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Collapse transition of self-avoiding walks and trails by real-space renormalization
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Self-avoiding trails (SAT s) are paths on regular lattices that may revisit sites but not bonds. If
each twice-visited site in a SAT is assigned an energy —c, a collapse transition will occur at
sufficiently low temperatures. Shapir and Oono [J. Phys. A: Math. Gen. 17, L39 (1984)] have sug-

gested that the collapse transition of a self-attracting SAT may be in a different universality class
than the 6 point of the self-avoiding walk (SAW). We present the results of a small-cell real-space
renormalization-group study on a model that includes self-attracting SAW's and SAT's as special
cases. We find distinct fixed points for the SAW and SAT collapse transitions, and so conclude that
these transitions are indeed in different universality classes. We also find a tetracritical point
characterizing the crossover between the two kinds of tricritical scaling behavior.

I. INTRODUCTION

A polymer in a good solvent can be treated as a self-
avoiding walk' (SAW). As the temperature T is de-
creased or the solvent becomes poorer, the attractive
long-range monomer-monomer interactions due to van
der Waals forces become more important. At a certain
temperature 8 (the Flory 8 temperature), the van der
Waals forces cancel the excluded-volume repulsive in-
teractions and the system undergoes a phase transition. '
The 8 point is a tricritical point. ' For T &8, the at-
tractive interactions prevail and the polymer collapses.
Such polymer systems have been modeled by self-
avoiding walks on a lattice with attractive nearest-
neighbor interactions. '

It is currently being debated whether the presence of
loops affects the large-scale behavior of polymer
chains. ' This work has centered on the properties of
self-avoiding trails (SAT's), which are paths on regular
lattices that may revisit sites but not bonds. ' If each
twice-visited site in a SAT is assigned an energy —e., a
collapse transition will occur for sufficiently low tempera-
tures. It is generally agreed that the low- and high-
ternperature phases of the self-attracting SAT have the
same exponents as the corresponding phases of the self-
attracting SAW. ' However, Shapir and Oooo have sug-
gested that the collapse transition of a self-attracting
SAT may be in a different universality class than the usu-
al SAW 8 point. A number of exact enumeration studies
of trails in two and three dimensions support this
view, " but these studies have been criticized on the
grounds that the trails constructed were all quite
short. ' ' More convincing support comes from a scan-
ning simulation on the square lattice in which trails of
length N~300 were generated. ' ' The resulting esti-
mate of the crossover exponent, P, =0.805+0.004, differs
significantly from the various values obtained for self-
attracting SAW's in two dimensions (2D). ' In con-
trast, it has recently been shown that the collapse transi-
tions of a self-attracting SAW on the Manhattan lattice
and of the self-attracting SAT on the I. lattice are in the

same universality class. ' '
In this paper, we perform a small-cell real-space

renormalization-group (RSRG) study of a self-attracting
SAT in two dimensions (2D) with an energy —e assigned
to each self-crossing and with an additional attractive in-
teraction —u between each nearest-neighbor pair of
monomers. The usual self-attracting SAT and SAW
problems are recovered in the u ~0 and e~ —ae limits,
respectively. We find distinct fixed points for the collapse
transitions in these two problems, indicating that these
transitions belong to different universality classes. A
tetracritical point characterizing the crossover between
the two tricritical points also appears in our
renormalization-group scheme.

This paper is organized as follows. In Sec. II we de-
scribe the model to be studied in greater detail. Our
RSRG method is introduced in Sec. III by applying it to
the T= (x) behavior of a SAW in 2D. In Secs. IV and V
the technique is applied to self-attracting SAW's and
self-attracting SAT's, respectively. The self-attracting
SAT with nearest-neighbor interactions is studied in Sec.
VI. Section VII contains our conclusions.

II. THE MODEL

Consider a SAT of length X on the square lattice. In
our model, an energy —c. is assigned to each twice-visited
site and each nearest-neighbor pair of monomers has an
energy —u. The partition function is

ZN(T)= g g Ctv(l, m)e~'"+
i=0m =0

where I is the number of self-crossings, m is the number
of nearest-neighbor pairs of rnonomers in the polymer,
and P —= I /ktt T. Cz(l, m) is the number of different
configurations of the polymer with the given values of N,
l, and m. The grand-canonical partition function is

Z(IM, T)= g ZN(T)e~4
%=0
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where p is the chemical potential. For convenience, we
let p =exp(Pp}, q =exp(Pe), and r =(exp(Pu). Note that
self-attracting SAW's occur for q =0, while self-
attracting SAT's are obtained for r =1.

III. RSRG FOR SAW'S

In the RSRG approach to critical phenomona in 2D
polymer systems, an MXM cell is renormalized
onto an L XL cell, when L and M are integers and
1 & L (M. The correlation length is rescaled by a factor
of L/M under this transformation. The parameters in
the rescaled problem (p', q' and r') are given by the re-
cursion relations

that enters at one side and exists at the opposite side in
the 1 X 1 cell. The corresponding recursion relation is

p
& —

2p
2 +4p 3 +2p

4 (3.2)

We obtain a nontrivial fixed point at p, =0.2971 and the
radius-of-gyration exponent vs&w ——ln2/ln2. 459 =0.77.

Perhaps the simplest RSRG method is the corner
rule. The corner rule with M =2 and L =1 yields a
nontrivial fixed point at p, =0.4656 for the pure SAW in
2D, and the exponent vs~w—-0.72. The exact value of
vsAw is —,'. We see that the QC method gives a value of
p, that difFers substantially from that given by the corner
rule. The two methods give values for vsAw that are
comparable in accuracy, however.

and

r'=r'(p, q, r) .

(3.1)

IV. RSRG FOR SELF-ATTRACTING SAW'S
As usual, a critical point is a fixed point of the
renormalization-group (RG} equations (3.1), and the cor-
responding critical exponents are found by linearizing
about the fixed point.

Numerous techniques have been employed to construct
approximate recursion relations for the pure self-avoiding
walk with no self-crossings and no nearest-neighbor in-
teractions. ' In this problem, q is fixed at zero and r is
1, so there is a single recursion relation p'=p'(p}. Here
we study this problem using a RSRG method introduced
by de Queiroz and Chaves (QC}. This method has the
advantage that it is readily extended to arbitrary values
ofq and r.

To illustrate the QC method, we construct the recur-
sion relation for p for M =2 and L =1. The recursion
equation is shown symbolically in Fig. 1. Each occupied
bond in the original cell is assigned a factor of p, while in
the renormalized cell occupied bonds are given a weight
p'. The symbolic equation in Fig. 1 means that all the
paths that enter at one side and exit out the opposite side
in the 2X2 cell are renormalized onto the single path

For self-attracting SAW's, q is zero and we must con-
struct recursion relations for p and r. We cannot obtain a
closed set of recursion relations by carrying out
2X2~1X1 RSRG or 3X3~1X1 RSRG. The reason
is that we cannot have nearest-neighbor pairs of mono-
mers in a 1 X 1 cell, and so the recursion relations do not
involve r'. We do obtain a closed set of recursion rela-
tions by performing 3X3~2X2 RSRG. For p, we re-
normalize all the paths that enter at one side and exit at
the opposite side in the 3X3 cell onto the same kind of
paths in the 2X2 cell. The recursion relation is shown
symbolically in Fig. 2. Each bond contributes a factor of
p and each nearest-neighbor pair of monomers gives a
factor of r in the 3 X 3 cell. The same is true in the 2X2
cell, except that p and r are replaced by the renormalized
parameters p' and r'.

To get a recursion relation for r, we look at
configurations in which one segment of the polymer
enters at side A of the cell and exits at side 8 (Fig. 3), and
a second segment enters at side C and exits at side D. We

FIG. 1. Schematic representation of the recursion relation
for p obtained by applying our 2 X2~1 X 1 RSRG to the pure
SAW on the square lattice.

FIG. 2. The symbolic recursion relation for p obtained by ap-

plying our 3 X 3~2 X2 RSRG technique to the self-attracting
SAW on the square lattice. Only a few representative terms are
shown for both the original and the renormalized cells.
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also require the two segments to have at least one pair of
monomers that are nearest neighbors, so the segments in-
teract. The resultant recursion relation is shown
schematically in Fig. 4.

A simple computer program was used to enumerate all
configurations in the 3X3 cell that contribute to the re-
cursion relations for p and r. We obtain the RG equa-
tions

2(p') +4(p') +2(p')"r'=3p +12p +(16+Sr)p +(4+12r+4r )p +(2+4r+14r )p +Sr p +Sr p

4r'(p') +4(r') (p') =12rp +(20r+32r )p +(12r+20r +56r )p +(4r +24r +42r )p +32r p

(4.1)

(4.2)

We find two nontrivial fixed points and a trivial fixed

point located at p, =0 and r, =0. The first nontrivial

fixed point has coordinates p, =0.3205 and r, =1.4469.
The linearized RG equations have two eigenvalues
greater than 1, so this fixed point is a tricritical point ' '

for the self-attracting SAW. We find v, =0.689 and

$, =0.462. Our values for the radius-of-gyration ex-

ponent v, and the crossover exponent P, should be com-

pared with the values that Duplantier and Saleur have

argued are exact, v, =—', and P, = —', . The second nontrivi-

al fixed point is an ordinary critical point located at

p, =0.3586, r, =0 with radius-of-gyration exponent
vs„w=0. 826. This corresponds to the T= ~ critical
point. The value of vs~w we obtain is within 10% of the
exact value vs~~ =

—,.39

The recursion relations (4.1) and (4.2) do not have a
fixed point corresponding to the collapsed phase. The
reason is that completely collapsed configurations cannot
be accommodated in a finite cell. For example, at most
two of the six bonds on sides B and D (Fig. 3) of the 3 X 3

cell may be occupied.
We should point out that Maritan et al. have studied

this problem previously using a RSRG approach.
However, in our opinion two questionable approxima-
tions are made in their paper. First, the recursion rela-
tion for p was obtained by performing 2 X2~1 X 1

RSRG, while 4 X2~2 X 1 RSRG was used to get the re-

cursion relation for r. We believe that it is preferable to
obtain both recursion relations using the same original
and renormalized cells. Second, Maritan et al. somewhat
arbitrarily added some extra terms to their recursion rela-
tions. These terms were chosen to ensure the existence of
a collapsed phase. Maritan et al. obtained the values
vs„w=0. 69 and v, =0.628. They did not report a value
for P, .

V. RSRG FOR SELF-ATTRACTING SAT'S

We next study self-attracting SAT's in the absence of
any nearest-neighbor interactions. In this case, r is fixed
in value to 1 and we must find recursion relations for p
and q. We can obtain complete recursion relations for
the self-attracting SAT by performing either the
3 X3~1X 1 or the 3 X 3~2 X2 RSRG, in contrast to the
situation for the self-attracting SAW. First we do the
3 X 3~2 X 2 RSRG. The rule we use to obtain the recur-
sion relation for p is similar to that used for the self-
attracting SAW, but each self-crossing point contributes
a factor of q. For example, the contribution corning from
the diagram in Fig. 5 is p q . To get a recursion relation
for q, we look at configurations in which one segment of
the polymer enters at side A of the cell and exits at side D
(Fig. 3), and a second segment enters at side C and exits
at side 8. For example, the diagram in Fig. 6 gives a
term p q . Thus we get the the recursion relations

+ ~ ~ ~

+ 8 ~ ~

iA

FIG. 3. A cell on the square lattice. The four sides of the cell
are A, 8, C, and D.

FIG. 4. Schematic representation of the recursion relation
for r in our 3 X 3—+2 X 2 RSRG approach to the self-attracting
SAW on the square lattice.
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FIG. 5. One possible configuration of the self-attracting SAT
on a 3 X 3 cell. This configuration contributes a term p q to the
recursion relation for p.

FIG. 6. A second possible configuration of the self-attracting
SAT in a 3 X 3 cell. This configuration contributes a term p'q'
to the recursion relation for q.

2(p') +4(p') +2(p') =3p +12p +24p +20p +20p +(8+16q)ps

+(8+24q+10q )p +(16q+20q )p' +4q p",
4q'(p') +8q'(p') +4(q') (p') =9qp +48qp +(108q+16q }p +(104q+64q )p

+(56q+76q +8q )p' +96q p" +124q p' +120q p' +46q p'

(5.1)

(5.2}

We find two nontrivial fixed points and one trivial fixed
point that is located at p, =0, q, =0. One nontrivial fixed

point is located at p, =0.3117,q, =6.561. The exponents
at this tricritical point are v, =0.625 and P, =0.741. The
other nontrivial fixed point is located at p, =0.3209,
q, =0 and is an ordinary critical point. We find the
radius-of-gyration exponent vs„~=0.896. This fixed
point corresponds to the critical point at T= 00. For the
same reason as previously, the RG equations have no
fixed point for the collapsed phase.

A great deal of analytical and numerical work in 2D
suggests that at infinite temperature, vs~&=vs„w= —,'. '

Our results for vs~~ is quite far from this value, which
shows that our small-cell RSRG in general is not able to
give accurate estimates for the exponents. However, the
values we obtain for v, and ((), are in reasonable agree-
ment with the values v, =0.569+0.008 and $, =0.807
+0.005 obtained for self-attracting SAT's on the square
lattice using the scanning simulation method. ' ' Our
estimate of P, differs substantially froin most values ob-
tained for the crossover exponent of the self-attracting
SAW, ' including the value we found in Sec. IV. Our
work, therefore, lends, support to the claim that the col-
lapse transitions of the SAT and SAW are in difFerent
universality classes in 2D. Much more convincing sup-
port for this claim will be obtained in the following sec-
tion, however.

For the 3X3~1X1 RSRG, the left-hand side of Eq.
(5.1) is replaced by p', while the left-hand side of Eq. (5.2)
becomes (p') q'. We again find two nontrivial fixed
points. The fixed point for the trieritical point is located
at p, =0.3013, q, =8.778. The corresponding exponents

are v, =0.700 and $, =0.464. The fixed point corre-
sponding to the critical point at T=00 is found at

p, =0.3156, q, =0 and has vszw =0.774.
Before concluding our discussion of the self-attracting

SAT with no nearest-neighbor interactions, we should re-
mark that Jug 2 has also studied this problem using a
small-cell RSRG method. Jug's technique is not readily
extended to deal with the more general problem with
nearest-neighbor interactions, however. Jug finds

v, =0.494, P, =0.486, and vs~&=0. 787.

VI. RSRG FOR SELF-ATTRACTING SAT'S
WITH NEAREST-NEIGHBOR INTERACTIONS

So far we have studied the pure self-attracting SAT
and the pure self-attracting SAW. The question we now
face is whether the tricritical point for pure self-
attracting SAT's is in the same universality class as the
tricritical point for pure self-attracting SAW s. To inves-
tigate this, we generalize the self-attracting SAT problem
by introducing nearest-neighbor interactions. We com-
bine the rules we used before for self-attracting SAW's
and self-attracting SAT's. In the unrenormalized cell
each occupied bond gives a factor of p, each self-crossing
gives a factor of q, and each nearest-neighbor pair of
monomers gives a factor of r. For example, the
configuration in Fig. 7(a) contributes a term p9qr2 to the
recursion relation for p, the configuration in Fig. 7(b)
gives a term p q r in the recursion relation for q, and the
configuration in Fig. 7(c) adds a term p' qr to the recur-
sion relation for r. We get the following RG equations
for the 3X3~2X2 RSRG:
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2(p') +4(p') +2(p') r'=3p +12p +(16+8r)p +(4+12r+4r )p +(2+4r+14r )p +(8r +16qr)p

+(8r +24qr +10q )p +(16qr +20q r )p' +4q r p",
4q'(p') +8q'r'(p') +4(q') (p') =9qp +(16q+32qr)p +(12q+16qr+80qr +16q )p

+(8qr+24qr +72qr +64q r)p +(56qr"+4q +16q r+56q r +8q )p'

+96q r p "+124q r p' +120q rp' +46q p'

4r'(p') +4(r') (p') =12rp +(20r+32r )p +(12r+20r +56r +16qr)p

+(4r +24r +42r +36qr )p +(32r +I 6qr +24qr )p

+44qr p +36q r p +24q3r p

(6.1)

(6.2)

(6.3)

For the same reason as before, a fixed point for the col-
lapsed phase does not appear in the above equations. We
find that the equations have four nontrivial fixed points
and a trivial fixed point located at p, =q, =r, =0, none of
which correspond to the collapsed phase.

The first fixed point is located at p, =0.3586, q, =O,
r, =O. There is one eigenvalue that is greater than 1,
A. , = 1.6340. The exponent vs„w is 0.826. This point is a
critical point that corresponds to the high-temperature
phase. The second fixed point is at p, =0.320, q, =O,
r, =1.447. There are two eigenvalues that are greater
than 1, A, , =1.3129 and A,z= l. 8018. This means that this
fixed point is a tricritical point. It is obvious that this
point is the tricritical point for self-attracting SAW s be-
cause q, =0. The exponent v, is 0.689 and the crossover
exponent P, =0.462. These are the same exponents as we
obtained for the pure self-attracting SAW in Sec. IV.
The third fixed point is at p, =0.3365, q, =7.9423, r, =0.
There are two eigenvalues that are greater than 1,
A, &=1.5849 and A.&=2.1571. This fixed point is the tri-
critical point of the self-attracting SAT. The reason is
that, as we can see from the RG flows in p, q, r space
shown in Fig. 8, any point near line II in the r =1 plane
is renormalized towards this fixed point. We find that the
radius-of-gyration exponent v, is 0.527 and the crossover
exponent ((t, is 0.599. The last nontrivial fixed point is a
tetracritical point that is located at p, =0.3336,
q, =7.9069, r, =0.0929. There are three eigenvalues that
are greater than 1, namely A, , =1.0207, )i,2=1.6419, and

A,3
=2. 1183. The tricritical radius-of-gyration exponent

is v„t„=0.54018, and the two crossover exponents are

A sketch showing the position of these fixed points and
the entire RSRG flow is given in Fig. 8. The lines I, II,
and III are on the critical surface. Any system that is on
the critical surface inside the area bounded by the lines I,
II, and III flows to point A, the critical point for T = oo.
The fixed point 8 is the tricritical point for self-avoiding
SAT's, while the fixed point C is the tricritical point for
self-avoiding SAW s. We call line I a tricritical line be-
cause any system on this line flows onto one of the two
tricritical points B and C. The tetracritical fixed point D
separates the points on the tricritical line that flow to-
ward 8 from those that flow onto C. It therefore de-
scribes the crossover between the two different types of
tricritical scaling behavior.

Thus, we find distinct tricritical points for the SAW
and SAT, in agreement with the analytical and numerical
work that suggests that these 8 points are in different
universality classes. ' ' ' The exponents we obtain for
the self-attracting SAW 8 point are the same as we found

j A

{c}

FIG. 7. Three allowed conformations to the self-attracting
SAT with nearest-neighbor interactions within a 3X3 cell: (a)
contributes a term p qr to the recursion relation for p, (b) gives
a term p q r in the recursion relation for q, and (c) adds a term

p
' qr to the recursion relation for r.

FIG. 8. Renorrnalization group flows for the self-attracting
SAT with nearest-neighbor interactions. Point A is the T= ao

critical point for SAW's and SAT's. Points B and C are the tri-
critical points for self-attracting SAT's and SAW's, respectively.
Point D is a tetracritical point. The flow lines I, II, and III are
on the critical surface.
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in Sec. IV, since the recursion relations (6.1) and (6.3)
reduce to Eqs. (4.1) and (4.2) when q and q' are set to
zero. The exponents we find for the self-attracting SAT 0
point (v, =0.527 and P, =0.599) should be compared to
the values obtained by Meirovitch and Lim' ' for this
problem, v, =0.569+0.008 and P, =0.807+0.005.

Bradley' *' has shown that the self-attracting SAW on
the Manhattan lattice can be mapped onto the self-
attracting SAT on the L lattice, so the collapse transi-
tions in these two models are in the same universality
class. This is not in convict with our conclusion that the
SAW and SAT t9 points are in different universality
classes on undirected lattices, since the Manhattan and L
lattices are both directed. Indeed, the 0 point of SAW's
on the Manhattan lattice is known to be in a different
universality class than the collapse transition of SAW's
on the undirected square lattice. ' Lattice directionality
is therefore a relevant parameter at the 8 point, and our
conclusions on undirected lattices cannot be carried over
to directed lattices.

Finally, we note that a single ordinary critical point ap-
pears in our RSRG, so the high-temperature phases of
the SAW and SAT have the same critical exponents in
the present approximation. This is in accord with a large
body of evidence that suggests that the T=~ critical
points of the SAW and the SAT are in the same univer-
sality class. '

VII. CONCLUSIONS

In this paper we carried out a small-cell RSRG study
of self-attracting SAW's and SAT's in two dimensions.
These two problems were first studied separately. For the
pure self-attracting SAW, we found exponents for the tri-
critical point and for the high-temperature critical point
that are within 10%%uo of the values that Duplantier and
Saleur and Nienhuis have argued to be exact. For the
pure self-attracting SAT, the exponents we found for the

tricritical point are in good agreement with the most re-
cent numerical work. ' ' The exponent vsAT for the
high-temperature critical point differed markedly from
the accepted value vsAT= —,', however. ' Since our esti-
mate P, =0.462 for the crossover exponent for the self-
attracting SAW 0 point is far removed from the value we
obtained for the self-attracting SAT (P, =0.741), the two
0 points are apparently in different universality classes.

To further investigate this issue, we performed a
RSRG study of the self-attracting SAT with an addition-
al nearest-neighbor interaction. This problem has the
pure self-attracting SAW and SAT as limiting cases. We
found two distinct tricritical points, and so again came to
the conclusion that the SAW and SAT collapse transi-
tions are in different universality classes. A tetracritical
point characterizing the crossover between these two
types of tricritical scaling behavior was also found. Fi-
nally, a single ordinary critical point appears in our
RSRG, confirming that the SAW and SAT share the
same high-temperature scaling behavior.

Our work supports the analytical and numerical stud-
ies that suggest that the SAW and the SAT 8 points are
in different universality classes. ' ' ' It might be ar-
gued that this support is of limited value since our small-
cell RSRG is only approximate. Certainly, if we chose
larger cells, the location of the critical points and the
values of the critical exponents would be obtained more
precisely. However, we believe that the number and kind
of the critical points would be unaltered. In particular,
we believe that our conclusion that the SAW and the
SAT collapse transitions belong to different universality
classes would be unaffected by employing larger cells.
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