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We present a density-functional theory, based on the smoothed density approximation, to study

systems of hard rods with full translational and orientational freedom. For hard spherocylinders,

we find both the nematic-isotropic and the nematic —smectic-A transition in a wide range of length-

to-width ratios (L+D)/D. We locate the tricritical point for the nematic —smectic-A transition

and also make some predictions about the nematic-smectic-A -smectic-8 point. Finally, we calcu-

late the nematic elastic constants. The predictions of our theory are compared with the results of
computer simulations and other theories. We also make some comments about application of the

theory to systems of hard ellipsoids of revolution and hard cylinders.

I. INTRODUCTION

Recently there has been a revival of interest in systems
of hard rods, i.e., anisotropic particles of uniaxial symme-
try interacting only via hard-core repulsion. Many years
ago it was shown by Onsager' that very long hard sphero-
cylinders exhibit the nematic-isotropic (N-I) transition at
vanishingly small densities. This means that the
excluded-volume effects alone can explain orientational
ordering of hard rods. On the other hand, it has been be-
lieved for a long time that formation of other liquid-
crystalline phases, like smectics, cannot occur without at-
tractive forces or flexible chains. Therefore hard rods
have not been, in general, considered as a good reference
system to study liquid crystals, even though it is well es-
tablished that the short-range repulsive forces almost
completely determine the structure of simple liquids.

At present the role of the excluded-volume effects in
the formation of mesophases seems to be more appreciat-
ed. This is mainly due to the results of computer simula-
tions carried out for hard cylinders, hard sphero-
cylinders, and hard ellipsoids of revolution. They
provide evidence that these systems exhibit a rich variety
of phase transitions observed in real liquid crystals.
These results were a stimulus to new theoretical investiga-
tions as the existing theories of dense systems of hard
rods, such as the scaled particle theory ' or the y expan-
sion, ' were not capable of reproducing rather compli-
cated phase diagrams. Most of the present theories can
be classified as density-functional theories (DFT), i.e.,
they treat the free energy of the system as a functional of
the one-particle distribution function. In most cases they
have been applied either to the N-I transition ' ' ' or to
systems of parallel hard rods' "' ' (see, however, Refs.
7 and 12).

Recently we have formulated a DFT for hard sphero-
cylinders with full translational and orientational free-
dom, ' in the spirit of the smoothed density approxima-
tion (SDA). Our theory predicts both the N-I and
N —Sm-A transitions in good agreement with the results
of computer simulations. It also provides some hints

about the onset of the hexagonal order in smectic layers.
As its formulation is rather general, the theory has also
been applied to the N-I transition for hard cylinders and
hard ellipsoids of revolution, and also, after some
modifications, to the N-Sm-A transition for hard paral-
lel spherocylinders. '

The aim of this paper is to give more details of the cal-
culations not presented in Ref. 14 and also to test our
theory in the case of the nematic elastic constants, for
which computer simulations also exist. '

The general theory for systems of hard rods with full
translational and orientational freedom is presented in
Sec. II. In Secs. III and IV we apply the theory to the
N Iand N -Sm-A tran—sitions for hard spherocylinders
and also speculate about the nematic-smectic-
A —smectic-B (N —Sm-A —Sm-B) point. In Sec. V we cal-
culate the nematic elastic constants for hard sphero-
cylinders and Sec. VI is devoted to the discussion.

II. SMOOTHED DENSITY APPROXIMATION
FOR HARD RODS

The smoothed density approximation in its original
form is a DFT of an inhomogeneous hard-sphere
fluid. It takes advantage of local thermodynamics
but also retains the nonlocal character of the exact free-
energy functional. This is achieved by introducing an
auxiliary "smoothed density, "which is obtained from the
physical density by some weighting procedure. The free-
energy functional is constructed in such a way that for a
homogeneous fluid it becomes exact and also generates
the exact direct correlation function. The key quantity of
the SDA, the weight function, is expressed in terms of the
direct correlation function for a homogeneous fluid. The
SDA gives very good results both for the freezing of hard
spheres and for the hard-sphere fluid near a hard wall.

Of course, the way of extension of the SDA to systems
of hard rods is not unique. ' Even for hard spheres the
free-energy functional is somewhat arbitrary. To proceed
in the spirit of the SDA, we refer to the local thermo-
dynamics of a homogeneous and isotropic fluid of hard
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rods and define the free-energy functional as follows:

F[p'"]=Fd[p"']+fp(r)bg(p(r))dr, (2.1)

where p'"(r, co) is the one-particle distribution function
depending on the position vector r and the orientation co',

p(r) andP(r) are the physical and smoothed densities, re-
spectively, and b,f is the excess free energy per particle of
the reference fluid. The ideal-gas contribution to F is
given by

Fo[p"']=ksTfp'"(r, co)[in[A p'"(r, co)]—1jdrdco,

(2.2}

where 1/k~T is the Boltzmann factor and A is the
thermal de Broglie wavelength. The first nontrivial step
beyond the SDA for simple fluids is the relation between

P and p'". We use the following expression:

p(r) =fw(r r', co, co—',p(r))f (r, co)f (r', co')p(r')

w(r —r', co, co') = —f2(r —r', co,co')/(2B2)

together with

(2.7)

isotropic hard bodies is not known, although there exist
some numerical solutions for hard ellipsoids and sphero-
cylinders obtained from the hypernetted chain or
Percus-Yevich approximations. The best we could do
in this situation would be to approximate c' ' for hard
rods using c' ' for hard spheres. The most popular ap-
proximation of this kind is the Pynn-Wulf approxima-
tion. However, this route is not very practical because
none of such approximations is reliable enough to justify
the great effort put into the calculation of the weight
function via c' '. Therefore, instead of making approxi-
mations on the level of c' ', we approximate the weight
function itself. As a hint we have the Onsager limit of
infinitely elongated hard rods. This limit is recovered if
we assume that

Xdr'dcodco', (2.3) b $(p)/k13 T =pB3+ [b,Q (r))!k~T —4g] . (2.8)

where f (r, co)=p' "(r,co)/p(r) is the angular distribution,
p(r) = fp"'(r, co}dco, and w is the weight function satisfy-

ing the normalization condition

1
w (r, co, co',p}dr dco dco'=1 .

(4n )
(2.4)

For the isotropic fluid f= I/4m. The range of w should
be related to the range of interactions. To mimic the
effective reduction of interactions caused by a local orien-
tational order, the weight function is averaged with the
angular distribution. Thus

w,s{r,r', p(r), [f])
=fw(r r', co, co';p(r—)}f(r, co)f (r', co')dcodco' (2.5)

can be understood as an effective weight function. Using
(2.5) in (2.3) we recover the relation between p and p as-
sumed in the SDA for simple fluids, i.e.,

p(r) =fw, tr{r —r'; p(r) }p(r')dr' . (2.6)

To maintain the analogy to the SDA for simple fluids,
we should calculate w via the direct correlation function
c' ' for a homogeneous and isotropic fluid of hard rods.
Unfortunately, any tractable analytic form of c' ' for an-

Here fz is the Mayer function for hard rods,

B~z = ff2(r, co, co')dr dco dco'1

2(4n }
(2.9)

is the second virial coeScient for a homogeneous and iso-
tropic fluid of hard rods, hP (g) is the Carnahan-
Starling expression for hard spheres, g=pvo, and vo is
the volume of the hard rod. It is easy to check that this
choice gives the proper low-density limit for F[p"']. Our
weight function is analogous to that used by Tarazona in
his first formulation of the SDA. Its main drawback is
that it does not depend on the density. However, w, ff

does depend on p for orientationally ordered phases due
to its dependence on the angular distribution. Therefore
we expect our theory to work better if the onset of a
translational order occurs in an orientationally ordered
system. In other words, it should describe the N-Sm-A
transition better than the I—Sm-A transition. This is re-
lated to the fact that in the limit of hard spheres the
weight function given by Eq. (2.7) is too simple and leads
to some unphysical results. ' We return to this point in
the discussion.

Equations (2.1)—(2.9) completely determine F as a func-
tional of p"', thus we can express c' ' in terms of p'", w,
and hg. For w independent of p, it has the following
form:

—k Tc'~'(r„r, co„co&)= g b,p'{p(r;))w(r, rz, co„co&)+—b,g"{p(r;))hp "(r;,co;)fw(rf r2 3—,.| )f ( jy

i =1,2

+&g"(p(r|) )bp
"'(r ~, co|)&p ' "(r2,co&)&(r

~

—r2) /p(r
&

)

+fp(r)hg"{p(r))w(r, —r, co„co)w(r2 r, co2, co')f (r, co)f (r, c—o')drdcodco', (2.10)
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where

bp'"(r, ~)=P'"(r, co) —P(r),
p"'(r, co) = f w (r r—', co, co')p' "(r',co')dr'dco',

and hg', b,g" denote, respectively, the first and second
derivative with respect to p. The term with the Dirac 5
function results from the fact that p is not a functional of
p"' alone but depends functionally on both p and f. The
appearance of this term is certainly a drawback of the
theory. We note, however, that it vanishes in the isotro-

pic phase and also that it contributes neither to the
nematic structure factor nor to the elastic constants.

III. NEMATIC-ISOTROPIC TRANSITION

To study the N-I transition it is useful to have some in-
formation about the limit of stability of the isotropic
phase with respect to the nematic perturbations. In gen-
eral, the stability condition for Eat a given stationary dis-
tribution p'"(r, co), i.e., at which 5F[p'"]=0, can be ex-
pressed as follows:

5 F[P ] [5P (r co)l ]2]d r dco — c (r],r2, co],co2)5p (r„co])5p (r2, co2)d r]d r2dco ]d co2 & 0, (3.1)T p(l)(r )
where 5p"' is an arbitrary perturbation. In practice, we usually study the stability of a given solution with respect to
perturbations of a particular symmetry. In the case of the nematic perturbations we have

5p"'=p g f]P](cose)
1=2,4, . . .

(3.2)

where P] denotes the 1th Legendre polynomial. Referring Eqs. (2.3) and (2.10) to the isotropic phase we find that p=p,
bp

'"=0, and the direct correlation function is given by

—1 1
cI (r]2 col co2) =

k
2b f'(p)w (r]2, co],co2)+

2 phd" (p )f w (r, 2 r3, co—„co3)w (r3, co2, co4)dr3dco3dco4
8 (4m )

(3.3)

Constant perturbations, 5p"'=const, lead to the mechanical stability condition. Combining Eqs. (3.1) and (3.3) we get

5 P[p/4m]=(4m )
BT 8 , 1 ap+ [Pb, l((P )] =(4~)—
p c)p p ~p

(3.4)

where p is the pressure. The condition c)p/c)p&0 is satisfied because of our choice of hf. Substituting Eqs. (3.2) and
(3.3) into Eq. (3.1) we find the stability condition for the isotropic phase with respect to the nematic perturbations:

(4~)' 2pb, g'(p)
p g f] + w(r]2, co],co2)P](co])P](co2)dr»dco]dco2 &0 .

The bifurcation density pr &, i.e., the smallest density at which the stability of the isotropic phase is lost, is obtained for
5P"' ~ P2(co); thus we have the following exPression for Pz ]v.

Pi-]v ~4 (Pl-x ) 51+
2

w (r]2, co],co2)P2(co] )P2(co2)dr]2d co]1co2= 0 .
(4m )

(3.6)

For hard spherocylinders of length L +a and diameter
D, Eq. (3.6) transforms into

1 — =0,PI x~4'(PI x) ~L'D
1682

(3.7)

where Bz =mD L+ ', nD + ,'nDL . Fr—om Eq.—(3.7) we
obtain pl]v as a function of L/D. For L/D =0.287,
pr &vo =0.784 and is equal to the close-packing density

pcpuo = 6'(3L/D +2)/(&3L—/D+&2) .

This value of L/D can be considered as the minimal ani-
stropy of the spherocylinder at which the bifurcation still
occurs. For comparison, in the low-density approxima-
tion, the minimal anisotropy is L/D =5.115, which cor-

+b,g(p) .

We use trial functions of the Maier-Saupe form:

exp[aP2(co)]
f(co)= f exp[ap2(co')]dco'

(3.8)

(3.9)

and minimize tP with respect to a to find the isotropic
and nematic solutions. Using Eqs. (2.3) and (2.7) we ob-

resPonds to Ps-w vo =Pcpvo =0.884.
To locate the N-I transition, we consider the free ener-

gy per particle, g, as a functional of the angular distribu-
tion, i.e.,

g[f]=kB T f in[4m f (co)]f(co)dco+ln(A p/4m) 1—
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tain the following relation between p and p:

p= f Vo(co, co')f (co)f (co')dcodco',
2B

(3.10}

0.70

VO

0.45—

where Vo(cu, co') is the excluded volume. For hard
spherocylinders, we find the N-I transition in the range
2.46&L/D & oo, while for L/D &2.46 a direct isotropic
to smectic- A transition is expected. The orientational or-
der parameter Q = (P2 ) at the N-I transition varies from
0.56 for L /D =2.46 to 0.80 for L/D = ao. For the den-
sity jump 4P=2(p~ pl)/—(p~+pl) we find 4P=0.050
for L/D =2.46 and 4P=0.243 for L/D =ao. Thus Q
and 4P tend to the Onsager limit for L /D ~~, although
this limit is approached rather slowly. The lines of the
N-I and N —Sm-A transitions are shown in Fig. 1 and the
comparison with computer simulations is presented in
Sec. IV.

We have also performed calculations for hard cylinders
and hard ellipsoids of revolution. Both for hard
spherocylinders and cylinders there exist, due to On-
sager, ' exact expressions for the excluded volume Vo. In
the case of hard ellipsoids, calculations are more diScult
as Vo cannot be expressed in an analytic form. We have
used the algorithm proposed by Perram and Wertheim
to calculate the distance of closest approach for two ellip-
soids. A detailed comparison of the N-I transition for
hard cylinders, spherocylinders, and ellipsoids of revolu-
tion is presented in Ref. 20. Here we only note that ellip-
soids and spherocylinders give qualitatively similar re-
sults. Both systems exhibit a minimal anisotropy below
which the isotropic phase is stable with respect to the
nematic perturbations; for oblate ellipsoids this corre-
sponds to the axial ratio o1/oj 1.35. In the case of
hard cylinders, the N-I transition persists in the whole
range of elongations. For moderate elongations the tran-
sition is much more strongly first order in the case of
cylinders than in the case of spherocylinders or ellipsoids.
When elongations tend to infinity, we recover the On-

sager limit for all three systems.
Finally, we note that our results for hard ellipsoids are

in agreement both with computer simulations and other
theories. ' ' For the axial ratio crl/cree=3, we obtain

Q =0.49, pi UO =0.454 (0.507), p&UO
=0.474 (0.517),

4p=0. 043 (0.019},and for the pressure, puo/kz T =4.68
(9.79), where the numbers in parentheses correspond to
Ref. 4.

IV. NEMATIC-SMECTIC- A TRANSITION

It is known from computer simulations '3 and also
from theoretical studies' ""' ' that the system of
hard parallel spherocylinders undergoes a second-order
N -Sm- A transition. In this section we study hard
spherocylinders with full translational and orientational
freedom. Because of the coupling between translational
and orientational order, a first-order N-Sm-A transition
is also possible. However, if the transition occurs at a
large value of the orientational order parameter, it should
be continuous as for parallel spherocylinders. Therefore
it is useful to study the stability limit of the nematic
phase with respect to the smectic-A perturbations:

5p'"(r, co)=f(a))5p(z)=f(co) g p„cos(kz), (4.1)
n=1

where p„ is the nth smectic-A order parameter, d is the
periodicity of the density wave, and k =2m/d Th. e s.ta-
bility condition (3.1} can be expressed in terms of the
nematic structure factor S~(k) which we define as fol-
lows:

SN '( k ) = 1 p f e '"'cN—' '( r, m, co' )f ( ap )f ( co')d r d r0 d co',

(4.2)

where k=kn is a wave vector parallel to the nematic
director n and c~ ' is the nematic direct correlation func-
tion. Using the general expression (2.10}specified to the
nematic phase, we find S~(k) in terms of the weight func-
tion w and the excess free energy 4', i.e.,

SN 'k'='+ ~24&'(P)wN«)+P44 (P)w@k)] .
g T

(4.3)

Here

w~(k)= f e'"'w(r, co, co')f (co)f (m')drdcodco', (4.4}

o.zo
0 10

FIG. 1. Phase diagram for hard spherocylinders in the L/D-
p plane; the shaded area corresponds to the N-I two-phase re-
gion. The dot denotes the tricritical point for the X—Sm-A
transition, the triangles denote the results of computer simula-
tions (Ref. 6) for L/D =5 and the crosses correspond to
p& sm & s~ & and psm „s z (see text).

and we have used the fact that f 4p "'(~}f(~)d~=0.
The nematic is stable with respect to the smectic-A

perturbations if SN (k) )0 for all k. The loss of stability
is given by the condition S& (k) =0 and the smallest den-
sity p(k) satisfying this condition is the bifurcation densi-
ty pz s „.To find how the smectic-A solution branches
off from the nematic solution, we have to express the free
energy per particle in terms of the smectic order parame-
ters. Using Eqs. (2.1)—(2.3) we find
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P=F/N=k~T in(A p/4m ) 1—+f In[4m f (co)]f(co)des+ f P(g)in/(g)dg + f $(g)hf(pg(gk, a))dg,
2K 0 277 0

where

(4.5)

p'"(z, co)=pf (co) 1+ g p„cos(nkz) =pf (co)P(kz),
n=1

(4.6)

P(g;k, a)=w~(0;a)+ g w~(nk;a)p„cos(ng),
n=1

(4.7)

and a corresponds to the parametrization of the Maier-Saupe angular distribution [see Eq. (3.9)].
To determine the order of the transition, it is sufficient to leave only p, and pz in the expansion (4.6), because p„=e

(Ref. 11) and we want to expand f up to e . To facilitate the calculations, we first expand P in p& and p2 up to the
fourth order, which gives

1 8 2 1 a 2 1 a 2 1 a
Bp', , ' 2 Bp,', 2 Bp', Bp, , 4! Bp',

(4.8)

where the ( )p corresponds to p, =p2=0 and we have in-
cluded only the leading terms. A11 coefKicients in Eq.
(4.8) are functions of p, a, and k. The loss of stability of
the nematic phase occurs at p=pz sm „, a=aN sm „,
k =kg s „when (3 g/Bp, )p=0, which is equivalent to
Eq. (4.3). We use the following parametrization in the
neighborhood of the bifurcation point: p& =e, p2= —,'pz'e,

k =kg s „+k'e+—,'k "e . The last three coefficients in

Eq. (4.8) couple to e, thus they can be taken at e=O.
The minimization of g with respect to p2 gives the rela-
tion between p2 and p„and g can now be expressed in
terms of E, a, k, and p as follows:

g=gp(p, a)+ — e + —,a'ez 1 ~ 4 (4.9)
2 Qpf 4!

where

Ba ~& ~p BpfBa
=0, (4.13)

Q3f

BP,Ba
(4.14)

ap', ak ap apzak aa

To calculate p', p",a', a", and k', k", we have to
differentiate Eqs. (4.10)—(4.12) with respect to e at e=O.
In zeroth order we obtain (Bg/Ba)'=0; the first and
second derivative give, respectively, the bifurcation con-
dition, (8 g/Bpf)'=0, and (8 1(/BpfBk)'=0. The final
result is as follows: p'=a'=k'=0 and

~pf~p2

42
g2@

'
g4@+

~pz ~P& 4
+ k"=0 . (4.15)

Bp Bk

e+ —'a'e =0
~pl ~p]

(4.10)

and the asterisk means that the derivatives are taken at
the bifurcation point e=O. Minimizing 1( with respect to
p&

=e, a, and k we obtain To find the difference between free energies for the
smectic-A and nematic solutions, b, 1(s „z,we subtract

Pp(a~(p },p) from f; az(p) is determined by the
condition B!(tp/Ra =0, which gives

Ba Ba o 2 Qp&Qa
(4.11)

2,A

a~(e) =
—,'aIve = —

—,'p"
Ba Bp

(4.16)
Ba

T

ak 2 ap'ak. ' (4.12} Using Eq. (4.9) and Eqs. (4.13)—(4.16) we arrive at the fol-
lowing expressions for hPs „N and p":
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K

10

0.40 0, 45
I

0.50

K

K
2

0.55

FIG. 6. Elastic constants vs density for L /D =5.

translate p, into a three-dimensional density, we use the
following expression:

K

ps "O
pVO d

'2
D L 2 D=p m ——1+——
2 d 3 L

(4.19)

0. 3 p4 0.5
Vo

I

0.6 0.7

FIG. 7. Elastic constants vs density for L/D =10.

Substituting in Eq. (4.19) p=pz sm „(L/D) and

p, =p, , we find that the equation is satisfied for
L/D -=6 and p~ s „UO-=0.55, d/L —= 1.39, and
Q=-0.91. We can also use Eq. (4.19) to estimate the den-
sity ps „s ii at which, for a given value of L/D, the
onset of the hexagonal ordering in smectic layers can be
expected. In this case we simply take p, =p, and ap-
proximate d =d(L/D) by the value obtained for the
N Sm- A bifur—cation (see Fig. 3), to find that

ps g s a=0 56atL/D=5.
In Fig. 1 we present the isotropic pr and the nematic

pz densities at the N-I transition and p& s „at the
N-Sm-A bifurcation, for L/D between 2.46 and 10. The
densities p~ and p~ s „have the same value at
L/D =2.46. Because the first-order N Sm-A transitio—n
occurs at a nematic density smaller than the bifurcation
density, the N I Sm-A triple -po—int should be at L/D

slightly above 2.46. The tricritical point for the N-Sm-
A transition occurs at L/D =2.99. The cross on the
line of the continuous N-Sm-A transition denotes the
N Sm-A —Sm-—8 point and the other cross, at L/D =5,
denotes the density at which the onset of the smectic-8
ordering should occur. The triangles show, in increasing
sequence, the densities pi, pz sm z, and psm z sm& ob-
tained from computer simulations for L/D =5. In Fig.
2 we plot Q versus L/D at the N-I transition and the
N-Sm-A bifurcation, and the periodicity of the smectic-
A at the N Sm Abifurca—tion -versus L/D is plotted in

Fig. 3. We note that the sharp decrease of d occurs for
L/D below the tricritical point; thus it does not corre-
spond to the N —Sm- A transition, which is first order, but
only to the N-Sm-A bifurcation. The comparison with
the computer simulations for L/D =5 (Ref. 6) is as fol-
lows.

TABLE I. Elastic constants for hard spherocylinders with L/D =5 at two densities. For compar-
ison, the results obtained from the computer simulations and theory of Sin-Doo Lee are presented.

Source

Reference 31'

Reference 43

Present work

I ~Pep

0.500
0.569

0.482
0.566

0.500
0.569

0.73
0.91

0.729
0.905

0.728
0.849

0.83+0.11
4.64+0.26

1.322
2.985

0.513
0.907

0.59+0.03
2.25+0.09

0.441
0.995

0.239
0.430

1.10+0.05
1.51+0.14

6.447
38.67

1.526
3.705

'All values of the elastic constants in Ref. 31 should be multiplied by 4 ERef. 44); we present the
corrected numbers.
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(1} The N-I transition: Q =0.59 (0 3.), pIU0=0. 3&

(0.40), p&U0=0. 41.
(2) The N S—m A-transition, Q =0.88 (0.9), pz s~ „=0.53 (0.53), d /L = 1.40 (1.35).
(3}psm A-s-m-B =0.56 (0.57).

The numbers in parentheses have been taken from Ref. 6.
Finally, we calculate the average deviation of the

spherocylinder from the ideal alignment, de6ned as
x =L (sin8), along the line of the continuous N Sm-—A
transition. We find that x /D varies from 1.26 for
L/D =4 to 1.32 for L/D =10, thus it is almost constant
at the N Sm-A—transition. This means that x/D must
be sufficiently small for the N-Sm-A transition to occur.
Therefore Q at the transition increases with L/D and is
close to unity for long spherocylinders. However, in the
absence of external ordering fields, a high degree of align-

ment can be achieved only by the increase of the density,
which explains why p~ s „ increases with L/D.

V. NEMATIC ELASTIC CONSTANTS

The nematic elastic constants, or Frank elastic con-
stants, appear in the free energy of deformation Fd of the
nematic liquid crystal. Fd can be expressed in terms of
three invariants involving gradients of the nematic direc-
tor field n(r) as follows:

Fd= —,
'

K& divn +K2 n rotn +K3 nXrotn r,
(5.1)

where K&,K2,K3 are the elastic constants corresponding
to the "splay, " "twist, " and "bend" deformations, respec-
tively. To calculate the elastic constants for the SDA, we
use the microscopic expressions derived in Ref. 40, i.e.,

K& = ——2k~Tp fx cz'(r, to„ro~ko, „co2„f'(cos8,)f'(cos82)dr dog, dc@2,

K2 2k~&p fx c~ (r ce, co2ko,ya)2y f (cos8, )f (cos82)dr de), da)2

K3 —
—,
' k~ Tp' z'c~ ' r, co~, c'o2 ~~„~2„' cos

~

' cos 2 r co, m2

(5.2)

(5.3)

(5.4)

where the z axis is parallel to the nematic director,
ro; =(sin8;cosP;, sin8;sing;, cos8;), i =1,2, and f' denotes
the derivative of the angular distribution. Using Eq.
(2.10) we find that cz '= 2hP'(p)m/—ka T +(other
terms}. Because of the selection rules, these other terms
do not contribute to the elastic constants. Thus, for a
given f, the SDA gives the same proportions between the
elastic constants as the low-density approximation

(2)c„=-f,.
We have carried out calculations of the elastic con-

stants for hard spherocylinders with L /D =3, 5, and 10,
using the Maier-Saupe form of f (cos8). The dependence
of the nematic order parameter on the density, in the
range of densities between the N-I and the N-SI.-A
transitions, is shown in Fig. 4. The triangles denote the
results of the computer simulations ' for L /D = 5 and for
p/pep=0. 45, 0.5, and 0.569 where pcpU0=0. 8835 is the
close-packing density. In our theory the density
p=0.45pcp is slightly below the nematic density at the
N-I transition. In Figs. 5 —7 we present the dimensionless
elastic constants K;*=K,D/kz T as functions of the den-
sity, for L/D =3,5, 10, respectively. The range of the
densities is the same as in Fig. 4.

Recently there have been several papers concerning the
density-functional approach to the nematic elastic con-
stants. ' In Table I we compare our results for hard
spherocylinders with the computer simulations of Allen
and Frenkel ' and also with the theory of Sin-Doo Lee.
In the case of p/pep=0. 5 the agreement of our theory
with the simulations is reasonably good. For
p/pep=0. 569, our K, and K2 are too small but we note
that also Q is smaller than in the simulations. Both

theories overestimate the value of K3, although our re-
sults are closer to the results of simulations. However,
the results of simulations for K3 are the least certain as it
is pointed out in Ref. 31.

VI. DISCUSSION

We have presented a density-functional theory that is a
simple extension of the smoothed density approximation
to systems of anisotropic hard bodies. The theory has
been applied to hard spherocylinders with full transla-
tional and orientational freedom and tested in the follow-
ing three cases: (1) the nematic-isotropic transition, (2)
the nernatic —smectic-A transition, and (3) the nematic
elastic constants. In all cases we obtain qualitatively
correct results. Also the quantitative agreement with
available computer simulations is reasonably good. For
sufficiently anisotropic spherocylinders our theory pre-
dicts both the N-I and N —Sm-A transitions. The former
is always a first-order transition, whereas the latter can be
either first or second order depending on the ratio L/D.
For less anisotropic spherocylinders a direct I—Sm-A
transition should occur but this has not been studied nu-
merically. There are also some indications that our
theory should predict the Sm-A —Sm-B transition. We
have roughly estimated the location of the N —Sm-
A —Sm-B point and the location of the Sm-A —Sm-B
transition for L/D =5. The latter compares well with
the result of the computer simulations.

It is interesting to compare the simulations for parallel
spherocylinders with the simulations for freely rotating
spherocylinders. In the former case a first-order
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smectic-3-columnar transition is found, while in the
latter, there are indications that the Sm-A —Sm-8 transi-
tion occurs. In both cases, for L/D =S, the density of
the smectic-A at the transition is around 61 —65%%uo of the
close-packing density. To have some idea how the full

phase diagram for freely rotating spherocylinders may
1ook, we superimpose the line of the N —Sm-A transition,
obtained from our theory, on the phase diagram for
parallel spherocylinders, obtained from the simulations.
This line crosses the two-phase region for the smectic-A-
columnar transition. This suggests two possible
scenarios.

(1) The line of the N —Sm-A transition terminates at
this two-phase region but instead of the columnar phase
we rather expect the smectic-8 phase.

(2) The line of the N Sm-A —transition has its "echo"
on the other side of this two-phase region, which
separates the low-density columnar phase from the high-
density smectic-B phase. In this case we would have the
following transitions: N~Sm-A —+Sm-B for L/D &6,
N ~Sm-B for 6 & L /D & (L /D )„„and N ~columnar
~Sm Bfor (L/-D)„i &L/D, where (L/D)„, denotes the
lower bound of the region in which the columnar phase
would exist.

Whether one of these pictures is correct cannot be
answered until more computer simulations, especially for
L/D )6, are available. However, some hints can be pro-
vided by studies of phase transitions in dispersions of rod-
like colloidal particles.

The main drawback of the theory is that it is rather
limited to sufBciently anisotropic spherocylinders for the
following reasons. Our theory is based on the low-density
approximation for the weight function, which is well

justified in the limit of L/D~ ~. However, in the oppo-
site hard-sphere limit (L/D =0) this approximation is
rather poor and results in a divergence of the structure
factor S(lt) before crystallization of hard spheres. ' The
remedy for this would be the addition to our weight func-
tion of the density-dependent part of the weight function

for hard spheres, i.e., Aw "s=wHs(r, p) —3fzHs(r)/(4~03),
in the form given by Tarazona or Curtin and Ash-
croft. We believe that the unphysical predictions of the
theory for small L /D do not influence our results for the
N Sm—At-ransition, which occurs for L /D ))1. This is
because the rotational symmetry of the system has al-
ready been broken and the translational order appears in
the system of aligned spherocylinders. On a more techni-
cal level, this means that the effective weight function de-
pends on the density through the angular distribution.

In the case of the nematic elastic constants, the agree-
ment of our theory with computer simulations is worse
than in the case of the N-I and N-Sm-A phase transi-
tions. This is not surprising because the elastic constants
are rather sensitive to the details of the direct correlation
function and also the angular distribution. ' There is
also another factor which may be important, namely, the
symmetry of e' '. Usually it is assumed that c' ' has the
full rotational symmetry even in the nematic phase. The
proper nematic symmetry of c' ' can be taken into ac-
count by the inclusion of higher-order direct correlation
functions for the isotropic phase. Our free-energy func-
tional does generate an anisotropic c' ' but this anisotro-

py does not appear in the final expressions for K, , which
is also a drawback of our theory.

Finally, we note that our version of the SDA applied to
the N-I transition resembles the modified weighted-
density approximation (MWDA), formulated recently by
Denton and Ashcroft for nonuniform simple liquids.

We conclude that density-functional theories based on
the SDA give promising results also in the case of hard
anisotropic bodies, even though a more formal
justification of the SDA both for hard spheres and hard
rods is necessary.
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