The mode of energy coupling to the electrons by the
electric field depends on the discharge operating condi-
tions. In electronegative gases, the electric field is rela-
tively large even in the plasma, and consequently ioniza-
tion in the plasma sustains the discharge. In electroposi-
tive gases, at pressures which result in collisional sheaths,
and at low-power levels, most of the ionization is due to
plasma electrons and occurs at the plasma-sheath bound-
ary. At higher-power levels, lower pressures, or lower
frequencies, the secondary electrons emitted by energetic
ion bombardment of the electrode are accelerated by the
sheath potential drop. forming a beamlike distribution
(i.e., their random velocity is much smaller than their
directed velocity), and contribute significantly to the total
ionization. Even when ionization is dominated by plasma
electrons, secondary electrons can have an effect on high-
ly activated processes in the sheath. A single electron-
energy balance equation can be written provided elec-
trons formed through ionization in the plasma are indis-
tinguishable from secondary electrons emitted from the
electrodes. At low pressures or high-power levels the
discharge may operate in the ¥ mode,” and ionization by
secondary electrons sustains the discharge. Under these
conditions, the secondary electrons are beamlike. Also,
their mean energy far exceeds the energy of the plasma
electrons and they contribute to most of the ionization.
These two classes of electrons need to be treated as
separate species, with an individual energy balance equa-
tion for each one.’ The continuity equations for beam
and plasma electrons are coupled since beam electrons
upon dissipating energy via collisions become plasma
electrons. The beam electron equations are an approxi-
mation to reality, but give qualitatively correct results
under some circumstances. Even for plasma electrons,
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the simple electron energy conservation equation is inap-
propriate when the electrons gain energy stochastically
by interacting with the oscillating sheath. Under these
conditions, only a small fraction of the energy gained
from the field is converted into random energy that is
describable with a mean energy. However, this
phenomenon occurs at pressures below ~10 mTorr,"?
which is outside the realm of typical conditions. All
these factors limit the applicability of Eq. (8).

The continuity equations yield the charged-particle
concentrations, the momentum conservation equations
yield the charged-particle fluxes, Poisson’s equation
yields the electric field, and the electron-energy balance
equation yields the mean electron energy, and conse-
quently the ionization and attachment rates. Boundary
conditions are required for each of the equations. The
boundary conditions have to be expressed at the ground-
ed electrode (x =0) and at the powered electrode (x =d).
The boundary conditions at the electrodes are

r,=FSn,—yT,, (1
ar 22
P ro=2E —g, (12)
ox ax?
r,=o, (13)
_Jeo —r,-r,-T,+2%E (14)
FC——e—COS(a)IJ—rP n e e o’
q.= F3u,Sn, . (15)

In the above expressions, S is an effective surface
recombination velocity (cm/s), y is the secondary elec-
tron emission coefficient, J., is the specified current den-
sity at the powered electrode, and ¢, is the electron-
energy flux to the electrode. When the continuity and
momentum conservation equations are combined, a
second-order partial-differential equation results. Equa-
tion (11) provides the two boundary conditions required
for the electron continuity and momentum conservation
equations. The surface recombination velocity, a concept
borrowed from semiconductor device simulation,’ is a
phenomenological way of representing the electron
recombination rate at the electrode. Clearly, a value
S =C, /4 implies that the entire one-way flux of electrons
towards the electrode is absorbed by the electrode.
Lower values imply that some of the electrons are
reflected. As long as S > 10° cm/s, the solution is insensi-
tive to the exact value of S. In fact, since n, <<n, at the
electrodes (except for a short duration during the anodic
portion of the cycle), assuming that n, =0 is also accept-
able.! The second term on the right-hand side in Eq. (11)
represents the secondary electron emission emission due
to ion bombardment.

The boundary condition for positive ions [Eq. (12)] re-
quires some explanation. Near the electrode, the rates
for ionization and ion-ion recombination are virtually
zero. Recognizing that at the electrode n, <<n, <<n,
and expressing n, in terms of the field using Eq. (7), the
boundary condition 3*E?%/3x2=0 is obtained. Others
have set either the positive-ion number density* or its gra-
dient! to zero at the electrodes. A zero positive-ion num-
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ber density implies an infinite electric field for a nonzero
positive-ion flux (I, ~u,n,E). Setting the gradient to
zero is equivalent to specifying that E ~x at the elec-
trode. The present boundary condition is equivalent to
specifying that E ~x!/2, which is in agreement with
space-charge limited ion motion through a collision-
dominated sheath. The choice of boundary conditions
for the ion continuity equation is ad hoc. A proper treat-
ment requires the inclusion of a thin ion diffusion bound-
ary layer at the electrode surface.! All the boundary con-
ditions are arbitrary to some extent, but since we are not
interested in the details of the ion concentration very
near the electrode, all the boundary conditions listed
above lead to ‘““satisfactory” results.

Negative ions cannot overcome the retarding potential
of the sheath and are trapped in the plasma. As long as
negative ions are not emitted by the electrode, the
negative-ion flux at the electrode must be zero [Eq. (13)].
Since I',= —pu,n,E and E is nonzero at the electrodes,
an equivalent boundary condition is n,, =0.

A variety of boundary conditions have been used for
Poisson’s equation. In this simulation, the total current
density [J.ocos(wt)] is specified® at the powered electrode
[Eq. (14)]. The total current is an algebraic sum of the
electron, positive-ion, and negative-ion conduction
currents, and the displacement current [€,(3E /dt)].
Specifying the current provides a very powerful con-
straint since the current must be continuous through the
discharge. Alternatively the discharge voltage at the
powered electrode may be specified.! In practice, the
discharge voltage and current are determined by the
characteristics of the matching network and the rf sup-
ply. Strictly the current and voltage wave forms ought to
be obtained self-consistently by considering the response
of the matching network and the rf power supply driving
the discharge. This has been done in the simulations by
Barnes, Colter, and Elta.* The nature of the solution
technique used here requires the current through the
discharge to be specified. This is not a serious limitation
since the current waveform in many discharges appears
sinusoidal, while the voltage waveform is sometimes
clipped at the extremities.

The boundary condition for the electron-energy bal-
ance equation developed by Chung!* for the cases of ab-
sorbing and emitting surfaces is used. If one compares
Eq. (15) with Eq. (8), the boundary condition for the
electron-energy balance equation is equivalent to specify-
ing du, /dx =0. Other terms in the energy balance equa-
tion such as the energy loss through collisions and joule
heating are negligible at the electrodes.

The boundary conditions in time have not been explic-
itly mentioned. Essentially the simulation is terminated
once periodic steady state is attained. Electron kinetics
and transport properties are obtained by solving the
zero-dimensional Boltzmann equation, with a model for
the kinetics of excited states. The electron mobility and
diffusion coefficient are actually a function of the electron
energy, but do not vary as strongly as the Townsend ion-
ization coefficient. In this work the electron mobility and
electron diffusion coefficient are taken to be uniform and
time invariant.
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III. SOLUTION TECHNIQUE

Direct solution techniques employ either the
Gummel-Scharfetter discretization scheme? or a Fourier
series expansion.! The solution technique used here is
based on the decoupling of the equations into a set of
time-averaged and time-dependent equations.

The overall solution scheme is as follows. Using an ini-
tial guess for the spatial profile of the ionization and at-
tachment rates, the time-averaged charged-particle con-
tinuity and momentum conservation equations are solved
together with Poisson’s equation to yield the time-
averaged concentrations and fluxes of charged particles,
and the electric field within the discharge. Next, the
time-dependent electron continuity and momentum con-
servation equations, and the positive- and negative-ion
momentum conservation equations, are solved together
with Poisson’s equation, for a specified rf discharge
current, to yield the time-dependent electron concentra-
tion, the charged particle fluxes, the electric field, and the
potential within the discharge. This solution also yields
the time-dependent power dissipation within the
discharge. At this stage the positive- and negative-ion
continuity equations do not need to be solved since we
are assuming that their concentrations are time invariant
and given by their time-averaged value. Finally, the
electron-energy balance equation is solved using the cal-
culated power dissipation, and the known time-dependent
charged-particle concentrations and fluxes, to yield the
time-dependent mean electron energy, and the time-
dependent ionization and attachment rates. The time-
dependent ionization and attachment rates are time aver-
aged and used to revise the initial estimates for these
values. The whole solution procedure is repeated until a
self-consistent net ionization rate is obtained. The fol-
lowing sections describe each of these steps in further de-
tail.

A. Time-averaged solution

Time averaging of the equations results in the follow-
ing set of equations:

dT,

o (i Tatkan,N¥, (16)
dT,

PR —k,n,n, , (17)
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o T k,n,n,—kyn,N* (18)
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In the above equations, variables without the overbar
are assumed to be time invariant, except for r; and r,,
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which represent time-averaged quantities. It is important
to note that both the positive and negative ions have been
treated as time invariant. This assumption fails at fre-
quencies below ~1 MHz when the ion concentration is
modulated by the time-varying field.” Also, the electron
and ion transport properties are taken to be uniform and
time invariant. Time averaging of the electron continuity
equation [Eq. (1)] requires an averaging of the quantity
n.E. This term has been split into two terms, such that

nE=nE+A(x), (23)

where A (x) is taken to be zero for the first iteration; for
subsequent iterations it is evaluated from the time-
dependent solution obtained in the preceding iteration.

The corresponding time-averaged boundary conditions
are

r,= Fsa,—yT (24)
d*E?
=0, (25)
dx?
r,=o0, (26)
r,—-r,-T,=o0. 27)

The current constraint emphasizes that the number of
positively and negatively charged particles leaving the
plasma, when averaged over the cycle, must be equal, so
that the plasma remains electrically neutral. The algo-
rithms used for solving these time-averaged equations
differ for electropositive and electronegative gases, and
are the subject of Secs. III A 1 and IT A 2.

1. Electropositive gases

In electropositive gases, attachment is zero, and terms
representing attachment, detachment, and ion-ion recom-
bination are absent. The set of equations [Eqgs. (16)-22)]
are solved using an approach first developed for electron
beam sustained glow discharges,’® and modified for
parallel-plate rf glow discharges.® The main features of
the technique are reiterated here.

After appropriate algebraic manipulation'® the time-
averaged equations can be reduced to an ordinary
differential equation for the electric field, which is

+_°_d£

E=R(x)—R(d/2), (28)
e dx

Hp

where the expression for 7, in terms of the electric field is

_ (1+z)R(d/2)
n,

The auxiliary terms R (x), P(x), and B (x) are defined as
R(x)= ["rd
(x) fo rdx , (30)

P(x )+—3P<x)

+u,B(

—E%0)] (29)
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P(x)= f *R(x)dx , (31)  electropositive gases an initial estimate for the spatial
0 profile of the ionization rate is required. If the same

B(x)= [ A(x)dx , (32)

These terms can be evaluated since initial guesses for
the ionization rate »; and the correction factor A (x) are
available. These are known either from a previous itera-
tion or have to be estimated for the first iteration. For
the first iteration A (x) is simply set to zero, while r; is es-
timated from a previous simulation. An approximate
solution, explained in Sec. III D, is used to refine the esti-
mate for r; to speed up convergence. If one substitutes
the expressions for R (x), P(x), and B(x) into Eq. (29)
and the resulting expression for 7, into Eq. (28), an ordi-
nary differential equation for the electric field results.
The boundary condition expressed by Egs. (24) and (27)
have been used in deriving Eq. (29). The remaining
boundary condition [Eq. (25)] is used to solve the
differential equation for E. The differential equation,
when finite differenced, results in a set of coupled non-
linear algebraic equations for the electric field. This set
of equations can be solved very efficiently using the
Newton-Raphson technique for a system of nonlinear
equations. Terms that appear off the central band in the
Jacobian can be neglected. Only elements that lie along
the three central diagonals need to be included in the
Jacobian.

For any nonlinear system of equations an initial guess
is required. This initial guess is generated by setting €, to
zero in Eq. (29), and solving the resulting expression for
fi,. Setting €, to zero is equivalent to assuming quasineu-
trality (n,=n, ):

~ _(+y)RE/2) 1 He . x

fi, S D, 1+“p P(x) P(d)d )
(33)

E(ﬂ:M ) (34)

1,7,

Thus a guess for 77, is obtained from Eq. (33) and the ini-
tial estimate for E(x) is obtained from Eq. (34). Conver-
gence is usually achieved within 50 iterations, and is
speeded up if the value of S is gradually increased from
10° cm/s to its final value over about 10 iterations. Once
E(x) has been determined 7, is evaluated using Eq. (29),
and the other time-averaged variables are calculated us-
ing

L &dE
n,=n, e dx (35)
I_“p=Fe=R(x)—R(d/2) . (36)

In this fashion, all the time-averaged properties of an
electropositive discharge are readily evaluated.

2. Electronegative gases

In electronegative gases, attachment, ion-ion recom-
bination, and detachment are important. In the case of

scheme is extended to electronegative gases, estimates for
the spatial profile of the ionization, attachment, ion-ion
recombination, and detachment rates are required. Be-
sides being very cumbersome, a fundamental difficulty is
encountered. In an electronegative discharge, negative
ions cannot overcome the retarding potential of the
sheaths, and are trapped within the plasma. Negative
ions formed through attachment must be destroyed en-
tirely through ion-ion recombination and detachment.
Thus the total attachment within the discharge must be
equal to the total ion-ion recombination and detachment.
This implies that any arbitrarily specified spatial profile
for these quantities must satisfy this constraint. Actually
only a unique solution is possible and that is the self-
consistent solution. This suggests that at least some of
the spatial profiles must be generated as a part of the
solution. The others may be specified independently.
The algorithm presented here has been developed for
gases like SF¢ in which ion-ion recombination dominates
detachment. Thus detachment is neglected in the
analysis that follows.

Rather than specify the spatial profile of the ionization
rate alone, the spatial profile of the attachment rate is
specified as well. By generating an estimate for the mean
electron energy and the electron number density in the
discharge, the spatial profiles of the ionization and at-
tachment rates can be estimated. Fortunately, in elec-
tronegative gases, both the mean electron energy and
electron number density are very nearly uniform across
the discharge, so if results from a previous simulation are
unavailable, a uniform profile for the ionization and at-
tachment rates may be assumed. This kind of spatial
profile is adequate for a first guess. Naturally the ioniza-
tion rate must exceed the attachment rate for a solution
to exist since some electrons reach the electrodes. An ap-
proximate solution, explained in Sec. IIID is used to
refine the estimates for ; and r, to speed up convergence.
It is based on a zero-dimensional solution of the continui-
ty and momentum conservation equations, coupled with
the electron-energy balance equation. In short, estimates
of the spatial profile for the ionization and attachment
rates can be generated.

After suitable algebraic manipulation,'® Egs. (16)-(22)
can be recast as

d(n,E) N ro—knn,(n,+p+n,)

dx K Bl

dl(p+nr,)E] ri—knn,(n,+p+n,)
dx Hp

0, (37

r,—k.n,(n,+p+mn,)
- . P 0. o9

Equations (37) and (38) are differential equations for 7,
and n,, but also include other variables such as E and p.
These two variables may be eliminated using the follow-
ing expressions:
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—D,(dn,/dx)—p, A (x)

E= — R (39)
Hphp +:u'n n, +“’ene
€ dE
p=—— 40
P e dx “0)

Thus, for the case of electronegative gases, the time-
averaged equations simplify to a set of coupled, second-
order differential equations for the electron and
negative-ion concentrations. The appropriate boundary
conditions are

F [“r,—r,)dx=TF 57, , 41)
0
r,=0. (42)

The boundary condition T, =0 is equivalent to n, =0, as
explained earlier. When Egs. (37) and (38) are finite
differenced, a set of coupled nonlinear algebraic equations
for n, and n, are obtained, which once again are solved
using the Newton-Raphson technique. By organizing the
solution vector in terms of the tuples (#,,n, ), and order-
ing the equations so that the equations for variables at
the grid point j immediately precede the equations for
variables at j +1, a compact Jacobian is obtained. Typi-
cally only elements lying along the 10 principal diagonals
of the matrix need to be considered. As before, initial
guesses for 77, and n,, are required.

Initially the attachment rate is set to zero, the ion-ion
recombination rate constant is set to a high value
(k,>107° cm?/s), €, is set to zero, and N, is also set to
zero. Since attachment is zero, the algorithm for an elec-
tropositive gas is used to generate the electron and
positive-ion concentrations. Once these have been ob-
tained then the finite-differenced form of Egs. (37) and
(38) are solved in stages. First the attachment rate is in-
creased to its full value in approximately eight steps, then
the recombination rate constant is raised to its final value
in approximately eight steps, and finally €, is increased to
its actual value over approximately 20 steps. Overall
convergence is achieved within approximately 50 steps.
However, since we are solving a much larger matrix than
for the electropositive discharge, solution times for the
time-averaged solution are significantly longer. In elec-
tropositive gases the time-averaged solution is obtained
relatively quickly compared to the time-dependent solu-
tion. In electronegative gases the computational com-
plexity of the time-averaged solution is comparable to the
complexity of the time-dependent solution. Overall, the
solution for electronegative gases is slower by a factor of
3. Once n, and n, have been determined, the time-
averaged field is evaluated using Eq. (39), and the other
time-averaged variables are calculated according to

n,=n,+n +%%§ , (43)
T,=[ (ri—knun,)dx (44)
F"=f ~k,n,n,)dx 45)
r,=T, 1““,, (46)

e
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As an aside it is interesting to study the implication of
Eq. (39) regarding the electron number density distribu-
tion in the sheath of an electropositive discharge.
Neglecting A4 (x), a simplified expression for E (x) is

— —D,/(dn,/dx)
E=——7-—7—7—. (47)
Mpn, T p,
In the plasma n, ~n,. Since p, <<py,, expanding Eq. (47)
and neglecting p,n,,
dn,
— U, m, e =0. (48)

This implies that in the plasma, electron drift is balanced
by electron diffusion. If Eq. (48) is integrated, the
Boltzmann relation for the electron number density dis-
tribution (71, =fee °¢,T,=D,/u,) is obtained. In the
sheaths n, >>n,. Therefore neglecting p, 7, instead and
expanding Eq. (47) as before, we find that the electron
concentration is no longer given by the Boltzmann rela-
tionship. Thus if electron and ion motion through the
sheath is collision dominated, the electrons do not satisfy
the Boltzmann relationship. In the plasma they generally
obey the Boltzmann relationship.

B. Time-dependent solution

Once the time-averaged variables have been computed,
the time-dependent equations are solved to obtain the
time-varying variables within the discharge. The con-
tinuity equations for the positive and negative ions do not
need to be solved since the time-invariant ion concentra-
tions have already been determined from the time-
averaged solution. The final forms of the equations are
restated here for convenience.

on, oI, 49)
a  ax L9
on,
r.=—unE—D, 3 (50)
1 9, _
S +v,=p,E , (51
L - 52)
Vh at Un— ”n ’ (
JoE
P Eo(n —n,—n,) . (53)
Boundary conditions at the electrodes are
r,=+S8n,—vl,, (54)
o
T, ———cos(wt)“I‘ -r,-r +—2%? (55)

Substituting ', =n,v,, T', =n,v,, and Eq. (50) for T,
into Eq. (55), and expressing n, in terms of n, and n, us-
ing Eq. (53), one obtains a differential equation for the
electric field, which is second order in space and first or-
der in time. The equation and associated boundary con-
ditions are
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€ OFE c0
Uphty ~Vpty cos(wt)
——p9 | _ _€JE
N D"ax Mo T T T ax
€ OF
- —n,——<2\E, (56
e |Mp ™M ™7 a5 56)
r,=¥Sn,—T, . (57)

The boundary condition [Eq. (57)] is expressed purely
in terms of the electric field by employing the following
relations:

_ € JF
ne_np—nn_—e— ax (58)

€
Fe=upnp—v"nn+—9%?— ;Ocos(wt). (59)

At first glance it might seem as if the electron continui-
ty equation has been neglected; this is not the case since
the current constraint [Eq. (55)] is obtained by combining
the continuity equations for charged particles. Naturally
a periodic steady state is the boundary condition in time.
Equation (56) is finite differenced using the uncondition-
ally stable Crank-Nicholson scheme. In order to balance
the spatial and temporal errors, so that the finite-
difference scheme is accurate to second order, the period
is divided into 200 time steps and the electrode spacing
into 61 elements. The elements are unequally sized, with
the grid size increasing by a constant factor ( ~1.2) from
the electrode towards the center of the discharge. For
convenience the same grid layout is used to solve the
time-dependent electron-energy balance equation and the
set of time-averaged equations. The set of nonlinear
finite-differenced equations is once again solved using the
Newton-Raphson technique. The time variable is ad-
vanced until a periodic steady state is attained. At each
time step the positive- and negative-ion velocities and
fluxes are advanced using

—v,At —v, At

vp(x,t)=vp(x,t—At)e +,upE(1—e ), (60)
v, (x,0)=v,(x,t —At)e "M —p E(1—e ), (61)
r,=n,,, (62)
r,=n,v, . (63)

The instantaneous electric field is used in Egs. (60) and
(61). AtExamination of Egs. (60) and (61) shows that if

TR~ 1, the ions do not respond to the instantaneous
electric field. In the opposite limit, if e Tt <<1, ions
respond to the instantaneous field. At rf frequencies
exceeding ~ 10 MHz the former situation prevails.

Once a periodic steady state is achieved, the sequence
of values of E, v,, and v, over the period of the cycle con-
stitute the solution. Then n, is evaluated using Eq. (58)
and T, is calculated using Eq. (59). Finally, assuming
that the grounded electrode is at x =0, the discharge po-
tential V is calculated according to
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Vix)=—[Edx . (64)

In order to apply the Crank-Nicholson technique, an
initial condition is required for E. Also, the initial ion ve-
locities need to be specified in order to advance the solu-
tion using Egs. (60) and (61). Since in many discharges,
the discharge impedance is more capacitive than resis-
tive, the phase angle between the voltage and current
waveforms is closer to —90° and to 0°. By choosing the
form of the driving current as J ,cos(wt) rather than
J.sin(owt), a good guess for E(x,0) is E(x,0)=E(x).
Specifying the time-averaged variables of the discharge as
the initial conditions, implies that E=E + Esin(ot).
Since J, =~¢€,0E /3dt in the sheaths (and the total discharge
current is continuous), this implies that J, =J coswt.
Then the initial positive- and negative-ion velocities are
v, =p,E(x) and v, = —p, E(x). With these initial condi-
tions, a periodic steady state is achieved within five rf cy-
cles.

Once the discharge properties have been obtained for
the assumed spatial profile, all that remains is an evalua-
tion of the self-consistent ionization and attachment
rates. This is done by solving the time-dependent
electron-energy balance equation. This equation and ap-
propriate boundary condition are

a(n,u,) + 5 o(I',u,) 7 d(K,/k) du,
ot 3 ax 3 ox ox
+I,E+k(u,)n,N=0, (65)

9, (66
o 0. )
This boundary condition is equivalent to Eq. (15), as dis-
cussed earlier.

In the energy balance equation, all quantities except u,
are known at this stage. This equation, when finite
differenced according to the Crank-Nicholson scheme, re-
sults in a system of nonlinear equations for u,. The sys-
tem is solved by the Newton-Raphson method as before.
The time variable is advanced until a periodic steady
state is reached. Convergence to steady state is usually
achieved within four cycles. Over most of the discharge,
the joule heating (—TI',E) balances the electron loss
through elastic and inelastic collisions [k (u,)n,N]. The
initial guess for the electron energy is obtained by equat-
ing the power deposition (if positive) to the electron-
energy-loss rate,

k (u,)a,N+T ,E=0 . (67)

In regions where the joule heating is negative (electrons
are diffusing against the field), the initial guess for the
mean electron energy is set equal to the gas temperature
in eV. Finally, the self-consistent spatial profiles of the
time-averaged ionization and attachment rates are calcu-
lated according to

_ 1T

r,.—-T—fO k;n N dt (68)
_ 1 prT

ra——T-fO k,n,N dt . (69)
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The previous estimates for the ionization and attachment
rates are revised on the basis of these newly calculated
spatial profiles, and the entire solution (time averaged
and time dependent) is repeated until satisfactory conver-
gence is achieved. When changes in the total net ioniza-
tion between successive iterations is less than 10%, con-
vergence is assumed. With a good initial guess, conver-
gence is achieved in less than five loops through the en-
tire sequence of solutions.

C. Convergence

The use of the Newton-Raphson and Crank-Nicholson
techniques assures convergence for the time-averaged and
time-dependent solutions, provided the initial guesses are
within the domain of convergence. However, the conver-
gence of the spatial profiles of the ionization and attach-
ment rates is problematical. No mathematical proof
demonstrating convergence of the outer loop has been
developed. Rather we shall rely on physical arguments to
show that the system tends to converge. If the initial
guess for the net ionization rate is too low, the calculated
electron number density will also be low. This, in turn,
implies a high discharge resistivity (R), and if the
discharge current (/) remains unchanged from iteration
to iteration, the joule heating (I’R) will increase. Conse-
quently the predicted ionization rate will be higher than
initially assumed. Just like the Newton-Raphson
method, the present technique is subject to overshoot. If
the solution overshoots, the overshoots can grow and
eventually the system becomes divergent. Therefore it is
vital to start with a good initial guess and to limit the
overshoot. The second method with underrelaxation is
used to generate the new estimates for the ionization and
attachment rates, given the values for the previous two
iterations. This technique exhibits desirable convergence
characteristics.

One problem plaguing solutions in electronegative
gases is that if the mean electron energy is too low, the
time-averaged attachment rate exceeds the time-averaged
ionization rate, in the central region of the discharge.
This is a nonphysical situation and numerically is mani-
fested as nonphysical solutions. A simple way to fix this
problem is to set the ionization rate at least equal to the
attachment rate in all regions where there is a surfeit of
ionization, and continue the solution. The self-correcting
tendency discussed in the preceding paragraph results in
a more realistic ionization rate at the end of the iteration.

D. Simplified models

Each outer loop iteration is fairly time intensive. At
the end of each outer loop, estimates for the ionization
and attachment rates are refined, and the solution is con-
tinued. Thus any strategy that either shortens each loop
iteration, or helps generate a good initial guess for the
ionization and attachment rates, improves computational
efficiency. Two schemes are discussed here; the first is
specific to discharges in electropositive gases and the
second to discharges in electronegative gases.

6957

1. Electropositive gases

The time-dependent solution of the fluid equations is
quite time consuming. Thus, rather than solve this set of
equations during each iteration, it is prudent to substitute
an approximate solution for this module. In this way,
once the estimate for the spatial profile of the ionization
rate is refined sufficiently, the comprehensive module re-
places the simplified module. Usually it takes a couple of
outer loop iterations to achieve convergence beyond this
point. The simplified module estimates the time-averaged
joule heating —I',E without solving the time-dependent
electron continuity and momentum conservation equa-
tions. Once the time-averaged joule heating is known,
the time-averaged electron energy balance can be solved
to yield the time-averaged mean electron energy and the
time-averaged ionization rates. Briefly the scheme is as
follows.

Electron conduction current is the dominant mode of
current transport in the central region of the discharge,
which has an abundant supply of mobile electrons. In
other words, the conduction current is equal to the total
discharge current. Thus the time-averaged joule heating
of the plasma is given by

J2
“T,E= |—|, (70)
2eo0,
where o, the electron conductivity, is given by
Oe=epen, . (71)

Over the central region of the discharge, n, is almost
time invariant and is thus given by its time-averaged
value #,. Then the time-averaged joule heating can be
expressed solely in terms of quantities evaluated from the
time-averaged solution. The final expression for the joule
heating is

2
JcO

2e%p,7,

-T,E= (72)

This expression fails in the sheaths; in fact, the expres-
sion predicts infinite joule heating at the electrode for
n,—0. The expression is invalid because displacement
current dominates current transport in the sheath. At
the electrode, joule heating is negative (electrons are cool-
ing off as they diffuse against the field) and is ~—T,E.
Equation (72) is assumed to hold in all regions, except the
sheaths. The sheath edge is defined as the point where
the ratio of the electron number density to the ion num-
ber density is 0.95. This definition is quite arbitrary, but
appears to give good results. Since the electron number
density decays rapidly towards the electrodes, the exact
number is not very critical. In all other regions a linear
interpolation between the joule heating at the electrode
and its value at the sheath edge calculated from Eq. (72)
is used. A linear fit is suggested by the full solution.

Given the joule heating, the time-averaged electron-
energy balance equation yields the time-averaged mean
electron energy,
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% d(l;;u") ——:;— d(fi;/k) ‘Z;e +TLE +k (7,)A,N =0 .
(73)
The associated boundary condition is
% . (74)
dx

The time-averaged electron-energy balance equation is
finite differenced, and the resulting set of nonlinear equa-
tions were solved using the Newton-Raphson technique.
Convergence is achieved within a few iterations. The ini-
tial guess for the mean electron energy is obtained by
equating the power deposition (if positive) to the
electron-energy-loss rate

k (@,)A,N+T,E=0. (75)

In regions where the joule heating is negative (electrons
are diffusing against the field), the initial guess for the
mean electron energy is set equal to the gas temperature
in eV, as before. Finally the time-averaged ionization
rate is calculated according to

r,=k,(@,) AN . (76)

2. Electronegative gases

In electronegative gases, the time-averaged solution is
also time consuming. Also, if the estimates for the ion-
ization and attachment rates are poor, nonphysical re-
sults are generated. Thus realistic estimates for the ion-
ization and attachment rates are essential. Unlike in the
case of electropositive gases, the time-dependent equa-
tions must be solved. At any instant during the rf cycle,
the ionization and attachment rates differ, but when aver-
aged over the cycle, they are almost equal. When the
electric field is high, ionization dominates attachment,
while attachment dominates during that portion of the
cycle when the electric field is low. Fortunately, since
electron loss through diffusion is small compared to loss
through attachment, the electron number density is fairly
uniform across the discharge. Thus to first order, the
spatial gradient terms can be neglected. A scheme based
on these concepts has been developed for SF,
discharges.!” The approach presented here is a modified
version of the original formulation.

As in the case of electropositive gases, electron conduc-
tion current dominates displacement current, and ion
current, in the central region of the discharge. Under
these conditions the electron continuity and momentum
conservation equations become

an. _ k k N
dt _[ i(ue) a(ue)]ne ’ 77
Jeocos(wt)=—eu,n E . (78)

Integrating Eq. (77) and substituting for n, in Eq. (78) we
get
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E(t+Af= cos[w(t+At)]E(t) =k, ()= INAC

coswt
(79)

Starting with the initial condition E(0)=(E/N)_N,
(E/N), is the reduced electric field for which the Town-
send ionization and attachment coefficients are equal, and
it is equal to ~375X 1077 Vcm? for SF,. A mean elec-
tron energy u,, corresponding to (E/N),, the electric
field, is advanced using Eq. (79), and at each time step, u,
is also advanced through an implicit Euler solution of

du,
dt

Equation (80) is a modified form of the electron-energy
balance equation [Eq. (8)], with the spatial derivatives
dropped. The solution is advanced over several cycles
until periodic steady state is attained. Finally, the elec-
tron number density and the time-averaged ionization
and attachment rates are calculated using

E2+k (u,)N =0 . (80)

_ Jecos(ot) 81)
" T T e E()

1

,.—~T—f ki(u,)n,Ndt . (82)
ro== [ katun N dr (83)

3. Solution time

The simplified solution schemes presented above are
very efficient computationally. In electropositive
discharges, the time-averaged solution of the continuity
and momentum conservation equations, together with
the simplified formulation of the time-dependent equa-
tions, takes less than a minute to compute on a Micro
Vax II. Similarly, the zero-dimensional solution of the
time-dependent continuity and momentum conservation
equations for an electronegative gas also require less than
a minute to compute. Thus every solution of the full set
of equations is preceded by a solution of the simplified
forms of the equations.

IV. KINETICS AND TRANSPORT DATA

A number of kinetics and transport properties, such as
mobilities, diffusion coefficients, rate constants for ioniza-
tion, attachment, detachment, recombination, and elec-
tron energy loss, have to be known before the transport
equations can be resolved. These properties are specific
to the gas, and can be computed or obtained from the
literature. In this work, simulations have been performed
in Ar and SF, discharges.

Electron-impact ionization of excited atomic or molec-
ular states can constitute a significant fraction of the total
ionization, especially if any of the excited states are meta-
stable states. In argon, ionization from the metastable
levels dominated over direct ionization from the ground
state at low values of E /N. The threshold for ionization
from metastable levels (4.2 eV) is much lower than the
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threshold for ionization from the ground state (15.8 eV).
Thus excited-state populations enhance the Townsend
ionization coefficient through additional ionization aris-
ing from these states. Also superelastic collisions of the
electrons with these excited states populate the tail of the
distribution function, thereby increasing the amount of
direct ionization. Experimentally, Townsend coefficients
are measured in drift tube and swarm experiments, in
which the population of excited states is negligible. Thus
such experimental data for the Townsend ionization
coefficient may be lower than the effective value for the
ionization coefficient in the discharge.

More realistic values for the Townsend ionization
coefficient may be obtained by solving a kinetics model
for the excited states in conjunction with the Boltzmann
equation for each value of E /N. Generally, most excited
states, except for metastable states, constitute too small a
mole fraction to affect the total ionization coefficient.
Thus it is sufficient to solve rate equations only for the
metastable states, to determine self-consistent values for
the metastable mole fractions for each value of E/N.
The total Townsend ionization coefficient corresponding
to these metastable mole fractions is the effective Town-
send ionization coefficient. Electron kinetics and trans-
port data in argon are obtained by solving the Boltzmann
equation in conjunction with a four-level collisional-
radiative model.'®

In molecular discharges the actual gas composition can
be quite different from the composition of the feed gases
as a result of electron-impact dissociation and subsequent
gas phase and surface reactions. Electron-impact pro-
cesses and subsequent gas phase chemistry in SFg
discharges generate a wealth of neutral and excited
species. Kinetics models'®!® predict that over 80% of
the SF is dissociated into SF, fragments, while experi-
mental evidence suggests that less than 30% of the SF; is
dissociated at pressures exceeding 600 mTorr.2’ In the
face of uncertainty regarding the gas phase and electron
kinetics it is not feasible to formulate a detailed kinetics
model for the SF, discharge. Thus swarm parameters
have been calculated neglecting excited states and the
products of gas phase chemistry.'®

V. RESULTS

The intent of this section is to demonstrate that the nu-
merical algorithms presented here give reasonable results.
The properties of rf discharges in electropositive and
electronegative gases have been discussed extensively in
other papers.>>® The results presented in this section
have been obtained for parallel-plate symmetric 13.56-
MHz rf discharges in Ar and SF,.

The distribution of charged particles (Fig. 1) in the two
types of discharges differs considerably. In electroposi-
tive gases electron-impact ionization is balanced by ambi-
polar diffusion to the electrodes. Thus the charged-
particle concentrations exhibit gradients across the
discharge. In contrast, in electronegative gases,
electron-impact ionization is balanced by electron attach-
ment, and the charged-particle concentrations are essen-
tially uniform across most of the discharge. In elec-
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tronegative gases the positive- and negative-ion concen-
trations can exceed the electron concentration by up to
two orders of magnitude. The electron concentration is
almost time invariant over most of the discharge, and is
modulated strongly only in the sheaths. Electronegative
gases also exhibit thinner sheaths compared to electro-
positive gases, in accordance with experimental observa-
tions. The electron number densities for t =0.5 and 1.0
are the same at each location as can be expected from the
symmetry of the applied current waveform (the discharge
current is zero at these instants). In all the plots, the time
is referenced to the current waveform, which is of the
form J ycos(wt)/T. In electropositive gases the electron
and positive-ion concentrations peak at the center of the
discharge, once again exemplifying that electron loss
occurs through ambipolar diffusion. In an electronega-
tive gas, positive ions are lost primarily through ion-ion
recombination. Since the ionization rate peaks near the
plasma-sheath boundaries and k,n,n,=r;, the ion con-

n'p
centrations also peak at the same location.

2.0 TIIT]TT1TIIIYIIYIIIIT]I

(a)

Argon
P =800 mT

ey
6]

!l'lllllllll|l|llll

2
Jco =1 mA/cm

concentration (10% cm3)
o

lllllllllllllllllll

"p
..... ng :t=0.25
05 ‘____ nB:t=0.50
i______ Ng:t=075 .
;‘//. ————. ne :t=1.00,0.00 A
o l /'1 1 l 111 1 l 14 1 1 l | l 1 l.‘A\‘l 1
0 05 1.0 1.5 2.0 25
distance from grounded electrode (cm)
12 [ T T 1 17 71 ] T T 17T T T 17 17T T 1T 177 B
F n andn b
r X P — : _____ (b) ]
— 10 -]
A L 4
E .
o 8 ]
e r SFg ]
S 6 r P =800 mT -
s - Jop = 4.5 mA/cm? .
g 4 r -
3 o R
2 C ]
o = -
[$] - -
2r 3
C Ng x5 ]
0 L Zl 1 1 11 1 l 1 1 1 1 ﬁ 11 1 1 'l B n
0 0.5 1.0 15 2.0 25
distance from grounded electrode (cm)
FIG. 1. Charged-particle concentrations in (a) an argon
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In both types of discharges electron conduction
current is the dominant mode of current transport in the
plasma. Electrons rather than ions constitute the pri-
mary charge carriers due to their higher mobility. Even
in electronegative discharges, in which the ion concentra-
tion far exceeds the electron number density, electron
conduction current is still dominant. This is because the
ions respond only to the time-averaged field, while the
electrons respond to the instantaneous field. At the
center of the discharge, the time-averaged field is zero,
while the instantaneous field is nonzero, except at
t =0.25 and 0.75. In general, the time-averaged field is
much smaller than the instantaneous field, except in the
sheaths. At the electrode surface the time-averaged field
is approximately half the peak value of the time-varying
field. There, the displacement current dominates the ion
current. Displacement current dominates in the sheath
due to the low electron concentration and the low
positive-ion mobility. The spatial distribution of the elec-
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FIG. 2. Electron conduction current density in (a) an argon
discharge and (b) an SF discharge.
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tron conduction current density is shown in Fig. 2. The
spatial distributions in Ar and SF¢ discharges are qualita-
tively similar.

The power dissipation and hence the ionization rate
peak near the plasma-sheath interface. In electropositive
gases the peak is accentuated compared to the more uni-
form profile of the ionization rate in electronegative gases
(Fig. 3). As expected, electron attachment balances ion-
ization, and ion-ion recombination balances attachment
in an electronegative discharge. None of the negative
ions have sufficient energy to cross the potential barrier
presented by the sheath; thus every negative ion formed
through attachment must be consumed by recombina-
tion. Since ionization exceeds ion-ion recombination, the
time-averaged positive-ion flux is directed towards the
electrodes. In contrast, the negative-ion flux is directed
towards the center of the discharge, since ion-ion recom-
bination exceeds attachment. Of course, ionization must
exceed attachment, and thus the time-averaged electron
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flux is directed towards the electrodes. Plasma luminosi-
ty, which originates from excited states formed through
electron-impact excitation, should correlate with the ion-
ization profile across the discharge. Spatially resolved
optical emission from rf discharges in electropositive and
electronegative gases support this observation.® In the
center of the discharge, the mean electron energy is
modulated by less than 0.5 eV for argon, but varies be-
tween 5 and 10 eV for SFg, over the period of the cycle.
This modulation is reflected in the tremendous variation
of the ionization and attachment rates in the center of the
discharge (Fig. 4). The modulation in electron energy is
such that the net ionization rate averaged over the cycle
is almost zero. As expected, optical emission at the
center of an SF, discharge is modulated strongly, while
optical emission at the center of an argon discharge is
hardly modulated.’ Thus, in electropositive discharges,
the mean electron energy is modulated only slightly at
the discharge center, but can be modulated strongly near
the sheaths. In contrast, the mean electronegative
discharges is modulated at all locations within the
discharge.

Additional properties of rf discharges are reported else-
where.!® All the characteristic features discussed here
are in agreement with those reported by other workers.>’
In addition, Langmuir probe measurements, using a re-
cently developed technique that minimizes rf induced dis-
tortion of the probe characteristic have been used to
check these calculations.?! The measured and calculated
electron concentrations in Ar and SFg discharges are
plotted in Fig. 5. The simulation provides the electron
number density as a function of the power density
(W/cm?) at the electrode. In order to calculate the elec-
tron number density as a function of discharge power, the
power density must be multiplied by the electrode area.
In an actual discharge, part of the measured power is dis-
sipated in the matching network, and in parasitic
discharges. Frequently the discharge is not well confined
between the electrodes but balloons towards the chamber
walls. Thus the effective discharge area is larger than
the actual area of the electrode. Because of these uncer-
tainties, it would be fortuitous for the calculated and
measured electron concentrations to agree exactly. Thus,
instead of multiplying the calculated power density by
the physical electrode area, it has been multiplied by an
effective area so as to improve the agreement between the
calculated and measured values. In argon the effective
discharge area was equal to the physical area of the elec-
trode, while in SF¢ discharges the effective area was 1.5
times as large as the physical area. This does not imply
that the Ar discharge is better confined than the SF;
discharge; in fact, visual observation indicates that quite
the opposite is true. Underestimating metastable ioniza-
tion in argon results in an overprediction of the discharge
power. This is the most likely source of error. In any
case, the scaling factors, unity for Ar and 1.5 for SFg, im-
ply that the calculated and measured values agree to
within a factor of 2. The calculations predict the trends
in electron number density with increasing power quite
well. Since the power dissipation is given by en,u,E?,
and both u,N and E /N are independent of pressure, the
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slope of the electron concentration versus discharge
power increases with decreasing pressure. Numerical in-
stability limited the maximum discharge power in the
simulation of argon discharges to 50 W. The exact ex-
planation for the instability is not known. It appears that
the correction term A (x), which is introduced in the
time-averaged solution becomes comparable to the other
terms in the equation as the discharge current (or
equivalently power) is increased.

VI. SUMMARY

A fast and numerically stable technique has been
developed to simulate 13.56-MHz parallel-plate rf glow
discharges in electropositive and electronegative gases.
Although results have been shown only for symmetric
discharges, the scheme is readily extended to asymmetric
discharges. The only significant difference between the
symmetric and asymmetric discharges is the dc bias in-
duced on the smaller electrode. Simplified models suit-
able for generating estimates of the discharge properties
have also been developed. These estimates are also used
as initial guesses for the full solution. The simplified
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models execute an order of magnitude faster than the full
simulation, but still provide reasonable accuracy. Realis-
tic rate constants for electron-impact processes are ob-
tained by solving the Boltzmann equation in conjunction
with models for the kinetics of excited states. Calculated
discharge properties, such as the sheath thickness, and
the ionization and excitation profiles are in qualitative
agreement with experimental findings. Calculated and
measured electron number densities agree to within a fac-
tor of 2. Calculated and measured electron-energy distri-
bution functions are also in good agreement. Such com-
putationally efficient models are suitable for conducting
parametric studies of gas discharges over a range of con-
ditions. These parametric studies have been used to ex-
tracgzscaling laws, which are the subject of a separate pa-
per.
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