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Electron collision shift of the Lyman-a line of ionized helium
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The electron collision shift of the He Lyman-a line emitted from a low-density plasma has been
calculated in the distorted-wave approximation with the inclusion of second-order corrections to
the diagonal elements of the scattering matrix. The effects of exchange, inelastic collisions, interfer-
ence term, and second-order contributions to the line shift are compared. The present results are
also compared with the semiclassical calculations, the Coulomb-Born approximation, the results
based on the R-matrix method, and the line shifts derived from the electrostatic interaction of the
radiator with the surrounding plasma.

I. INTRODUCTION

The shift and shape of spectral lines caused by plasma
interactions has remained a challenging problem since
the experiments by Berg et al. ' on the plasma polariza-
tion shift. Even though considerable theoretical progress
has been made over the years, a satisfactory many-body
treatment still remains elusive causing recourse to
simpler approximate methods. However, in the low-
density plasma regime (say, N, (10' cm ) the mutual
interaction of perturbing particles can be neglected to
first approximation and an intractable problem can be re-
duced to a manageable one. At these densities, the aver-
age separation distance of perturbing electrons is larger
than 200-bohr radii and the Debye screening length at
kT & 2 eV is of the same order of magnitude. Because the
perturbations of the radiative process are primarily
caused by electrons with small angular momenta, indivi-
dual perturbing collisions are well separated in time. In
addition, the motion of plasma electrons near the radia-
tor is affected very little by distant ions and electrons.
Under these circumstances, the spectral line profiles can
be evaluated using the impact approximation of
Baranger.

In Baranger s formalism the initial perturber-radiator
correlations are ignored resulting in negative (i.e., red)
frequency shifts of the Lyman-a lines of hydrogenlike
ions ' contrary to experimental results that yield blue
shifts. Theimer and Kepple pointed out that plasma po-
larization effects may cause blue shifts of hydrogenlike
lines, and calculations for He+ have been reported by
several authors. ' " Blue shifts of Lyman lines have
been obtained only if the assumption of charge neutrality
outside the electron orbit was adopted.

In each method of calculation, the line shift is obtained
as a sum of various contributions, and the importance of
different terms may vary from one method to another.
The basic motivation of this study is the comparison of
different methods of calculation and clarification of their
agreements or disagreements. In the present investiga-

tion, we have calculated the electron collision line shift
using the distorted-wave method with exchange (DWX)
and the S-matrix formalism of Baranger. This method al-
lows convenient separation of the various contributions
to the total shift and an assessment of their importance.
We have also compared the results to the shift derived
from the electrostatic interaction. It can be shown that
in the limit of weak interaction both results are identical,
but in the case of ionized helium this limit has not been
reached.

II. CALCULATION OF THE LYMAN-a LINE SHIFT
USING THE SCATTERING MATRIX FORMALISM

In the present investigation, we assume that the density
of plasma electrons is so low that we may adopt the fol-
lowing simplifications: (1) the mutual interaction and
correlation of plasma electrons can be neglected; (2) the
atomic wave functions are not affected by interaction
with the surrounding plasma; (3) fine structure of atomic
levels can be ignored; and (4) the electron collision shift
and the shift produced by ions are additive so that the
electron shift may be calculated separately. Therefore we
ignore the effects of ions and neglect the positive back-
ground in our calculation. The mixing of the 2s and 2p
levels due to ion fields is also omitted. All calculated
shifts will be normalized to the electron density N, =1
cm . Unless otherwise indicated, all quantities
throughout the paper will be given in atomic units
(e =h/2m=m =1). .

In the impact approximation, the electron collision
profile of a spectral line is determined by electron scatter-
ing on the upper and the lower level of the line. Follow-
ing Baranger, the half-width w (at half-maximum) and
the frequency shift d =2mhv of an isolated spectral line
can be expressed in terms of diagonal elements S(a,a) of
the scattering matrix. The scattering channel a associat-
ed with a hydrogenic atom and a colliding electron is
defined by
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a:—nlklL S",
where nl denotes the principal and orbital quantum num-
ber of the bound electron, k and l are the momentum and

the orbital angular momentum of the colliding electron,
and L,S is the total orbital and spin angular momen-
tum. For a spectral line with an upper level n p and a
lower level n, s, the width and shift is given by'

w +id =
,', mN—,f k 'f (k) g (21. +1)(2S +1)[1—S(a,a )S*(a„a,)]dk,

I,S,L

N, is the electron density, and f (k) is the momentum distribution function of plasma electrons, which is represented by
a Maxwellian distribution in the present calculation. The two matrix elements in (1}correspond to two different total
energies which are such that k =k, —:k, and the values of l, l„and S in (1) satisfy the conditions l = l, = l,
S =S:—S.p s

We have calculated S in the distorted-wave approximation with exchange. Because we neglect mutual interaction of
plasma electrons, we do not introduce any screening effects due to free electrons into the scattering potential, which
consequently has the form of a Coulomb potential at large distances from the target ion. First we have evaluated the p
matrix, ' which is defined by the asymptotic form of the total wave function 4, (r„rz} describing the scattering. At
large values of r2, 4 may be written in a form proportional to

Q (coi, A@2)ri 'P(nl;r, )r2 'k '
isn( x2+r) +gp( a', a)Q (co i, co&)ri 'P(n'1', r, )r2 'k ' co(st +7 ),

a'
(2)

d2

dr

l (l +1) 2(Z+ 1)
r2 r

2yo(nl,—nl;r)+ k Fk&(r) = CP(nl; r ), (3)

which has asymptotic form

where 8 and m represent the angular and spin coordi-
nates of the bound and the free electron, respectively, and
Q (co, co) is a function depending on the coupling of angu-
lar rnomenta in channel a. r, 'P(nl;r, ) is the radial
function of the bound electron, and x 2

=kr 2
—

—,
'

m l
+Zk 'ln(2kr2)+argI (I+1 iZk —'), where the sym-
bols k, l correspond to the channel a. Z represents the
asymptotic charge for the colliding electron. In our pro-
cedure, the phase r ( =—r ) for each channel a was deter-
mined by the solution of equation

The p and S matrices are related by

S =e"(1+ip)(1—ip) 'e",
lT

where e"are diagonal matrices with elements e
In the evaluation of diagonal elements of the scattering

matrix, it is generally necessary to take into account the
coupling of several channels. This effect is partially ac-
counted for by transformation (5). However, in the case
of the Lyman-a line, the energy difference between the 1s
and 2p levels of ionized helium is much larger than the
average kinetic energy of plasma electrons at tempera-
tures considered in our calculation, so that only a very
small fraction of electrons scattered from the 1s level is
affected by coupling to other channels. Therefore, in the
evaluation of matrix elements S(a„a,) we ignored all
other channels and set

Fki(r)-k '~ sin(x +r), (4) S(a„a, ) =e '[1+ip(a„a, )][1 i p(a„a, }]—

and consequently v depends on nlkl, but not on S L
yo (nl, nl;r} corresponds to the monopole part of interac-
tion between the atomic and the colliding electron. The
function yz is generally defined by

yi(nl, n'l ', r2) = fP(nl;ri )(r & Ir &+')P(n'T', ri )dr&,

r & being the greater and r the smaller of r, and r2.
The Lagrange multiplier C is chosen to insure the ortho-
gonality of Fkl and P (nl) and it is zero unless l = l, and nl
is identical either to the upper or to the lower level of the
line.

On the other hand, we have included levels 1s, 2s, 2p, 3s,
3p, and 3d in the p matrix for the evaluation of S (a~, a~)
according to (5), but we have ignored all elements that do
not involve the 2p level and have only a small effect on
S(a,a~).

The elements of the p matrix were calculated using

approximate functions 4' with the asymptotic form pro-
portional to (2) containing approximate matrices p'.
From the Kohn's variation principle it follows

p(a', a) =p'(a', a) —2('0', ~H E~%" ), —
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where H and F. are the Hamiltonian and the energy of the
total system.

In our procedure, we calculated the off-diagonal ele-
ments p(a', a) and the diagonal elements p(a„a, ) using
the antisymmetric functions

qI' =/ —,'r] 'r2 [4'(r],r~)+( —1) e'(rp, r] )],
with

4'(r„r2) =Q (co»co&)P(nI;r] )Fk&(r2),

(7a)

(7b)

where F],] satisfies Eq. (3}with the following modification:
for a matrix element associated with channels a and a',
we used the Lagrange multipliers in all cases where I (or
I') was equal to I or I ' or both. With the approximate
functions (7), p'=0, and p(a, a') can be expressed in terms
of coefficients and f](l I I' I'; L ) and gi(l I I ' I'; L )

defined by Percival and Seaton' and integrals involving
functions P(nI), P(n', I '), Fk], and Fk ]

In the evaluation of diagonal elements p(a, a ), we
also took into account the coupling to other channels by
including scattered waves into the approximate function
4' defined by (7a}. Instead of (7b), we have set

@~(&] &i)=Q~(~] 2}P(&I;&])Fk](r2)

+ y Q~, (~],~2)P(n', I', r])Gk](r2) .
a'Aa

This procedure introduces second-order corrections to
the diagonal elements of p and S. We also made the fol-
lowing adjustments: (a) 7unctions Fk], which are solu-
tions of (3), were Schmidt orthogonalized to all atomic
functions P (nl) with I = I (this procedure does not change
the phase ~ of Fk]), (b) terms containing integrals with
products of two Gk I functions in the expression for
p(a~, a ) were neglected.

Functions Gk.I. were obtained as solutions of the equa-
tion

The matrix elements S(a,a } and S(a„a,} were cal-
culated for ten different energies of the colliding electron.
The energy mesh was chosen so that it would give
suScient accuracy of the integral over the velocity distri-
bution, and at the same time take into account the
discontinuity of S(a,a ) at the excitation threshold of
the n =3 levels. No resonance effects below the n =3
threshold were taken into account in our procedure.

The shifts of the Lyman-a line were calculated for elec-
tron temperatures corresponding to 2.0, 2.5, 3.0, and 4.0
eV.

It is convenient to rewrite (1}in terms of transmission
matrices T. From the relation T=1—S it follows

1 —S(a,a )S'(a„a,)=T(a,a )+T'(a„a, )

—T(a,a )T'(a„a, ), (10)

and the total shift is thus decomposed into two parts:
contributions from direct terms T(a~, a~)+T*(a„a,)
and from the interference term —T(a, a~ )T'(a„a, ).

III. DISCUSSION OF RESULTS

The major contributions to the line shift come from the
first four lowest total angular momenta L of the system,
as shown in Fig. 1 for kT =2 and 4 eV. With increasing
temperature, the contributions from low values of L de-
crease and those from higher L increase due to changes
in the electron velocity distribution.

Curve 1 on Figs. 2, 3, and 4 represents the final result
of our calculation for the electron collision shift of the
Lyman-a line of He+. The line shift is to the red and its
magnitude slowly decreases with temperature.

If exchange terms in the expression for d are neglected,
the result is represented by curve 2 (Fig. 2) indicating

12

dp

I'(I'+ 1) 2(Z+ 1)
r2 r

12—

—2yo(n'I, n'1 ';r)+k ' G„,(r)=2U ~ (r}F„,(r),

with the asymptotic form proportional to cos(x'+r'), x'
and ~' corresponding to the channel a'.

Furthermore,

U . (r)=gf&(1 I I' I', L )y](nl, n'I ';r),

and in the expansion over A, only the dominant term was
retained. The functions Gk.I. were then Schmidt orthogo-
nalized to all atomic functions P(nl) with I=I'. The
second-order contributions to the diagonal elements
p(a~, a~) can again be expressed in terms of coefficients

f]„,g]„, and radial integrals involving atomic wave func-
tions and functions F„] and G„, All multipole orders A,

that correspond to nonvanishing coefficients f» and gi
were included in the expansion.

In the summation over I in Eq. (1), sufficient conver-
gence was achieved by including values up to I =13.
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FIG. 1. Comparison of partial contributions (arbitrary units)
to the Lyman-a shift of He+ from total angular momentum
L =L . Solid line: kT =2 eV dashed line: kT=4 eV.
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FIG. 2. Lyman-a shift of He+. 1, present distorted-wave
method with exchange, levels 1s-3d included in the scattering
matrix; 2, same as 1 without exchange; 3, same as 1 without
second-order contributions; 4, same as 1 without the interfer-
ence term; 5, shift calculated only from elastic monopole contri-
butions from Eq. (11).

the effect of monopole terms in the DWX method.
Griem has also included contributions from transitions to
levels higher than 3d, and e8ects of resonances below in-
elastic thresholds, which are omitted in the present calcu-
lation. Griem s original line shifts are almost 50% small-
er than our values, but if we ignore exchange, the in-
terference term, and contributions from the 2p-2s transi-
tion to the second-order terms in the DWX approxima-
tion, we obtain curve 6, which is in a good agreement
with the semiclassical results. In a later paper, ' Griem
has added contributions from the 2p-2s interaction ob-
tained according to the kinetic theory approach of
Boercker and Iglesias. 's For ionized helium, these contri-
butions are proportional to the electron density. The re-
sult is shown as triangles on Fig. 3. The corresponding
DWX result (i.e., curve 1 without exchange and interfer-
ence term) is represented by curve 7, giving an agreement
within 15% with Griem's calculations. ' The contribu-
tions from the 2p-2s interaction to the line shift in the

4

that the inclusion of exchange is not important in this
particular case. On the other hand, omission of second-
order contributions to the matrix elements S(a,a ), de-
scribed in the preceding paragraph, results in a substan-
tial reduction of the shift as demonstrated by curve 3
(Fig. 2}. (The present result is slightly different from
analogous calculations in Ref. 15 due to difFerences in the
orthogonalization procedure. ) The omission of the in-
terference term has a similar efFect. The result is shown
as curve 4.

The dominant contribution to the total line shift con-
sists of direct elastic monopole terms. If all other terms
are ignored, p=0, S=e ",and from (1) one obtains

0

d = m'N, Jk 'f (—k)g(21+ 1)sin2(r& r, )dk, —

where rz and r, are phase shifts of functions Fki defined

by (4). The result is shown as curve 5. The contribution
of all other terms is therefore smaller than 30%.

The cumulative effect of other than diagonal elements
in the p matrix on the line shift is small. It has been stud-
ied in Retail in Ref. 15 (however, no second-order contri-
butions have been included in the calculations described
in Ref. 15).

Figure 3 shows a comparison of our results (curve 1)
with the semiclassical (SC) calculations of Griem, ' with
quantum calculations of Nguyen et al. , ' and with the
R-matrix method of Yamamoto and Narumi.

The original SC results of Griem (circles} contain only
inelastic contributions from second-order terms without
exchange (with adjustment for effects of higher orders)
and no interference term. The e8'ect of 2p-2s interaction
on the line shift was not included, and the result contains
no monopole contributions, but the estimated "strong
collision term" representing contributions from low an-
gular momenta is expected to simulate to a certain degree

kT (eV)

FIG. 3. Lyman-a shift of He+. 1, same as in Fig. 2; 6, same

as 1 without exchange, interference term, and the 2p-2s contri-
butions to the second-order terms; 7, same as 1 without ex-

change and the interference term; 8, R-matrix method by
Yamamoto and Narumi (Ref. 4); 9, same as 1 with all phase
shifts r~ for the scattering on the upper level 2p set equal to the
corresponding phase shifts ~, for the lower level 1s. The circles
denote SC calculations by Griem (Ref. 3) (without contributions
from the 2p-2s interaction); triangles denote SC calculations by
Cxriem (Ref. 16) (with contributions from the 2p-2s interaction);
crosses denote Coulomb-Born-Oppenheimer approximation by

Nguyen et al. (Ref. 17).
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DWX method are about 30% smaller than those ob-
tained from the kinetic theory.

In spite of differences in the methods, the SC values
(triangles) compare favorably with our final result (curve
1}. It appears that omission of the interference term and
of monopole contributions in the SC method is largely
compensated by the inclusion of transitions to levels
higher than n =3, by the strong collision term, and by
contributions from resonances below inelastic threshold.
On the other hand, the inclusion of these contributions to
DWX shifts (except for the strong collision term) would
further increase the result represented by curve 1.

The result of quantum-mechanical calculations by
Nguyen et al. ' is shown on Fig. 3 as crosses. The au-
thors used the Coulomb-Born-Oppenheimer approxima-
tion and did not include any second-order corrections to
the elements of the scattering matrix. In agreement with
our calculations, they claim that the monopole interac-
tion plays a leading part in the red shift of the Lyman-a
line. Nevertheless, their value of the shift for He+ is
larger by 20% than our result (curve 1), and larger by
60% than curve 5 (Fig. 2), which represents our calcula-
tions with only monopole terms included according to
Eq. (11). The difference may be attributed to the fact that
the CBO method overestimates the value of elastic mono-
pole terms.

It is more difficult to understand the difference between
the present result and the R-matrix calculation of
Yarnamoto and Narumi, represented by curve 8 on Fig.
3. These authors included all atomic levels from ls to 3d
in accordance with our procedure, and also contributions
from resonances below the n =3 threshold, and yet their
result is more than three time smaller than ours. We
suspect that the discrepancy may be caused by elastic
terms in the R-matrix method associated with phase
shifts r In supp. ort of this hypothesis, we repeated our
DWX calculations, but we arbitrarily set all phase shifts

for the upper level equal to phase shifts ~, for the
lower level in Eq. (5). This procedure eliminates the
effect of phase-shift differences and the result (curve 9 on
Fig. 3}comes close to the line shift reported by Yamamo-
to and Narumi.

IV. THE SHIFT OF THE LYlVIAN-a LINE
DERIVED FROM THE ELECTROSTATIC INTERACTION

Several authors have studied the Lyman-a shifts from
the point of view of electrostatic interaction of the radia-
tor and plasma. ' The status of the theory prior to
1978 has been reviewed by Volonte. ' The basic assump-
tion of this approach is that each atomic level is indepen-
dently shifted by plasma interaction and that the frequen-
cy shift of the spectral line is equal to the difference of
level shifts.

The static (or "polarization" ) line shift associated with
the interaction of plasma electrons and the radiator is
simply related to the shift given by formulas (1) and (11).
We can separate the direct terms and the interference
term in expression (11)by using the expansion

sin2( w —
w, ) =sin2r —sin2~,

+4 sins~sins, (sins —sin~, )+JV,

where JV represents higher-order terms. The first two
terms on the right-hand side of this equation correspond
to the direct terms defined by (10). If the interaction is
weak, values of v. are small and then, assuming a spheri-
cal charge distribution corresponding to the bound elec-
tron and using the integral expression for phase shifts,
we obtain

sin2(~~ r—, ) =2(sin~~ —sins, )

—4 gp 2p, 2p;f

—yo(ls, ls;r)][Ff &(r)) dr, (12)

where Ff &(r) is a Coulomb function that has asymptotic
form k ' sinx corresponding to charge Z. A spherical-
ly symmetric density distribution n, (r) of mutually
noninteracting free electrons moving in the field of a posi-
tive point charge Z can be written in the form

n, (r) =N, f k 'f (k)r g(21+1)[Ff&(r)]dk, (13)
1

where N, =lim„„n, and f (k) is the momentum distri-
bution function. If W(nl) is the energy of electrostatic in-

teraction of a bound electron in the nl state and free elec-
trons with density distribution n, (r), then the difference
W(2p)-W( ls) is given by

W(2p) —W(ls}=4m f r n, (r)[yo(2p, 2p;r)

—yo(ls, ls;r)]dr . (14)

This quantity can be interpreted as the polarization shift
of the Lyman-a line due to interaction with plasma elec-
trons. (Note that we do not introduce any neutralizing
positive background in accordance with the calculation
described in Sec. II.) Substituting (13} into (14), and as-
suming the validity of (12},(14) becomes identical to (11).
Therefore, if all inelastic collisions can be neglected, and
if the monopole part of the interaction is small, the static
shift of the line calculated from unperturbed atomic and
continuum functions is equal to the shift obtained from
the Baranger's formula, and both methods become
equivalent.

Figure 4 shows a comparison of our DWX calculation
(curve 1) with the static shift W(2p)-W(ls} calculated
from expressions (14) and (13), represented by curve 10.
At low temperature, both results are in very good agree-
ment, but this appears to be rather fortuitous. To prop-
erly assess the accuracy of the static approach and of the
validity of (12), curve 10 should be compared with the
shift obtained from Eq. (11), in which contributions from
the interference term are neglected. The result is shown
as curve 11.There is a substantial difference between the
static shift (curve 10) and curve 11, and it is caused
predominantly by the fact that phase shifts for low angu-
lar momenta l are not small and the integral expression
(12) for phase shifts is not valid.

Figure 4 also shows results of more elaborate models
for static shifts of the Lyman-a line in ionized helium.
Squares correspond to the self-consistent calculation by
Benredjem et al. based on the ion sphere model. This
model gives results very similar to the simple approach
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described earlier, represented by curve 10. Another mod-
el, which takes into account the spherically symmetric
ion distribution, was described in Ref. 24. The result is
shown as curve 12.

In all static models the red line shift of Lyman-a de-
creases with temperature more rapidly than the DWX re-
sult, because they do not include contributions from in-
elastic collisions that are more pronounced at higher tem-
peratures.

V. SUMMARY OF CONCLUSIONS

The frequency shift of the Lyman-a line of ionized
helium due to collisions with electrons was calculated in
the DWX approximation with the inclusion of atomic
level ls to 3d. The result is applicable to low-density
plasma (N, &10' cm ), where mutual interaction of
perturbing electrons may be neglected. For temperatures
between 2 and 4 eV, frequency shifts are negative. The
main contributions to the line shift are due to elastic

FIG. 4. Lyman-a shift of He+. 1, same as in Fig. 2; 10, static
shift from Eq. (14); 11, shift calculated only from monopole elas-
tic contributions from Eq. (11) without the interference term;
12, static shift calculated with the inclusion of ion distribution
{Ref. 24). The squares denote the self-consistent calculation of
Benredjem et al. (Ref. 22).

scattering on the 2p level, but the shift is substantially
affected by the inclusion of inelastic contributions to
second-order terms in the scattering matrix, representing
coupling of different channels. The most important in-
elastic process according to the DWX calculation corre-
sponds to the 2p-2s transition.

Major contributions to the shift come from the lowest
angular mornenta of the colliding electrons, and the in-

terference term increases the absolute value of the shift.
The static shift of the line, defined as a difference of

electrostatic interactions of the bound electron with plas-
ma electrons moving in the potential of a point charge Z,
agrees with the DWX approximation at low temperature,
but it decreases with T more rapidly than the DWX re-
sult. However, the agreement appears to be largely the
result of two compensating effects: overestimation of the

monopole part of the interaction by the static approach
and omission of inelastic processes and of the interference
term.

The present D%X result for the line shift of ionized
helium agrees within 15% with semiclassical calculations
of Griem, ' but disagrees with results of the R-matrix
method of Yamamoto and Narumi. A possible explana-
tion of the disagreement is the difference of elastic contri-
butions in the two methods.

Experimentally found positive shifts of the Lyrnan-a
line of He+ (Refs. 5 —8) are in sharp contrast to theoreti-
cal results that yield negative shifts of much smaller mag-
nitude. However, for a comparison with measured shifts,
the present results should be modified by the inclusion of
gradrupole interaction with ions that produce a shift in
the opposite direction and will therefore decrease the to-
tal red shift of the line. It is difficult to measure small
shifts predicted by the theory, and additional investiga-
tions, experimental as well as theoretical, still remain to
be done in order to resolve the discrepancy.

A further improvement of the present approach should
include effects of resonances below inelastic thresholds
and of transitions to n & 3 levels.
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