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We describe the testing of a non-muffin-tin extension to the scattered-wave method ( due to Nato-

li, Benfatto, and Doniach [Phys. Rev. A 34, 4682 (1986)])for the calculation of one-electron energy

eigenvalues and photoionization cross sections of molecules. For bound states the hydrogen molec-
ular ion is used, and for continuum photoionization an ionized lithium pseudocluster is used, these

being excellent tests because the analytic results are also known. Comparison of the results shows

that the theory is correct and that the computational approach is feasible.

I. INTRODUCTION

We have recently developed computer programs to im-
plement the full-potential scattered-wave (FP SW) theory
of Natoli, Benfatto, and Doniach' for the calculation of
bound and continuum electronic states in molecular clus-
ters. In this version of the method the usual "muffin-tin"
(MT) approximation to the electron-molecule potential is
not made, so that the full one-electron potential may be
used directly. Both the theory and the corresponding
programs are quite complicated and it is necessary that
some unequivocal way of testing them be found, before
they are used for more interesting physical systems. The
tests that we describe in this paper are for simple (but not
trivial) systems which are free of extra physical complica-
tions and show clearly the benefits that accrue from the
relaxation of the MT approximation.

The SW method has been used for many years with
considerable success. In crystalline solids, where it is
known as the Korring, Kohn, and Rostoker (KKR)
method, it has been used to calculate band structures. A
version of the method for the bound states of molecules
and clusters was developed by Johnson and co-workers,
and extended by others to continuum states with appli-
cation to electron-molecule scattering and photoioniza-
tion. In the molecular case it is normally used in a self-
consistent-field (SCF) mode with Sister's Xa approxima-
tion to exchange correlation, in which case it is called the
SCF SW Xa method. A relativistic version called the
Dirac-scattered-wave (DSW) method has also been
developed, which is based on a SW solution of the one-
electron Dirac equation.

In all these versions of the SW method the MT approx-
imation is relied upon to provide mathematical tractabili-
ty. In this approximation, introduced by Slater in the
context of the augmented-plane-wave (APW) method, the
atoms are enclosed by nonoverlapping spheres and the
whole molecule enclosed in an outer sphere (OS) which
intersects none of the atomic spheres. Within an atomic-

sphere region (ASR) the potential is spherically sym-
metrized about the nuclear position, while in the ex-
tramolecular region (EMR—that outside the OS) the po-
tential is spherically symmetrized about the center of the
OS. In the interstitial region (IR—that inside the OS,
but outside all the ASR's) the potential is approximated
by its average over that region.

The MT-based SW method has several attractive
features. Firstly it is a non-basis-set, real-space method
in which the wave functions are expanded in rapidly con-
vergent partial-wave series around each atomic site. It is
an ab initio technique and can accommodate a wide
variety of molecular types at reasonable computational
cost. For many years it has been realized that the major
limiting factor or the MT SW method is the MT approxi-
mation itself, particularly in open, covalently bonded sys-
tems. Ad hoc schemes to improve the approximation,
like overlapping atomic spheres or the inclusion of emp-
ty interstitial spheres, tend only to emphasize the sensi-
tivity of the results to arbitrary (and unphysical) choices
of parameters such as atomic-sphere radii. A variety of
more sophisticated schemes has also been proposed over
the years, ' trying to include higher multipoles of the po-
tential in the ASR's and EMR or the true potential varia-
tion in the IR. In general, this is to be achieved at the
cost of greatly increased complication. A promising ap-
proach is that of Williams and Morgan, " who general-
ized the ASR's to space-filling polyhedra, elminating the
IR altogether. In recent years their scheme has enjoyed a
renewal of interest, especially in the work of Faulkner'
and of Brown and Ciftan, ' although several other au-
thors have also made important contributions. ' ' Un-
fortunately, a controversy exists among these authors
about the mathematical formulation of the scheme, so
that its status remains unclear. Our paper is intended to
show that, at least with the formalism of Natoli, Benfat-
to, and Doniach, a valid, full-potential (i.e., non-MT) ex-
tension to the SW method is available and computation-
ally feasible.
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II. THEORY

The basis of the FP extension to the SW theory (for
molecules) was given by Natoli, Benfatto, and Doniach'
with some further developments (particularly for the
bound-state case) given by Foulis. ' (We intend to submit
for publication at a later date a full exposition of the FP
SW theory and details of its numerical implementation. }
The central part of the theory is the solution of the one-
electron Schrodinger equation, approached (for both
bound and continuum states} through its integral equa-
tion form. The same partition of space with spherical
boundaries is made as in the MT case, but higher mul-
tipoles of the potential are retained in the ASR's and
EMR, and the variation of potential in the IR is taken
into account. Details of the construction of a sufficiently
accurate representation of the potential are given else-
where. As usual one is led to a matrix secular equation,

SB=F

whose solution vector 8 determines coefficients in the ex-
pansions of the wave function. For continuum states the
appropriate boundary conditions are imposed via the in-
homogeneous part F. For bound states F is zero and so,
to obtain a nonzero B, the determinant of S (a function of
energy) must be zero. This only occurs for certain
discrete values of the energy and so the eigenvalues are
deterinined.

The most difficult computational task is the construc-
tion of the secular matrix S and, in the FP version of the
method, this difficulty is greatly compounded by the in-
crease in complexity. In the FP SW theory, the secular
matrix may be expressed as

S=t '+H+T .

Here t is a block-diagonal matrix whose individual blocks
are, within a numerical factor, the usual atomic t ma-
trices relative to the potentials in the ASR's (and the
analogous one for the EMR). (Note that these matrices
are, in principle, infinite dimensional and a truncation of
the partial-wave expansions is required to make them
finite. ) In the MT case, because of the spherical symme-
try of the ASR and EMR potentials, t is diagonal; howev-
er, in the FP case the higher multipole coinponents in
these potentials cause coupling of the difFerent radial
equations in the partial-wave expansions, so that ofF-

diagonal matrix elements appear in t. The "structure fac-
tors" (or "propagators") H depend only on the energy
and the interatomic vectors, and are the same for the FP
as for the MT case. The matrix T appears only in the FP
case and may be related to a t matrix for the IR potential.
In our implementation of the FP SW theory we make the
Born approximation for T, taking advantage of the rela-
tive weakness of the IR potential (which we further di-
minish by resetting the zero of energy to the average of
the potential over the IR). ' In this approximation the
matrix elements of T become two-center integrals over
the IR, which involve only the energy, the interatomic
vectors, and the IR potential.

III. NUMERICAL IMPLEMENTATION
AND TESTING STRATEGY

Our numerical implementation of the FP SW theory
consists in the development of two computer programs
ENESHX (a mnemonic for "energy eigenvalue search for
potentials represented as spherical harmonic expan-
sions") and CNTSHX ("continuum photoionization cross
sections for potentials"}, and some associated programs
which we do not discuss here. In broad outline they were
written following the basic pattern of the analogous pro-
grams of Smith and Johnson and Natoli, using as much
of their actual code as was still relevant for the FP case.
As in these MT programs use is made of molecular point
symmetry to reduce the size of the secular matrix.
Great efFort was made to develop programs of sufficient
generality to accommodate a wide variety of molecules
and to explore in some depth the nature and importance
of non-MT corrections. These large programs (roughly
4000 FORTRAN lines each) can be run on even small com-
puters (like the VAX and micro-VAX series) in reason-
able times (a few hours) for molecules with a central atom
and up to, say, three shells of (symmetry-equivalent)
coordinating atoms.

The essence of the non-MT corrections is contained in
the ofF-diagonal elements of t and in T. For each ASR
block (and the EMR block} of t the radial Schrodinger
equations are coupled and we use the matrix Numerov
method to solve them, using the asymptotic form of the
matrix solution at zero radius (for the ASR's) or infinite
radius (for the EMR) to start the integrations. From the
matrix solutions and their derivatives at the sphere radii
the individual blocks of t are readily calculated. For T
the crucial innovation is a flexible and accurate way of
calculating the IR integrals. The main difficulty here
stems from the awkward topology of the IR and the fact
that it varies from one molecule to another. Numerical
quadratures of Gaussian quality are, in general, not avail-
able for such regions. Instead our quadrature mesh for a
given molecule is a composite made from high-quality
meshes for spherical volumes. Firstly we use a large one
to integrate over the interior of the OS. Then small ones
are used to subtract off the integrals in the ASR's. The
spherical meshes that we use are products of normal
Gauss-Legendre (or Gauss-Jacobi) radial meshes with
spherical surface meshes from the book of Stroud. i3 For
the OS we use a large and very accurate surface mesh due
to Lebedev. The flexibility that we obtain in this way is
somewhat offset by another problem which then arises.
Because the integrands have singularities at the atomic
nuclei and would therefore upset the numerical quadra-
ture, we replace them within the ASR's by well-behaved
functions matched smoothly at the sphere boundaries
with the true integrands in the IR.

Our general strategy for the development and testing
of ENESHX and CNTSHX was as follows. First we wrote
ENESHX and used it to search for the eigenvalues of the
hydrogen molecular ion H2+. The bound-state part of
the FP SW theory is simpler than that for continuum
states, yet the latter is sufficiently similar that a lot of
CNTSHX could be adapted from the corresponding sec-
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tions of a well-tested ENESHX. The H2+ system provides
a particulary clean test of ENESHX by virtue of its non-
trivial two-center character, the absence of extraneous
physical considerations (like self-consistency or
exchange-correlation) and the existence of analytic solu-
tions with exact eigenvalues. CNTSHX was then written
and used to calculate the total cross sections for photo-
ionization of an already doubly ionized lithium atom
Li + for which exact values are also known. (The details
of how a single atom can give a suitable test of a molecu-
lar program are given below. )

To give more information about the nature of non-MT
corrections the programs were constructed to run in
three modes, corresponding to the successive introduc-
tion of the non-MT parts of the potential. The first,
denoted L =0, corresponds to the MT version of the po-
tential. The second, denoted +L &0, introduces the
higher multipole parts of the potential in the ASR's and
the EMR; while the third, denoted +IR, then introduces
the true nonconstant potential in the IR.

IV. BOUND STATES: THE H2 + TEST

We consider the hydrogen molecular ion in the Born-
Oppenheimer approximation for fixed proton separation
R. The protons are placed on the z axis at R/2 and—R /2, and each enclosed by a sphere of radius R /2 cen-
tered on its position. The whole molecule is enclosed by
an OS of radius R centered on the origin. We denote this
particular partition of space as A. The potential seen by
the electron (and also partition A) has point symmetry
D„I, with respect to the origin. From group theory we
know that an eigenfunction will transform according to a
particular irreducible representation (irrep) of the sym-
metry group and may be classified accordingly. We
search for the ten lowest eigenvalues of the system, which
occur in the four irreps A,g, A2„, E,g, and E,„, for
R =2 a.u. (the equilibrium value}.

To investigate the accuracy of the Born approximation
that we have used for the IR, we shall revive the idea of
Keller and run the program ENESHX for two further par-
titions, denoted B and C, which include first one then two
sets of interstitial empty spheres, respectively. Details of
all three partitions are given in Table I. 8' and P in
Table I stand for wave function and potential and head
columns indicating the maximum I value used in the
spherical harmonic expansions for these two cases.

In Table II we see the results of our test of ENESHX
with the hydrogen molecular ion. Considering first the
results of ENESHX for partition A we see that the succes-
sive introduction of the non-MT components of the po-
tential gives improved eigenvalues for all ten states.
(Note that the difFerences between the L =0 case and the
Smith and Johnson values result from our higher partial-
wave l,„'s.) Also the relative sizes of the efFects of the
higher multipole potential components in the ASR's and
EMR, and of the nonconstant IR potential, vary among
the states. Contrary to a conjecture of Pettifor the
greater part of the improvement in the la, (ground
state} level results from the better treatment of the IR po-
tential rather than the higher multipoles in the ASR and
EMR potentials. Looking at the 4az„ level we note that
the bulk of the electron density is in the EMR so that
even in the +L &0 mode the eigenvalue is exact, show-
ing that the integration of the coupled radial equations
for t is accurate. Hence we can say that the remaining er-
ror in, say, the la, level is due to the Born approxima-
tion for the IR. This is borne out by the further improve-
ments for the empty-sphere partitions B and C. In B we
have a ring of six empty spheres around the "equator" of
our earlier partition A, while in C another two rings of
six are added above and below the first ring. (The lower-
ing of point symmetry does not split the four irreps that
two are considering. } The transfer of some of the IR
volume into empty spheres that are treated like atoms (in
which the Born approximation is not made) does lead to

TABLE I. Summary of details of partitions used for H2 . For each one is given its point symmetry, with main symmetry axis tak-
en along the z axis. Details of the numbers, positions, and radii of spheres are given together with maximum I values used in potential
and wave-function partial-wave expansions, and resulting secular matrix dimensions for each irrep. Partitions are oriented with the
xz plane as mirror plane. For IR we show the number of mesh points for numerical quadratures to calculate T, together with the
amount of OS volume in the IR. Distances are in atomic units.

Molecular partition
Point symmetry

Group of equivalent
spheres used in partition

Numbers
of spheres

1 (OS)
2 (H)

6
12

Radii
(a.u. )

2
1

2/3
2/5

Prototype position
(x,y, z) (a.u. )

(0,0,0)
(0,0,1)
(4/3, 0,0)
(6/5, 2v'3/5, 4/5)

W
6
3
2
2

max

p
12
6
4
4

A
D„

B

+
+
+

C

Secular matrix dimension, by irrep Alg
A2u

E,g

13
9

10
13

19
15
19
22

Details of IR Number of integration mesh points
Percentage of OS volume

1830
75.0

2790
52.8

4710
43.2
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TABLE II. Comparison of the energy eigenvalues (in rydbergs) for H, + from ENESHX (for the three partitions and three program
modes) with those from the MT program ENERGY of Smith and Johnson (Ref. 3) and with the exact values calculated analytically
(Ref. 25).

State

la(
2a lg
3a )g

4a lg

la2„
2a2u

3a2u

4az„
le(g
le, „

ENERGY

Partition A

—2.0716
—0.707 38
—0.455 74
—0.348 59
—1.2868
—0.497 22
—0.269 79
—0.249 97
—0.44646
—0.888 66

—2.071 96
—0.704 12
—0.455 97
—0.348 73
—1.287 95
—0.497 52
—0.269 73
—0.249 94
—0.44646
—0.888 67

ENESHX

Partition A
+L &0

—2.10906
—0.707 69
—0.473 30
—0.351 23
—1.31151
—0.50696
—0.273 10
—0.253 29
—0.453 97
—0.865 14

—2.18973
—0.72093
—0.471 02
—0.355 25
—1.33426
—0.51085
—0.274 66
—0.253 29
—0.453 33
—0.855 85

Exact
eigenvalues

—2.205 25
—0.721 73
—0.471 55
—0.355 36
—1.335 07
—0.51083
—0.274 63
—0.253 29
—0.453 40
—0.857 55

State

la, g
2a lg
3a lg

4a, g

la2„
2a2g

l2u

4a2„
le)g
le, „

—2.073 76
—0.70426
—0.45621
—0.348 78
—1.283 85
—0.497 21
—0.269 82
—0.249 99
—0.446 10
—0.889 66

ENESHX

Partition B
+L &0

—2.136 16
—0.71198
—0.472 54
—0.352 47
—1.309 53
—0.507 03
—0.273 32
—0.253 32
—0.453 55
—0.863 63

+IR

—2.19780
—0.721 23
—0.471 30
—0.355 24
—1.33406
—0.51082
—0.27465
—0.253 29
—0.453 34
—0.85699

—2.073 76
—0.704 25
—0.45621
—0.348 78
—1.283 84
—0.497 21
—0.269 82
—0.249 99
—0.446 10
—0.889 69

ENESHX

Partition C
+L)0

—2.13987
—0.712 21
—0.472 44
—0.35249
—1.31165
—0.50745
—0.273 47
—0.253 31
—0.453 48
—0.863 53

+IR
—2.19847
—0.721 19
—0.471 31
—0.355 22
—1.33425
—0.51085
—0.274 65
—0.253 29
—0.453 35
—0.857 11

improved eigenvalues, particularly in the la, s case. As
before, far a fixed partition, we get general improvement
going from L =0 to +L & 0 to +IR. Between partitions
it is nat so uniform and the improvements are, in general,
fairly marginal. Clearly, with partition C, a point of di-
minishing returns has been reached.

V. CONTINUUM STATES
AND PHOTOIONI&A, TION: THE Li + TEST

Our main interest in the continuum states of a inole-
cule is for their application in calculations of core-level
photoionization in the context of x-ray-absorption near-
edge structure (XANES). cNTSHx was specially written
for this application and it is via the calculation af total
photoionization cross section as a function of energy
above threshold that we test the FB SW method for con-
tinuum states. Unfortunately, no analytic formula far the
continuum states of H2+ seems to exist. The only formu-
la that we know of is that for hydrogenlike ions, which
can be used to calculate cross sections. For technical
reasons we choose to consider photoionization from the
1s ground state of Li +.

Now this system consists of only one ion with a spheri-
cally symmetric potential which may be represented ex-
actly by a MT potential with no IR, and cross sections ar-
bitrarily close to the exact ones obtained. This would not
serve our purpose so we make instead a "pseudocluster"
in which the central ion (enclosed in a 4-a.u.-radius

sphere) is coordinated by six empty spheres (of radii 1.5
a.u. ) in an octahedral configuration and everything en-
closed in an OS of radius 7 a.u. In this way the MT ap-
proximation is not so good and we might expect to see
diferences as the non-MT potential components are in-
troduced. In Fig. 1 we see the cNTsHx results for this
system.

Firstly, we see that the +L &0 mode gives only slight
improvement over the L =0 mode (MT case). This is be-
cause higher potential multipole components exist only in
the empty spheres whose volume is small in comparison
with the IR. The inclusion of the influence of the non-
constant IR potential produces the main improvement;
and above I Ry the residual error is reduced to less than
1%. Below 1 Ry it seems reasonable to attribute the er-
ror of up to 5%%uo to the Born approximation.

VI. DISCUSSIGN

Our results indicate that the FP S% theory is funda-
mentally valid and that our numerical implementation is
accurate (and the programs correctly coded). Further-
more, the size of cluster represented (in efFect) by parti-
tion C for H2+ shows that a useful range of molecular
types and sizes is accessible even with modest computing
resources. It is nevertheless clear that more testing
should be done to widen our understanding of the nature
and relative importance of non-MT corrections in a
variety of circumstances. More, in fact, may be made of
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FIG. 1. Comparison (as ratios) of cNTsHx photoionization cross sections for Li + (for three program modes) with exact analytic
values (inset). The solid line represents +IR, the dotted-dashed line L =0, and the dashed line +L & 0.

our present tests. In particular, it would be interesting to
have a close look at the effects of non-MT corrections on
the spatial variation of wave functions, especially since a
lot of important physical quantities are related to matrix
elements which involve the wave functions.

At this point we are ready to proceed to calculations
for more interesting physical systems. In a subsequent
paper we intend to present FP SW results for the Cr I{.-

edge XANES of the model compound chromium hexa-
carbonyl Cr(CO)s. For this molecule the MT approxima-
tion is particularly bad and non-MT corrections
significant. This system is a useful analog, at least from
the standpoint of XANES, for important systems such as
metal centers in enzymes or some industrial catalysts. In
these cases we have no analytic solutions available and
the ultimate test is the experimental spectrum. Now,

however, there are other physical processes in operation
and it is only by separating out the errors due to the ab-
sence of non-MT corrections, as we now can, that we
may confidently investigate those due to other
deficiencies of the physical model.
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