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We employ the recently established formalism for the calculation of the dielectric response func-
tion for strongly coupled Coulomb liquids to obtain the dispersion of the plasmon mode in a two-
dimensional one-component plasma in the strong-coupling domain. This formalism is based on the
physical picture of particles being quasilocalized at strong coupling. The analytical and numerical
calculations are carried out over a range of liquid-state coupling parameters up to
I =e'&mn Ik& T =120 and for arbitrary wave numbers. When the slow thermal migration of the
quasisites (around which the particles are localized) is neglected, the plasmon dispersion is oscillato-
ry and the oscillations become more pronounced with increasing I . When the coupling is very
strong (I =120, e.g.), the distance to the first minimum in co(k) and the spacing between successive
minima approaches ED=3.3/a, the lattice spacing in the reciprocal lattice. The "direct" thermal
effects due to the slow migration are represented by a phenomenological modification of the dielec-
tric function. This modification leaves the plasmon dispersion almost entirely unaffected up to
ka =1. For ka & 1, however, changes in the dispersion due to the direct thermal motion are as fol-
lows: (i) the dispersion is no longer oscillatory; co(k) rises from zero to a maximum and then cuts off
beyond that at a value k =k,„(I ), which approaches an asymptotic limit k,„(I ) close to Eo as
I approaches I =137+15;(ii) the plasmon frequency is increased especially at the lower coupling
values where one expects the thermal motion to play a more significant role; (iii) the dispersion ex-
hibits two branches: the upper branch corresponds to the plasmon mode and the heavily damped
lower soundlike branch is already identified in random-phase-approximation calculations. We com-
pare our theoretical results with data available from molecular-dynamics (MD) simulations: the
agreement between theory and MD data becomes more and more favorable, as it should, with in-

creasing I . At I =50, the agreement is very good indeed.

I. INTRODUCTION

This paper addresses the problem of longitudinal plas-
ma oscillations in a two-dimensional electron liquid con-
sisting of electrons trapped in surface bound states at the
interface of dielectric materials. Such a system is well
represented by a classical two-dimensional (2D) one-
component plasma (OCP) (with 1/r interaction) model.
One customarily defines the coupling parameter for such
systems as I =Pe /a, where e is the renormalized charge
which incorporates the effects of the dielectric substrate,
p '=kttT, and a, defined through dna =1, is the 2D
Wigner-Seitz radius.

It is known from 2D molecular-dynamics (MD) com-
puter simulations' that the character of the plasma oscil-
lations, in particular the plasmon dispersion co(k), is
strongly affected by I. For weak coupling (I ~0), the
random-phase-approximation (RPA) description holds
(although it has been theoretically established ' that, in
contrast to the 3D situation, the collisional contributions

in a 2D system are never completely negligible) and with
the neglect of thermal effects provides the well-known

to(k)=co (k):(2trne k/m —)'~

dispersion with the characteristic &k dependence. The
inclusion of thermal effects within the RPA leads to the
appearance of O(k ~

) terms in the small-k domain and
to the development of a maximum in co(k) at
kltt=0. 275 (tt=2mne P is the 2D Debye wave number).
The thermal RPA model, however, ceases to be a valid
description of the 2D plasmon dispersion even for I
values as low as I =2.29, the lowest coupling value re-
ported in the molecular-dynamics experiments of Totsuji
and Kakeya. ' As I increases, the MD data indicate that
starting with I =2.29 the plasmon frequency changes
frotn slightly above to (k) to below co (k) for I =7.09.
For I =23.0, 50.9, and 70.9, the plasmon frequency does
not change appreciably.

RPA calculations carried out by Platzman and Tzoar
have established the qualitative features of the 2D
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plasmon dispersion. This approach, however, has the ob-
vious defect that correlational effects are left out while
their importance is indicated by the MD data as dis-
cussed above. Theoretical attempts to describe 2D
plasmon dispersion for I ~ 1 started with extending the
RPA model into the strong-coupling regime. Studart
and Hipolito employed the static mean-field theory, orig-
inally developed for the 3D electron gas by Singwi et al. ,
to generate local field corrections. Golden and Lu
developed a more sophisticated approach based on the
dynamical mean-field theory of Golden and Kalman.
The 2D OCP is known to crystallize at I = 137+15
into a hexagonal Wigner lattice: the dispersion relation
for the crystalline state has been calculated by Bonsall
and Maradudin' using the conventional harmonic ap-
proximation. The Studart-Hipolito static mean-field
theory fails to satisfy the crucially important co sum
rule [see Eq. (4) below]; as a consequence, their calcula-
tions, if continued beyond their I,„=3. 16 up to
I ~t, would fail to reproduce the correct k ~0 longi-
tudinal phonon dispersion of Bonsall and Maradudin. '

This latler defect does not appear in the dynamical
mean-field-theory calculation which is restricted, howev-
er, to the k ~0 domain.

The plasmon dispersion calculation presented in this
paper is based on a formalism recently developed by two
of us" (referred to as paper I) for strongly coupled
Coulomb liquids. The formalism is based on the physical
model of quasilocalized particles occupying randomly lo-
cated sites and undergoing oscillations around them; at
the same time, however, the site positions also change
and a continuous rearrangement of the underlying
quasiequilibrium configuration takes place. Inherent in
this model is the assumption that the two time scales are
well separated and that for the description of the fast os-
cillating motion, the time average —converted into en-
semble average —of the drifting quasiequilibrium
configuration is sufficient. The dielectric function e(kco)
developed on the basis of this physical inodel is presented
in I, Eq. (35), and is displayed here:

mz(k )
e(kco) =l-

eo —co~(k )2)(k)

take into account the part of the thermal effect that cor-
responds to the slow migration of the random quasisites,
referred to as the "direct" thermal effect. This is accom-
plished in the second part of this work (Sec. III) by put-
ting the dielectric response function in a form appropri-
ate for the description of local field corrections

ao(kco)

1 —ao(kco)G(k)

where ao is the RPA polarizability and G(k) is the "local
field correction" which we then identify with —2)(k) of I,
Eq. (35). That the dielectric function so constructed has
all the desired properties, is discussed in Sec. III. We
then analyze this formula and carry out numerical calcu-
lations leading to dispersion curves which are again com-
pared with the same MD simulation data and with the
dispersion curves obtained in Sec. II. The agreement
with the MD data is again quite satisfactory, especially at
the higher coupling values I =22.36, 50. It is not in this
comparison, however, where any real improvement is
claimed. Rather, it is in the observation that the struc-
ture of the dielectric response function and of the
plasmon dispersion is dramatically altered by the in-
clusion of "direct" thermal effects. In their absence the
plasmon dispersion exhibits oscillatory behavior. In their
presence the dispersion is no longer oscillatory; it exhibits
but one maximum and then cuts off beyond that at a
wave-number value k =k,„(I ) which increases with in-

creasing I to an asymptotic value k,„(I ) close to the
lattice spacing in the reciprocal lattice. As to the overall
character of e(ken), there results a inarked improvement
in the behavior of the static e(k0) for small-I or high-k
values.

Our calculation does not provide any information con-
cerning the damping of plasma oscillations, which in the
high-I domain is probably primarily due to nonlinear
plasmon-plasmon interactions. This process is not de-
scribed by our model (for a more detailed discussion of
this point the reader is referred to paper I), and has to be
the subject of a separate investigation.

2)(k), which is given in terms of the equilibrium pair
correlation, is defined in Eq. (2) below.

Broadly speaking, the present work consists of two
parts. In the first part (Sec. II), we summarize the
analysis of the dispersion relation e(ken)=0 based on I,
Eq. (35), and we complete that analysis by carrying out
numerical calculations leading to dispersion curves.
These curves are compared with the available data from
MD simulations' of the 20 OCP. We contend that our
result is probably the best representation of the plasmon
dispersion relation for I ) 5 (the explanation of this limit-
ing value is given below; see also paper I) and for arbi-
trary k values. The dispersion relation in the I ~I
limit goes over to the Bonsall-Maradudin plasmon disper-
sion' and, for 7 & I &I, it is in good agreement with
the MD data. To further improve the theoretical
description, we develop a phenomenological model to

II. PLASMON DISPERSION
WITHOUT DIRECT THERMAL EFFECT

In this section we analyze the dispersion of the 2D
OCP plasmon mode in the strong-coupling regime
(7 & I ~ 120) for arbitrary wave numbers. We start from
Eq. (35) of I for the dielectric response function

co~(k )
E(kco) =l-

eo —co (k)2)(k)

of a 2D Coulomb liquid modeled as described in the In-
troduction and in paper I; note the absence of "direct"
thermal effects in (1). The correlational effects are
represented through
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$(k)=—g, [g(k-q)-g(q)]
k'q

1 f1 r g(r )[1—cos(k r)](k V)
1

k 2&K

J, (kr )f dr g(—r) 1 —4JO(kr )+6
Zk p ~& o kr

(2)
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A is the area of the system and

g (r)=—g g(q)e'~'= —g [S(q)—1]e'q'1 1
'0 6

k

I

12

(3)

is the equilibrium pair correlation function [see also Eq.
(7) of I]. This latter of course depends on the tempera-
ture and, in this sense, "indirect" temperature effects are
an essential part of our description. Note, finally, that
S(k) is real, and thus, as discussed in the Introduction,
cannot describe damping. Equations (1) and (2) are valid
for arbitrary values of k.

At high frequencies, Eq. (1) becomes

co (k) co (k)
e(kco~ ~ ) =1— — 2)(k)—

M CO
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in agreement with the exact sum rule expansion

cop(k ) cop(k )
e(kco~ ~ ) = 1— +2)(k)
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FIG. 1. Plasmon dispersion calculated from Eq. {6) for
I =7.07, 15.81, 22.36, 36, 50, 90, and 120; co=co/coo, k=ka,
where coo=(2n.ne /ma )' and a =1/(nn )'

(4)

when

3ka/(21 ) &2)(k) . (5)

For k ~0, condition (5) suggests that the present theory
gives a good approximation for about I )5.

In the static limit, e(k~0, 0) provides a negative
compressibility sum rule coefficient characteristic of the
strongly-coupled state. The absolute value of the
coeScient, however, deviates from the exact isothermal
compressibility.

The dispersion relation e(kco) =0 gives

= —1.12I +0.71I' —0.38
n

for &2 & I & 50, or by the HNC formula'

= —1.095I +0.985

for I' & 30. Substitution into (6) then gives
r

co(k-+0)=co (k) 1 —0.175+ 0.0594
P r

0. 1109
I 3/4 ka

(8)

co(k) =co (k )[1+2)(k))' (6) (10)

We have calculated $(k) from (2) for arbitrary values of
k using g(r) data from (i) the Monte Carlo simulations
for I =7.07, 15.81, 22.36, and 50 of Totsuji (ii) the Ref.
13 Monte Carlo simulations for I =36 and 90 of Gann,
Chakravarty, and Chester and (iii) the hypernetted
chain (HNC) calculations for I =120 of Ref. 13. Disper-
sion curves are displayed in Figs. 1(a) and 1(b) with the
dimensionless frequency co and wave number k defined as
co=co/coo, k =ka; coo=(2~ne /ma )' . We now turn to a
detailed analysis and description of the dispersion curves.

For k~0,

PQ
Xl(k ~0)~ ka,

16 nI

where the correlation energy density E, is given by the
liquid-phase Monte Carlo formula'

for v'2&I &50and

co(k~0)=co (k) 1 —0. 171— '
ka

D. 154
P r

for I &30.
With increasing k, Xl(k) reaches a minimum and co(k)

increases to maximum; their values as I ~I are

+min
co,„=0.874cop

at ka=1.60 . (12)

Thereafter, co(k) descends through a series of oscillations
to an asymptotic value. The wave-number position k, of
the first minimum in co(k) (which, incidentally, is the
lowest minimum) decreases asymptotically and reaches
the value k, -3.7/a at I =120; at this I value, the spac-
ing between successive minima is -3.7/a. This is close
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k ~ cc )~—1 — f dq q ~g q (13)

whence,

00, 1 )= ,—'co—0f dx x ng(x, x=qa .

The right-hand side integral is boundeed and we find that

dx x ng(x)= —1.46
0

(14)

and

0.365
2)(k ~ oc )= —1+

K =3.3/a in the reciprocal lat-to the lattice spacing
tice. '
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lr-ZOVI

a ir 7.00l

However, a phenomenological treatment, through the re-

formulation of the dielectric function E(kco), can be car-
ried through. There is, of course, no unique prescription
for the phenomenological construction of e(kco). There
are, however, certain criteria whose satisfaction is expect-
ed.

4) 1-

:(b) tr 22.$bl

a -Ir 2&1

(i) In the k ~0 limit, (1) should be recovered.
(ii} The co high-frequency sum rule —including the

hitherto neglected thermal contribution —[see Eq. (4}]
should be satisfied.

(iii) In the static (co=0) limit, the perfect screening
condition a(k ~0,0)=e(k ~0,0)—1~+ 00 for
sufficiently low I' values and the compressibility sum rule
[given by Eqs. (24) and (25) below] should be satisfied.
[Note that the perfect screening condition is violated by
(1). As to the compressibility rule, (1) provides, as al-
ready noted, a compressibility sum rule coeScient which
is always negative. ]

(iv) In the I ~0 limit, a(kco)=ao(kco) [ao(kco) is the
RPA polarizability] should be recovered.

A further input is provided by recalling that in the theory
of the correlated electron gas, the concept of "local field
correction" turned out to be very pro5table; this requires
the structure

aoa=
1 a0

where G is the correlation-induced local field correction.
The structure we suggest now follows from the
identification 6~—S, providing the mean-field-theory
formula

a i a a a a a l i i I c I l c

10 ao(kco)

1+ao(kco )$(k )
(17)

for the dielectric response function; the 2D RPA polari-
zability is given by

ir~SO)

g lrs fA91 ao(kco) =—1+iv n
K . co PBT

k k 2

' 1/2
co Pm
k 2

1/2 '

(18)

where

Q

W(z) =—I du
Z Q +lo

a a a a a a a l

is the plasma dispersion function. As to the criteria listed
above, we see that (i) is obviously satisfied since
ao(k =O, co) = —co (k)/co and at long wavelengths, (17)
becomes

FIG. 3. Comparison between the Eq. (6) plasmon dispersion
curves (solid line) and the MD data of Totsuji and Kakeya (Ref.
1) (triangular data points) for I =7.07, 22.36, and 50; @=co/cop,
k =ka, where cop=(2mne'/ma)' and a =1/(m. n )'

co~(k )
e(k ~O, co) =1— co~(k )

3 +2)(k-+0)
Q) 21

(20)

where Xl(k ~0) is given by (7) and the presence of the fa-
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miliar 3ka/2I Bohm-Gross thermal term is to be noted.
At short wavelengths, we observe from (15) that

K K
e(k ~~,co)=1+ =1+—,

k —K k
' (21)

KMFT
e(k ~0,0}= 1+ (22)

which difFers markedly from the large-k behavior exhibit-
ed by (1).

Concerning criterion (iii), in the static limit and at long
wavelengths (k ~0), Eq. (17) becomes

under the usual assumption that the imaginary part of
the RPA polarizability is much smaller than its real part
(W"=1m').

For k~O, Eq. (28) simplifies to the long-wavelength
plasmon dispersion relation

co(k~0)=co (k) 1+ + ka, (29)
P 4I 32 nI

which, when combined with the data. of Refs. 12 and 14,
gives

K

1+—', (PE, /n )
(23)

co(k~0)=co (k) 1 — 0. 175— ' — '
ka

0.6906 0. 1109
P I-3/4

(30)
guaranteeing satisfaction of the perfect screening condi-
tion for sufficiently low-I' values. Comparison of (22) and
(23) with the exact expression dictated by the compressi-
bility sum rule

for @2&I &50and

co(k~0)=co (k) 1 —0. 171— '
ka

0.904
P r (31)

e(k ~0,0}= 1+

~,„„,=ic[P(dP/dn )p]

n a pE.
2 n 2 dn n

(24}

(25)
co(k ~0)=co (k)(1—0. 172ka ) (32)

for I )30. Equations (30) and (31) are slightly different
from their Sec. II counterparts (10) and (11}.We note the
near-perfect agreement between the Bonsall-Maradudin
formula'

K
Kexact —0.84I +0.399I' +0.81

(27)

We also note that the high-k behavior of e(kO) is, in view
of (21), quite satisfactory in reestablishing the screening
property of the individual particlelike behavior. Finally
at the dynamic level [criterion (ii)], one can readily verify
that at high frequencies Eq. (17} reproduces the correct
sum rule expansion (4) through 0(1/co ) and for arbi-
trary k values. We can conclude that (17) certainly pro-
vides a satisfactory dielectric function for I &&1—and
probably a reasonable interpolation formula for arbitrary
I —over the entire frequency and wave-number domain.
It also preserves the good qualities of our original ap-
proximation scheme, in particular, the agreement with
the phonon dispersion relation of the 2D signer crys-
tal ' for I ~I . To the best of our knowledge, only
the present theory and the theory of Ref. 7 can claim this
kind of accuracy.

Now, from Eq. (17), the dispersion relation
e'(kco) =Re@(kco)=0 can be written as

1/2 r ' 1/2 '

2I ~—co Pm ~„co Pm
ka k 2 k 2

X [1+2)(k)]= —1 (28)

demonstrates the obvious structural similarity but at the
same time a deviation from the required precise numeri-
cal value. In the I &&1 domain, the deviation, however,
is not very significant. Substitution of (8), for example,
into (23) and (25) gives

K
KMFT —0.7r+o.~~~r'"+0.7625

'

for the dispersion of longitudinal phonon excitations in
the 2D Wigner lattice and the I ~oo limit of our
plasmon dispersion formulas (11}and (31}.

Equation (28) has been solved numerically for arbitrary
k values with the same g(r} data [given by the Monte
Carlo (MC) simulations of Refs. 12 and 13 and by the
Ref. 13 HNC calculations] as in the preceding section.
The new dispersion curves co(k) are displayed in Fig. 4.
The inclusion of direct thermal effects into this extended
model of the 2D OCP liquid has three consequences.

(i) The dispersion co(k) is no longer oscillatory; rather,
it exhibits a single maximum and then cuts off beyond
that at the value k =k,„(I ) (see also Fig. 5); k,„ in-

creases with increasing I to the asymptotic value
k',„-3.65/a at I'=120; note how close k',„ is to the
lattice spacing ED=3.3/ci in the reciprocal lattice. '

Note also the coincidence between the value of k*,„and
the k value where the first minimum in co(k) occurs in the
I =120 dispersion curve without the direct thermal effect
[Fig. 1(b)].

(ii) Direct thermal effects markedly increase the co(k)
values and lead them to a higher maximum, especially at
the lower coupling values.

(iii} Qualitatively similar to the RPA dispersion curve,
the present dispersion curve is also divided into two
branches at k =km, „: the upper branch corresponds to
the plasmon branch and the lower branch is related to a
soundlike mode with phase velocity somewhat higher
( —1.24—1.38 times higher) than the electron thermal ve-

locity; this latter branch is, however, heavily (Landau)
damped and of no physical significance.

To assess the accuracy of this section's dispersion cal-
culations, we again compare the (Fig. 4) dispersion curves
for I =7.07, 22.36, and 50 with the Totsuji-Kakeya MD
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FIG. 4. Plasmon dispersion calculated from Eq. (28) for
I =7.07, 15.81, 22.36, 50, 90, and 120; co=co/coo, k =ka, where

coo=(2mne /ma)' and a =1/(mn )'

data' corresponding to these coupling values. Figures
6(a) —6(c) again show how the comparison becomes more
and more favorable with increasing I as it should. At
I =7.07, the theory curve lies somewhat above the MD
data in contrast to what was stated in Sec. II. At
I =22.36, the theory curve and data very nearly coincide
up to ka =1. Beyond that, the theory curve lies some-
what above the MD data. At I =50, the coincidence be-
tween theory and computer experiment now extends out
to ka —1.6. Beyond that, the theory curve is slightly
higher. One additional observation: the k,„a values
marking the cutoff of the theoretical dispersion curves
appear to be close to the ka-2. 3 limit of the MD
experiments —at least for I =7.07 and 22.36; for I =50,
the k,„a-3.2 cutoff is somewhat higher. No con-
clusion can be drawn, however, from what could be a for-
tuitous coincidence.
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FIG. 5. Comparison between Eq. (6) (solid line) and Eq. (28) (dotted line) plasmon dispersion curves for I =7.07, 15.81, 22.36, 50,
90, and 120. Note how k,„corresponding to (28) approaches k, corresponding to (6) as I —+I; B=co/mo, k=ka, where
~o=(2~ne'/ma�)' ' and a =1/(~n )' '.
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IV. CONCLUSIONS

In this paper we have calculated the dispersion of the
plasmon mode in the strongly coupled 2D OCP with 1/r
interaction. Our analytical and numerical calculations
were carried out at finite wave numbers and over a range
of liquid-state coupling strengths up to I =Pe /a =120.

The starting point for these calculations was our for-
mula (1) for the dielectric response function e(kco) which
we derived in Ref. l. In hindsight, Eq. (1}can be rewrit-
ten in the mean-field-theory-like form

through a series of oscillations to a coupling-dependent
asymptotic value given by (14}. The oscillations become
more and more pronounced with increasing I which is to
be expected. The wave-number position k, of the first

Ir*7.07 I

a lr-INl

where

P(k )g&(k~)

1 —P(k)yo(kco}2)(k)
' (33)

k F (v)
v

yo(kco)= ——d v
m co kv+—io

(34)

F (v)=n5(v),

whence

(35)

is the density-density response function of the system of
noninteracting electrons, P(k)=2me /k is the Fourier
transform of the 2D Coulomb potential, and $(k) is
given by (2). Equation (1) is then readily recovered by
considering the electrons to be "cold" particles, viz. ,

'(b)

a

$0

tr *22.36l

Ir-2N)l

go(kco)=nk /mco (36)

This is tantamount to neglecting the direct thermal effect
(due to the slow migration of the quasisites) against corre-
lational effects in the response, which is precisely what we
did in paper I. Equation (1}and its corresponding disper-
sion relation (6), however, certainly do not describe "cold
plasma" oscillations, since the important effect of the
temperature (through I'} on the ensemble averaged
quasiequilibrium background is well represented in the
model by the equilibrium pair correlation functions
comprising 2)(k). In Sec. III, the introduction of the
direct thermal effect into the model is tantamount to re-
placing (35) with the 2D Maxwellian distribution

F (v) =(Pmn/2m. )exp( —Pmv /2),
whence

a j j
10

I P& sol

a tr-SO.ol

yo(ka) ) = —ao(ken) /P(k ),
leading to the mean-field-theory formula (17) with ao(kco)
given by (18).

At small wave nuinbers (k~0), the 2D OCP plasmon
dispersion is described by Eqs. (10), (11), (30), and (31).
At very strong coupling (I »1), Eqs. (11) and (31) very
nearly reproduce the definitive Bonsall-Maradudin for-
mula (32) for the long-wavelength dispersion of longitudi-
nal phonon excitations in the 2D OCP hexagonal lattice.

At finite wave numbers and in the absence of direct
thermal effects (due to the slow migration of the
quasisites), the plasmon frequency co(k) increases with in-
creasing k from zero to a maximum whose value as
I ~l is given by (12). Thereafter, co(k) descends

a a L s

FIG. 6. Comparison between the Eq. (28) plasmon dispersion
curves (solid line) and the MD data of Totsuji and Kakeya (Ref.
1) (triangular data points) for I =7.07, 22.36, and 50; co=co/coo,
k =ka, where coo=(2mne /ma)' and a =1/(mn)'
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minimum in co(k) decreases asymptotically and reaches
the value k, -3.7/a at I'=120; at this value, the spacing
between successive minima is approximately 3.7/a-
close to the lattice spacing j:0=3.3/a in the reciprocal
lattice. In the presence of the direct thermal effect, the
plasmon dispersion is almost entirely unaffected for
ka ~1. Nevertheless, some rather dramatic changes in
the dispersion do occur: (i) the dispersion is no longer os-
cillatory; rather, it exhibits a single maximum and then
cuts off beyond that at the value k =k,„(I ) (Ko, k
increases with increasing I to the asymptotic value
k',„-3.7/a at I =120; the coincidence between the
value of k *,„and the k value where the first minimum in
co(k) occurs in the I =120 "cold" dispersion curve is
especially noteworthy [see Fig. 5(f)]; (ii} for ka &1, the
plasmon frequency is markedly increased especially at the
lower coupling values; (iii) the dispersion curve now ex-
hibits two branches: the upper branch corresponds to the
plasmon mode and the lower branch corresponds to a
soundlike mode with phase velocity somewhat higher
than the electron thermal velocity.

We have compared our dispersion curves for I =7.07,
22.36, and 50 with MD data corresponding to these cou-

pling values [see Figs. 3(a)—3(c) and 6(a)—6(c)]. The com-
parison becomes more and more favorable with increas-
ing I as it should. At I =50, the comparison is very
good indeed.

We close by noting that Eqs. (1}and (17}should pro-
vide reliable descriptions of plasmon dispersion not only
in the strongly coupled 2D OCP liquid states considered
in the present work (I & I =137+15), but also in the
conjectured supercooled and amorphous glassy states
which might exist for I &I . The existence of these
latter states in two dimensions, however, has yet to be ex-
plored. In any case, continuation of dispersion calcula-
tions based on Eqs. (6) and (28) into the I & I coupling
regime is contingent on the availability of g(r) data from
future MC computer experiments and/or HNC calcula-
tions.
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