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We report high-resolution ac-mirocalorimetry and birefringence measurements near the
nematic-smectic- A (1V—Sm- A) transition in a weakly polar very wide nematic range

(T& s A/T&i=0. 768) liquid-crystal compound 4-n-pentyl-cyclohexyl-4-n-butyl-cyclohexyl ben-

zoate (Merck S-1223). The data show a very weak anomaly at the transition with a= a,&-0.2. The

very wide nematic range notwithstanding, birefringence data show coupling between the nematic
and sematic-A order parameters, which can explain a,&)0. However, the presence of an underly-

ing discontinuity in C~ at T, suggests that a,m & 0 may alternatively be due to evolution from classi-

cal mean-field behavior with Gaussian fluctuation corrections to asymptotic critical behavior, a
scenario that is shown to be consistent with the Ginzburg criterion.

I. INTRODUCTION

The nematic —smectic- A (N —Sm- A) phase transition
has remained an unsolved problem in critical phenomena
for fifteen years. Interest was first sparked by mean-field
theories of the smectic- A liquid crystal due to
Kobayashi' and McMillan (KM) and increased dramati-
cally when de Gennes introduced a Ginzburg-Landau
(DGL) theory which revealed striking analogies between
the smectic- A and the superfluid He and superconductor
problems. As anticipated by de Gennes, the analogies are
imperfect due to a Landau-Peierls instability of the
smectic density wave, subsequently predicted and ob-
served by X-ray line-shape experiments.

X-ray, light scattering ' and magnetic deforma-
tion' measurements of critical exponents are in strong
disagreement with all theoretical predictions that have
been put forward on the basis of various treatments of the
DGL theory, including defect loop unbinding" ' mod-
els. These predictions include isotropic inverted three-
dimensional (3D) XY behavior (vi~ =vi- —', ) (Refs. 12 and

15—17), isotropic superconductor critical behavior, which
may be inverted 3D XY-like for type-II superconduc-
tors, " and highly anisotropic critical behavior (2vi=vii)
(Refs. 11 and 13). vii and vi are the correlation length ex-
ponents for smectic correlations parallel and perpendicu-
lar to the symmetry axis, respectively. A11 experiments to
date (see Refs. 7—10, and references therein) have found
weakly anisotropic exponents (vi~

—vj -0.1 —0.2), in clear
disagreement with theory.

Curiously, heat-capacity experiments are in quite good
agreement' ' with the usual (noninverted} 3D XY pre-
diction except when tricritical fluctuations are believed
to be present' ' ' (as in all but the widest nematic range
materials) or where the potential for other forms of mul-
ticriticality exist.

The central empirical point about N-Sm-A tricriticali-
ty is that in a wide variety of materials wide nematic
ranges imply continuous N-Sm-A transition and weak
nematic order parameter anomalies (e.g. , birefringence
anomalies's}, whereas narrow nematic ranges imply
discontinuous (first order in the Ehrenfest sense) N —Sm-
A transitions and strong, discontinuous nematic order
parameter anomalies. These observations establish the
qualitative validity of KM mean-field theories. ' The
mean-field theories of KM are quite successful in predict-
ing this phenomenology at least for the nonpolar smec-
tics. Therefore the nematic range as measured by
tl s A= ( TN I-T-N s A)/T-tt twh-ere -TN t( Tw-s~ ) 's--
the nematic-isotropic (nematic-smectic-A) transition tem-
perature, is a good qualitative measure of "distance"
from tricriticality; however, the tricritical value of
tr s „and range of ti s „over which tricritical-critical
crossover phenomena (such as effective exponents) occur
cannot be expected to be universal but rather to depend
on details of molecular structure.

For example, in the class of the so-called polar smectic
materials (especially those with three benzene rings),
many of which show reentrant phases and variations on
the classical smectic- A phase (called Sm- A, ) such as
Sm-A, Sm-A2, and Sm-Ad, the possibilities for multicri-
ticality are extensive (Ema, Nounesis, and Garland ),
making a choice of a single parameter, such as tr s ~, as
the measure of distance from multicriticality question-
able. In extremely wide nematic range polar smectics
(tt s „-0.3) Evans-Lutterodt et al. find the heat-
capacity exponent a to be comparable with values found
in much narrower nematic range materials
(tt s „(0.07) composed of nonpolar compounds which
have no tendency toward reentrancy. We know of no
measurements of nematic-smectic order parameter cou-
pling (e.g., the strength of the bifrefringence anomaly at
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FIG. 1. Structural formula and mesophase transition temper-
atures of Merck S-1223.

II. EXPERIMENT

The compound studied is S-1233 (Merck), which has
the structural formula and mesophase transition tempera-
tures shown in Fig. 1. Liquid chromatography studies of
the as received material indicate that its purity is approx-
imately 99.97%%uo. Our ac calorimetry studies were per-
formed on as received material using a calorimeter de-
scribed elsewhere, and temperature oscillations of %1
mK. The transition temperature, Tz s „was found to
drift slowly (&3 mK/day); the data were corrected for
this drift before analysis. Birefringence measurements
were made on an Abbe refractometer using homeotropi-
cally aligned samples and analyzing the refracted light
through a linear polarizer oriented parallel or perpendic-
ular to the director, thus allowing measurements of n,
and n p, respectively.

TN s „)that would allow us to know whether tricritical
phenomenology of the sort found in nonpolar materials'
is important near Tz s .~ in these materials.

In this paper we present heat-capacity data near the
N-Sm-A transition of the widest nematic range
(tt s „=0.23) nonpolar material studied to date. This
work shows that ti s „ is not a good "distance" param-
eter even for this restricted class of materials. Further-
more, it is shown that the heat-capacity anomaly is con-
sistent with that expected in a regime where classical
mean-field, Gaussian, and critical contributions are
present, and that such an interpretation is consistent with
the Ginzburg criterion. Alternatively, it is shown that
the data are consistent with the form of tricritical behav-
ior found in other nonpolar materials ' but with the
caveat that corrections to scaling are abnormally large.

resolution techniques. Second, the nematic range as mea-
sured by tt s „(0.23) is much wider than for previously
studied nonpolar materials, for which tI s „~0.07.
Third, in spite of its very wide nematic range, S-1223 ex-
hibits a substantial birefringence anomaly (Fig. 2) sug-
gesting that the nematic order parameter still responds to
the smectic field 100'C below the clearing point (Tz t ).
The strength of the birefringence anomaly is particularly
interesting considering that S-1223 has a weakly interact-
ing central part compared with two or three benzene ring
materials, which may explain the failure of the nematic
order to saturate far below TN I. However, weak interac-
tions also reduce nematic-smectic order parameter cou-
pling; thus there are competing effects. Presumably the
former is more important; however, the steric interaction
may also be quite different in this cyclohexane containing
material from that in pure benzene ring materials.

The microcalorimetry data are graphed in Fig. 3 on
two expansions of the temperature axis. Two gross
features of the data are that the anomaly is quite weak
and there appears to be a step [C+(Ttt„)
&C~ (TIv s „)]or a continuous but rapid decrease in

C~ on warming through Tz s „. Initial fits of the data
were made to the simple power-law forms

C,*=W*~t, ~- +a*,
(1)

t~ =(T—
TJv sm „)/Ttv sm

with no parameter constraints. The resulting fit parame-
ters were T~ s „=56.3857+0.0014'C, T~ s=56.3837+0.0002'C, a+ =0.172+0.028, a =0.184
+0.020, 8+ =44.4+1.5Rp, 8 =49.5+0.9Rp, A +
=2.71+0.99 Rp A =2.09+0.55 Rp and y = 1.79.
The fit was excellent. This fit illustrates that although the
constraints a =a and TN sm „=Tz sm „may be al-+ +

lowed by the data, 8+=8 clearly is not.
8 —8+ =5. 1 Rp is the magnitude of the apparent step
in the data at T~ sm „(Fig.3).

Introduction of the above constraints on a +— and
TN s „does indeed lead to good fit (y =1.79) with pa-
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III. DATA ANALYSIS AND DISCUSSION

Three features set S-1223 apart from previously studied
materials. First it contains two cyclohexane rings and
one benzene ring and it contains no strong dipoles (Fig.
1); thus the core is much less aromatic and more weakly
interacting than materials studied previously by high-
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FIG. 2. Birefringence vs temperature near the N —Sm-A
transition of S-1223.
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FIG. 3. Specific heat ( C~ ) vs relative temperature
( T —TN s „) of S-1223 on two expansions of the
(T—TN s~ „)axis (—150 to 150 mK and —1.5 to 1.5 K). See
text for discussion of solid lines.

rameters shown in Table I for three ranges of reduced
temperature. The range of reduced temperature spanned
by the entire data set is —4.58( —5.5) ~ logip~ t+ ~

(log, p~t ~) & —2.37( —2.38). This range was shrunk to-
ward the asymptotic limit by removing ten points at a
time from the data furthest from T~ s „. Results for
three values of ~t~,„are given in the first three lines of
Table I. Due to the weakness of the anomaly and the
strong correlation among the parameters A *,a, and B+,
the variations in A on range shrinking are quite large
(~50%); nevertheless the exponent is reasonably stable.
The solid line through the data in Fig. 3 is the first fit list-
ed in Table I; the underlying mean-field-like step function
is also shown. Deviations of the data from this fit are
shown in Fig. 4. Fixing the base-line term at the values
found for the logip~t~ = —2. 88 gave reasonably stable
parameters on range shrinking and reasonable quality fits
as the last three lines of Table I show. The addition of a
regular slope term (Et) to the fit equation and imposition

I og, o(l tl)

FIG. 4. Deviation (C~'"—C+') vs logarithm of reduced tem-
perature (log, ot) for first fit in Table I [Eq. (1)].

of the constraints 8+ =8 led to poor fits (pi=2. 4) and
to a large negative slope term (E (0) which is unphysi-
cal.

We conclude from the above fits that if B )B+ is
physically allowed then a-0.24+0.04 describes the data
very well over the approximately two and half decades of
reduced temperature spanned by the experiment. Except
for the special case a=0(logic), however, 8+%8 is in-

consistent with simple scaling arguments. It is possible,
nonetheless, that B —B+ & 0 is a remnant of underlying
mean-field behavior upon which is superposed a fluctua-
tion contribution to C, b, Cf, that can be described by a
singular term with an effective exponent (a-0.24) that
lies between the Gaussian value of 0.5 and the N-Sm-A
critical value which is empirically close to the 3D XY
value (a- —0.01) (Refs. 18 and 19). In such a case the
apparent step in the data would presumably be describ-
able by a large number of correction to scaling terms
which produce a very sharp but in fact continuous varia-
tion in C . The physics of the N-Sm-A transition in S-
1223 would then be intermediate between mean field with
Gaussian corrections where two lengths are defined,

TABLE I. Fit parameters for fits of data to Eq. (1) under the constraints a+=a, Tz =T . Three ranges of data wereree ranges o a a were
t in w ic og&p~t~ ~,„is reduced by one decade to show results of range shrinking toward the asymptotic limit. B+ given in square

brackets are fixed at the values given in parentheses.

log„~t~,„
—2.37

—2.88

—3.38

A+/R
( A /Rp)

1.864+0.21
(1.658+0. 18)
0.7749+0. 17
(0.7068+0. 14)
0.9138+0.38
(0.8153+0.32)

0.2026+0.01

0.2679+0.02

0.2562+0.03

B+/Rp
(B /Rp)

45.77+0.41
(50.29+0.34)
48.61+0.55
(52.67+0.40)
48.08+0. 12
(52.36+0.96)

Tw-s -A (C)

56.3839+0.0002

56.3843+0.0002

56.3842+0.003

1.79

1.88

1.98

—2.37

—2.88

—3.38

0.6699+0.01
(0.6137+0.01)
0.7749+0.02
(0.7068+0.02)
0.7640+0.021
(0.6981+0.019)

0.2838+0.002

0.2679+0.002

0.2693+0.003

[48.61]
([52.67])
[48.61]

([52.67])
[48.61]

([52.67])

56.3844+0.0001

56.3843+0.0001

56.3843+0.0001

1.99

1.87

1.96
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and asymptotic criticality where only one length is
defined.

It should be noted that in the event that the N —Sm- A
transition in S-1223 is in some sense close to a Gaussian
mean-field transition one may not assume that the under-
lying mean-field contribution is represented by a simple
step function. Adding a sixth power term to an even
power Landau expansion leads to specific heat of the
form (T & Tz sm „)

C =aT(1 bt—) (2)

where the b term (b & 0) comes in as a result of the sixth
power term. With this in mind we also fit the data to a
function of the form

heat capacity. Note that fixing a =
—,
' in Eq. (4) is

equivalent to allowing B+WB which, for a+ =a and
T~ s „=T~ s „,brings us back to Eq. (1) except for
having fixed a. But as we saw above, letting a adjust in
this case gives a-0.24, which is far from a =0.5. Indeed
fixing a=0.5 in Eq. (4) gave very ppor fits (g -3.4). So
the difference between a=0.46 and 0.5 in Eq. (4) is very
important. This is due to the very large values of D—+.
We conclude that Eq. (4) is probably inappropriate for
our data.

As a final attempt to fit the data to an empirical form
known to give good fits in the tricritical regime we have
applied Eq. (7) of Stine and Garland (SG) (Ref. 21)

C =A —t '"(1+D iti+E gati'")+B
C —+ = A t ' "+a—T (1—bt) '"+B (3)

to learn whether the additional mean-field teinperature
dependence below Tz s „could relieve the need for the
smaller than Gaussian exponent. Such was not the case
as the fits to Eq. (3) were poor (y -3.5). Thus in the
mean-field-Gaussian-asymptotic critical behavior
scenario the asymptotic critical contribution to Cz is evi-

dently substantial. In this regard we note that fitting only
the data above Tz s „gave a-0. 18 which is certainly
far from the Gaussian value; suggesting that Eq. (3) was
in any case unlikely to yield a good fit of the data. We re-
turn to the question of evolution between mean-field and
asymptotic critical behavior below.

The fact that S-1223 exhibits a relatively strong
birefringence anomaly at Tz s „(Fig.2) suggest that its
N —Sm-A transition may not be far from tricriticality.
Therefore we have tried fitting the data to forms that
have been found successful (in the empirical sense) in ma-
terials known to exhibit N Sm-A tricri—ticality. We are
constrained to this approach because there is no clear
theoretical guidance concerning tricriticality generally
or N-Sm-A tricriticality specifically. Empirically it is
quite clear that the leading singularity near the N-Sm- A
tricritical point is close to the classical value, a=0.5; this
value also has theoretical support and empirical sup-
port in other systems. Clearly, however, the fits de-
scribed above rule out a=0.5 unless some appropriate
correction to scaling terms may be added. Unfortunate-
ly, although theory predicts logarithmic corrections to
the amplitude of the leading singularity, it provides no
help with correction to scaling terms (see discussion in
Ref. 21).

We have used the form

Cp= A —+iti (1+D t 'i')+B—(4)

without theoretical justification, but it appears to work
well empirically in a case where N —Sm-A tricriticality is
known to exist. '

Fits to this form gave good g values (-1.8) but the
parameters were very unstable on range shrinking.
Furthermore, the magnitude of the correction to scaling
terms was 4 to 40 times larger than the leading singulari-
ty (a-0.46} in the range of the experiment. The base-
line term for the fit of the entire data set was -79 Ro,
which is larger than the largest measured value of the

Although this form also has no theoretical basis it does
give good fits to their data on a near tricritical mixture.
It is a form that makes sense if the correction to scaling
exponent is —,', as then the exponent of the leading singu-

larity cancels the exponent in the leading correction to
scaling term allowing for a step in the base line (which we
apparently have}. The D and E* terms are higher-
order correction to scaling terms.

We found that this form gave only marginally better
fits than the form omitting the E—+ terms, and that the pa-
rameters were unstable on range shrinking for both cases,
although the quality of the fits was quite good
(g -1.8-1.9). The result of fitting the entire data set
omitting the E terins is g—iven in the first row of Table
II. Also shown are the results of range shrinking while
holding 8* fixed at the values obtained in fitting the en-
tire data set. It is important to note that the correction
to scaling terms D +—

~t~ range from 0.03 to 3 over the
range of the data. Thus they are comparable with or
exceed the leading singularity over a considerable frac-
tion of the experimental range (see Fig. 5). Although this
may be unexpected it cannot be a priori ruled out as un-
physical. Deviations of the data from the first fit listed in
Table II are shown in Fig. 6. Finally we note that the
sign of 8 —8+ is opposite to that found by SG and con-
sistent with a mean-field discontinuity. We conclude that
our data give results consistent with the results of SG on
their nearly tricritical mixture but with substantially
larger correction to scaling contributions and an inverted
step discontinuity.

Several other attempts were made at fitting the data to
tricritical (a= —,') forms including lgoarithmic amplitude
correction and various assumed correction to scaling
forms. Based on the results it would appear that any
form with a-0. 5 and C+(T~ s „)=C (T~ s „)(no
step at T~ s „)either gives poor fits or results in anom-
alously large correction to scaling terms. The SG form,
however, is consistent with our data but gives large
correction terms. If, in fact, the N —Sm-A transition
S —1223 is near tricriticality, as fits to the SG form could
suggest, this may explain the birefringence anomaly and
would indicate that the tricritical values of tr s ~ may
be a strong function of molecular structure even within
the class of nonpolar (or weakly polar) materials.

Central features of the data appear to be that
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A +/Ro
(~ -/R, )

D
(D )

B+/Ro
(B /Ro)logiol tl ...

—2.38

TN Sm-A (0C)

56.3854+0.00020.04085+0.0032
(0.04235+0.0041)

—1329.3+17.3
(
—1061.6+16.2)

54.00+0.10
(57.24+0. 15)

1.86

—2.88 0.4114%0.0004
(0.4214+0.0005)

—1353.8238.9
( —1042.7+30.8)

[54.00]
[(57.24)]

56.3853+0.0002 1.94

—3.38 0.04095+0.0005
(0.04195+0.0008)

—1323.1%64.9
( —1010.2+78.4)

[54.00]
[(57.240)]

56.3853+0.0002 2.06

0.2~a,&~0.5 and that there exists a steplike change in
C at TN s „consistent in sign with mean-field theory
and comparable with the fluctuation contribution to C
in the experimental range. Both of these features are
consistent with the hypothesis that the transition is in the
evolutionary regime between mean field with Gaussian
fluctuation corrections (aG =—0.5) and asymptotic
N —Sm-A criticality (az s „&0). To further test this
hypothesis one can apply the Ginzburg criterion (GC) to
the data. The solid line in Fig. 3 is a fit of the data to
Eq. (1) (line 1 in Table I). The step function below the
data would by hypothesis approximate the underlying
classical mean-field contribution. Thus the fluctuation
contribution ECf is as shown in the figure.

According to the GC the asymptotic critical regime
should occur when the fluctuation contribution to the
heat capacity, ACf, is much larger than the mean-field
contribution

ac@= A 'lt, l- (7)

with A and a given in the first row of Table I. ECf* is
clearly comparable with but somewhat greater than
b, CMF throughout the range of data (see Fig. 3), thus the
data lie intermediate between the Gaussian mean-field
and the asymptotic critical regime according to the GC,
in agreement with az s ~

——0.01 (a,~-0.24 &0.5
=CKG.

The reduced temperatures tG that separate the two re-
gimes are given by the conditions

bC M=F8 8+=ACf—*=A*ltG
l

Using the parameters in line 1 of Table I this gives tG

(tG )=1.27X10 (7.15X10 ); to be compared with

it+ l
'"-4X10 . If one chooses the second or third fit

in Table I one gets tG (tG )=3X10 (2X10 ). Clearly
the tG are comparable with lt+ l

'"; therefore neither the
GC [Eq. (6)] nor its converse is valid. It would appear
that the data are too close to the asymptotic critical re-
gime to be described by Gaussian fluctuations (aG =0.5),
because

l
t l,„-

l tG l, and too far from asymptotic criti-
cality to be described by empirically observed N-Sm-A
critical behavior (a &0) (Refs. 18, 19, and 24), even with
lowest-order corrections to scaling [Eq. (4)] included, be-
cause l

t*,„l « ltG l
is not true. Finally we note that the

measured value of 8 —8+ (-4.5 Ro) may be somewhat

ECf* ))b CMF =8 —8 + (6)

and conversely for the classical mean-field regime. Now
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perature (log&ot) for first fit in Table II [Eq. (5)].

TABLE II. Fit parameters for fits of data to Eq. {5)with 8 =—0. Three ranges of data were fit in which log, ol t+ l,„is sequentially
reduced to show the results of range shrinking toward the asymptotic limit. B*values shown in square brackets were fixed at the
values given in parentheses.
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low since we are nearer to asymptotic criticality
(a,tr(0. 5) than the GC calculation assumes and, of
course, 8 =8+ is required in the asymptotic regime.
Thus our estimates of ~tG ~

may be upper limits which
would make GC estimates of the bare correlation lengths
(see below) lower limits.

With the above estimates of tG one may estimate the
bare correlation lengths from the theoretical form of the
GC that follows from Eq. (6) when b, CMF is calculated
from fourth-order Landau theory and ECf are calculat-
ed in the Gaussian approximation from Ginzburg-
Landau theory. This gives

tG = 1

64m ((+—
) b, CM„

(9)

0

(in A) are lower limits on the bare lengths. They are
comparable with measured bare lengths in other sys-
tems (which, however, are certaintly measured in the
critical regime) and approximately two times smaller
than the molecular dimensions. Using other estimates of
tG and BCMF obtained from Table I fits does not substan-
tially alter these results because of the sixth power depen-
dency of tG and go. Clearly the interpretation of S-1223
data in terms of the GC is internally consistent. One
significance of this is that the N-Sm-A transition in S-
1223 may be the first example of an N-Sm-A transition
that is not dominated by critical fluctuations.

Here b, CMF is measured in units of Boltzmann's constant
per volume. In doing this it is necessary to recall that for
the anisotropic N —Sm- 3 transition one has"

ko
= ( koAoii )

' (10)

with gz~~-6goj (Refs. 6—8). Using tG =1.27X10 and

BCMF =4. 52 Ro one gets go+ =3.8 A; therefore

IV. CONCLUSIONS

The specific-heat exponent is in the range
0.2 & a,&&0.5 and the data are consistent with evolution
from mean field to Gaussian to asymptotic critical behav-
ior and, alternatively, with near tricriticality of the
N —Sm-A transition. The former hypothesis gives slight-

ly better fits of the data with one less parameter and re-
sults in extensive consistency with Ginzburg criterion
ideas. There are no other known examples of such
N-Sm-A transition behavior. The latter has the advan-

tage that it can explain the birefringence anomaly in a
straightforward way but at the cost of introducing large
correction to scaling terms. If the latter explanation is
correct S-1223 would have the widest nematic range
(tt s z =—0.23) of any nonpolar material exhibiting a
nearly tricritical N —Sm-A transition. In any case the
birefringence anomaly is unexpected both theoretically
(KM) and by comparison with other materials, given the
large value of tr s ~. Given either of the above
scenarios S-1223 represents a very interesting class of ma-
terials from the point of view of N-Sm-A transition phe-
nomenology.

The molecular structure of S-1223 is, of course, very
different from that of all materials whose N Sm-A tra—n-

sitions have been previously studied. Therefore it will be
important to complement this study with x-ray and elas-
tic constant studies of S-1223 and to extend experimental
characterization to its homologs and other cyclohexane
based materials.
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