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We report on molecular-dynamics simulations of Lennard-Jones liquids sheared between two
solid walls. The velocity fields, flow boundary conditions, and fluid structure were studied for a
variety of wall and fluid properties. A broad spectrum of boundary conditions was observed includ-
ing slip, no-slip, and locking. We show that the degree of slip is directly related to the amount of
structure induced in the fluid by the periodic potential from the solid walls. For weak wall-fluid in-
teractions there is little ordering and slip was observed. At large interactions, substantial epitaxial
ordering was induced and the first one or two fluid layers became locked to the wall. This epitaxial
ordering was enhanced when the wall and fluid densities were equal. For unequal densities, high-
order commensurate structures formed in the first fluid layer creating slip within the fluid.

I. INTRODUCTION

One of the fundamental assumptions in fluid mechani-
cal formulations of Newtonian flow past solids is the
“no-slip” boundary condition (BC): that is, that the
tangential component of the fluid velocity equals that of
the solid at the surface. However, the microscopic origin
of the no-slip condition has remained elusive for over a
century. While experiments at macroscopic scales are
consistent with this BC, recent experiments which probe
molecular scales indicate that the BC may be
different.!* An understanding of flow at these scales is
essential to theories of lubrication, flow in porous media,
and the spreading of fluids.

The primary difficulty impeding a theoretical under-
standing of flow near solid surfaces lies with the limita-
tions of kinetic theory.* A rigorous treatment should
make no assumptions about the BC. This would require
including multiple scattering of fluid atoms from indivi-
dual wall molecules, which is not feasible analytically.
An alternative approach, which has become realizable
with the advent of modern supercomputers, is nonequili-
brium molecular-dynamics (MD) simulations. In study-
ing microscopic transport properties, the MD approach
has significant advantages over kinetic theory. For exam-
ple, multiple scattering is included explicitly, and no as-
sumptions have to be made regarding the molecular dis-
tribution function.

Recently, nonequilibrium MD simulations of simple
fluids have been used to study Newtonian flow near solid
boundaries.*”® They have included investigations of
ideal Pouiselle* ™ and Couette flow,*”~? as well as flow
through small pores.”® Early studies used various types
of “structureless” walls and observed only slip BC’s.}
More realistic simulations, with walls composed of atoms
arranged on a lattice, revealed more complex BC’s. In
most cases,*” >’ locking between wall and fluid was ob-
served: The velocity in the liquid reached that of the wall
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one or two molecular spacings inside the liquid. Recent
studies showed that this distance increased with the
strength of wall-fluid interactions,>® and decreased with
temperature.” Experiments also indicate a variety of
BC’s may occur, ranging from locking' to slip.2

In this paper, we present a detailed analysis of the ve-
locity fields and fluid structure near solid boundaries. In
particular, we focus on how wall-induced structure in the
fluid affects flow. Earlier studies’ attempted to correlate
modulations in the fluid density perpendicular to the wall
with the velocity BC’s. We find that two-dimensional or-
dering parallel to the wall is far more significant. The
wall produces a periodic potential in the fluid with a
characteristic strength and period. Increasing the
strength induces epitaxial ordering in the fluid layers near
the wall, and the BC reflects this locking. These locked
layers correspond to a solid phase wetting the substrate.
Wall and fluid become decoupled when the potential is
weak, and slip occurs. The crossover from locking to slip
depends on the commensurability of wall and fluid densi-
ties. Unusual boundary conditions can arise at inter-
mediate strengths and unequal densities. For example,
we observed slip within the fluid when the wall induced
high-order commensurate structure in the first fluid layer.

In the next section we describe the simulation tech-
niques used in our study. We then discuss layering of
fluids normal to the wall. This layering produces oscilla-
tions in the velocity, stress, and other variables. Howev-
er, we show that averaging these microscopic quantities
within fluid layers produces smoothly varying functions
which can be described by macroscopic hydrodynamics.
We next describe the observed flow BC’s, and correlate
them to the structure induced in the fluid parallel to the
wall. Section IV presents a summary and conclusions.

II. SIMULATION GEOMETRY AND METHOD

Our simulations were performed in a Couette geometry
(Fig. 1). The fluid was confined between two solid planar
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FIG. 1. Projections of particle positions onto the xz plane for
U=lor"", &,,=¢, p,=p, and {du?)=0.01d%. There are
N;=672 fluid atoms and N,, =192 wall atoms. The distance be-
tween solid walls is 12.8¢.

walls parallel to the xy plane with periodic BC’s imposed
along the x and y axes. Couette flow was generated by
moving the walls at constant velocity U in opposite direc-
tions along the x axis. Each wall consisted of atoms
forming two [001] planes of an fcc lattice. To maintain a
well-defined solid structure with a minimum number of
solid atoms, each wall atom was attached to a lattice site
with a spring. The spring constant « controlled the
thermal roughness of the wall and its responsiveness to
the fluid. « was adjusted so that the mean-squared dis-
placement about the lattice sites {(u2) was less than the
Lindemann criterion'® for melting: (8u?)/d*<0.023,
where d is the nearest-neighbor distance. For the results
shown, we used (8u?) /d*=0.01 or 0.

The interactions between fluid atoms were modeled us-
ing a Lennard-Jones (LJ) potential,

Vi(r)=4e[(o/r)2—(a /r)°], (1)

where 7 is the distance separating the atoms, and € and o
define the characteristic energy and length scales of the
fluid. This potential is easy to compute and has been well
studied. In addition, recent nonequilibrium MD simula-
tions of LJ fluids have shown that relatively small sys-
tems (~ 1000 atoms) reproduce many aspects of macro-
scopic fluid dynamics.*”*!" A LJ potential with energy
and length scales ¢,, and o, was also used for interac-
tions between wall and fluid atoms.

To reduce computation time, V;; was truncated at
r.=2.20. Results obtained for r,=30 were the same
within statistical fluctuations. Thus beyond these cutoffs
the potential is negligible compared to thermal energies.
However, decreasing r, to 20 or 1.80 produced
significant changes in the potential, BC’s, and even the
fluid viscosity.

The fluid temperature and density in most simulations
were fixed at kzT/e=1.1 and po*=0.81. This
represents a compressed fluid about 30% above the melt-
ing temperature. We then examined the variation of fluid
structure and velocity fields with changes in the effective
corrugation of the wall. The strength of the corrugation
was varied by changing ¢,/ /¢ at fixed 0,,/0=1. Two
wall densities, p,, /p=1 and 2.52, were studied to exam-
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ine the effect of wall-fluid commensurability.

Standard MD techniques were used.'? The equations
of motion were integrated using a fifth-order Gear
predictor-corrector algorithm with a time step of 0.0057,
where 7=(mo?/e)"/?. The layered link-cell method of
Grest, Dunweg, and Kremer'® was used to reduce the
computational effort involved in calculating interatomic
forces. A typical run at U=107"! required approxi-
mately 1007 to stabilize and 2007 for averaging. At lower
U or higher temperatures, additional averaging was
necessary to reduce thermal fluctuations.

Shearing the fluid introduces viscous dissipation which
gradually heats the system. A common method for re-
moving heat in MD simulations'? entails the ad hoc re-
scaling of the instantaneous atomic velocities v. Howev-
er, when the steady-state flow field is not known a priori,
velocity rescaling may bias the flow field."* Heinbuch
and Fischer recently observed this short of biasing in
simulations of flow through small pores.’ To avoid this
problem, we maintained constant temperature by adding
damping and Langevin noise terms'’ to the equations for
v,. Since the y component is perpendicular to the shear
plane,'® it maintains a well-defined equilibrium distribu-
tion provided the shear rate is low:!” y=2U/h <177},
where h is the distance separating the walls. In our simu-
lations, we used ¥ <0.167 ! and verified that velocity
profiles were essentially unchanged when the damping
and Langevin terms were removed. The BC results were
also independent of the values of U and A.

III. RESULTS

A. Layering normal to solid walls

Except as noted, our simulations were performed with
systems containing N, =672 fluid atoms and N, =192 or
352 wall atoms. The latter correspond to p,/p=1 and
2.52,  respectively. An  instantaneous  atomic
configuration, projected on to the xz plane, of a system
under shear is shown in Fig. 1. The system measures
h =12.80 between the walls, and 13.60 by 5.10 in the xy
plane. The wall velocity and density, and the wall-fluid
interaction are U =107, Pw/p=2.52, and ewf/s=1,
respectively.

Note the well-defined lattice structure of the solid
walls. This induces both normal and parallel ordering in
the adjacent fluid. Both types of ordering are indepen-
dent of U for low shear rates.”!” We first consider nor-
mal ordering since it affects our study of the velocity
fields, and previous work’ had attempted to correlate it
with flow BC’s.

Normal ordering in LJ fluids is well understood.'8~2°
Oscillations in the density are induced by structure in the
fluid pair-correlation function g(r), and the sharp cutoff
in fluid density at the wall. Typical time-averaged densi-
ty profiles observed in our systems are shown in Fig. 2.
Near the wall there are well-defined fluid layers corre-
sponding to density peaks. Beyond a distance of order
5o the oscillations are negligible and one finds the un-
structured density appropriate for a bulk liquid.

The magnitude of density oscillations is determined by
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FIG. 2. Profiles normal to the wall of (a)—(c) density and (d)
P,, for U=107"", {(8u2) =0, and the indicated ¢,;. The wall
density is p,, =p except in (c) where p, =2.52p. The heavy line
in (d) represents P,, averaged within fluid layers. The lighter
line shows P,, with a higher resolution.

two factors: the oscillations in g (r), and the wall poten-
tial. Increasing the temperature reduces structure in g (7)
and thus in the density profile. Most of our simulations
were done close to the melting temperature where the os-
cillations are largest. The wall potential determines how
well-defined the first layer is, which in turn determines
the size of successive oscillations. Note the sharp in-
crease in normal ordering as €, increases in Fig. 2. The
larger the potential, the larger the energy cost of devia-
tions from the favored position of the first layer.

Early analytical and numerical studies focused on sys-
tems with smooth continuum walls.'®!® In these systems,
the wall-fluid potential only depends on the distance z
from the wall. Atomistic walls introduce corrugations in
the potential felt by fluid atoms. This smears the first
fluid layer, and thus reduces the density oscillations.
Thermal roughness of the walls further decreases oscilla-
tions.

The structure normal to atomistic walls also depends
on the competition between two length scales: The solid
lattice constant and the molecular spacing of the fluid.
This competition affects not only the amplitude of the os-
cillations but also the location of the layers. For exam-
ple, as €, /¢ increases from 0.4 to 4 with p, /p=1, the
fluid layers become narrower and shift closer to the walls
[Figs. 2(a) and 2(b)]. For larger wall densities, the fluid
layers also sharpen as ¢, increases, but their positions
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do not shift significantly towards the wall [Fig. 2(c)].
This density dependence can only be understood in the
context of fluid structure parallel to the solid. A detailed
analysis of the latter is presented in Sec. III C. Here we
just note that increasing the wall density tends to de-
crease the effect of corrugations because fluid molecules
are too big to fit in local minima of the wall potential.
Thus the enhanced layering in Fig. 2(c) reflects both an
increase in the effective wall-fluid interaction (more wall
atoms) and a decrease in the effective in-plane corruga-
tion.?!

The density oscillations induce modulations normal to
the solid walls in many other microscopic quantities,
such as the velocity V(r)=V,(z) and the xz component
of the microscopic pressure-stress tensor P,,. The latter
quantity is plotted in Fig. 2(d) for a simulation with
€,r =4€ and p, =p. Note that peaks in P,, coincide with
peaks in the density [Fig. 2(b)]. The velocity gradient
shows peaks between the layers.

Our goal is to determine boundary conditions for the
equations of macroscopic hydrodynamics. For Couette
flow, one expects on very general grounds that the nor-
mal stress transmitted through the fluid P,, must be spa-
tially constant. The Navier-Stokes equations (NSE’s) fur-
ther predict that P,, =udV, /dz =const, where p is the
fluid viscosity. The oscillations on atomic scales in Fig.
2(d), and the apparent phase shift between oscillations in
P,, and the velocity gradient cannot be understood in
terms of macroscopic fields and the NSE. However, this
is not surprising since the equations of macroscopic hy-
drodynamics are derived assuming that quantities are
averaged over scales larger than the mean free path.?? In
liquids this is of order the atomic separation o. We find
that averaging V and P,, on this scale removes the oscil-
lations [Fig. 2(d)]. Beyond the first or second layer, these
smoothed quantities satisfy the Navier-Stokes equations
with a constant viscosity. In some cases, the structure
and the effective viscosity in the first fluid layers are
modified as discussed below.

The velocities and other quantities presented in the fol-
lowing sections were averaged within bins corresponding
to fluid layers. Averaging with Gaussian or other weight-
ing functions produced similar results as long as the
width was R 0.

B. Velocity fields and slip length

Velocity profiles were computed for a wide range of pa-
rameters. A sample of our results is presented in Fig. 3
for three wall-fluid interactions and two wall densities.
Squares indicate averages of ¥V, within layers, and solid
lines are fifth-order polynomial fits through these values.
The locations of the first layer of solid atoms on each side
of the fluid correspond to the vertical borders of the
plots. The dashed line in Fig. 3(b) represents the flow ex-
pected from hydrodynamic theory with a no-slip BC.
Note that it is linear and reaches U at the walls.

Figure 3 clearly shows that flow near solid boundaries
is strongly dependent on the strength of the wall-fluid in-
teraction and on wall density. We first discuss the case of
equal densities: p,/p=1. For ¢,,/e=0.4, the velocity
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profile is linear with a no-slip BC [Fig. 3(a)]. As ¢, in-
creases, the magnitude of ¥, in the layers nearest the
wall increases and the profile becomes curved. At
€,r/€=4, |V,|/U=1.00%0.02 in the first and second
layers [Fig. 3(c)]. This implies that the first two fluid lay-
ers are locked to the solid wall. Similar locking has been
observed in previous simulations.*>°

The flow boundary condition changes drastically for
unequal wall and fluid densities. At weak wall-fluid in-
teractions the velocity profile remains linear, but the
magnitude at the wall is less than U. For example, at
Pw/p=2.52 and ¢,,/e=0.4 [Fig. 3(a)], the magnitude of
the velocity at the wall is 0.641+0.03U. This velocity
difference between fluid and wall, or slip, decreases as the
strength of the wall-fluid interaction increases. By
€,r/€=1.8 [Fig. 3(b)], the first fluid layer has partially
locked to the solid wall, |V,|/U=0.95+0.01. At
sufficiently large interactions (g, /€ R 15), up to two fluid
layers lock to the solid, and the flow approaches that ob-
served for equal wall and fluid densities. However, a re-
gime was observed (1.8 5S¢, /e 56) in which a large ve-
locity gradient developed between the first and second
fluid layers [Fig. 3(c)]—slip occurred between layers
within the fluid. The origin of this behavior is described
in Sec. ITI C.

-5 0
z/o
FIG. 3. Velocity profiles for U=107"", {(8u?)=0, and the
indicated €, and p,,. The locations of the first layers of solid
atoms on each side of the fluid correspond to the vertical bor-
ders. Squares indicate averages of V, within layers, and solid
lines are fifth-order polynomial fits through these values. As
shown in (c), the slopes of the fits at z =0 are used to define L,.
Note that L; is negative for this case. The dashed line in (b)

represents the flow expected from hydrodynamics with a no-slip
BC (L;=0).
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The degree of slip associated with the velocity fields in
Fig. 3 can be characterized by a length L;. As shown in
Fig. 3(c), we computed this quantity by extrapolating the
flow field in the central region to U, and defining L, as
the distance from the solid wall to this point. A slip BC
corresponds to L, >0, while the usual no-slip BC corre-
sponds to L, =0. Negative values of L; quantify the de-
gree of locking between fluid and wall. The results of our
analysis are presented in Fig. 4.

We first consider the effect of stiffness of the solid wall.
Decreasing the stiffness increases thermal fluctuations in
the wall, as well as its responsiveness to adjacent fluid
atoms. As seen in Fig. 4, this increases L; —the wall and
fluid are more weakly coupled.

Figure 4 also shows that the wall and fluid are most
strongly coupled (L, is smallest) for p,, /p=1. This is not
surprising since, as shown below, epitaxial locking is easi-
est at equal wall and fluid densities. One expects a per-
fect slip BC (i.e., L;— ) in the limit p,,— o since the
wall is then effectively uncorrugated.

In general, L; decreases with increasing ¢, as expect-
ed. However, L, becomes multivalued and may increase
with €, for p,/p=2.52 and 1.85¢,,/e$6. As dis-
cussed above, the larger values of L, in this range are not
due to slip at the wall. Instead, slip occurs between fluid
layers. For both p,/p=1 and 2.52, L, approaches
~2.30 atlarge g,,;.

These variations in L; do not correlate well with the
changes in fluid ordering normal to the solid walls. As
€, increases, the amplitude of the density oscillations in-
creases and L, decreases. One might thus conclude that
greater order implies a stronger coupling and thus less
slip. However, increasing p,, also enhances the fluid lay-
ering, but increases L. Indeed, continuum walls produce
the largest degree of layering and complete slip. To un-
derstand this anticorrelation, the fluid structure parallel
to the solid surface must be considered.

C. Fluid structure parallel to walls

We have carried out a detailed analysis of the structure
within the fluid layers near the walls for different wall
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FIG. 4. L, for various €, at the indicated p,, and {8u?).
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{8u?)=0. The scales vary and the heights of the largest peaks

il
FIG. 5. P(x,y) (left) and S(k,,k,) (right) in the two fluid lay-
in S(k) are indicated. Wall lattice sites lie at the center and
corners of the unit cell for P.

properties and wall-fluid interactions. Two measures of
the ordering were used. The first was the two-
dimensional static structure factor S (k,,k,) evaluated in
the Ith layer according to
2

) ()

ik-r;
e

1

S,(k)=1/N,

where N; was the number of fluid atoms within the layer.
Note that the smallest possible resolution in k space is
determined by the size of the system in the xy plane. We
also calculated the spatial probability distribution P;(x,y)
of fluid atoms in the /th layer relative to solid lattice sites.
These lattice sites lie at the center and corners of the unit
cell shown in Figs. 5-8. Both S(k) and P(r) were com-
puted for the three fluid layers nearest the wall and aver-
aged over 1007.

FIG. 6. P(r) (left) and S(k) (right) in the three fluid layers
nearest the walls for the parameters of Fig. 5 except €, =1. 8.
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FIG. 7. P(r) and S (k) (right) in the two fluid layers nearest
the walls for the parameters of Fig. 5 except p,, =2.52p.

Figure 5 shows P(r) and S(k) for g, /e=0.4,
pw/p=1,and (8u?)=0. This system satisfies the no-slip
BC since L, =0. Self-diffusion in the xy plane within the
first fluid layer is the same as in the bulk fluid. However,
the solid induces modulations in P (r). Peaks in P, are lo-
cated at the centers of the sides of the unit cell, above
gaps in the adjacent solid layer. Fluid atoms are 12 times
more likely to sit over these gaps than directly over a wall
atom. This induced ordering is also evident in S,(k),
which shows several peaks. The main peak has magni-
tude 7.6. Note that increasing the thermal roughness of
the solid or the temperature of the fluid reduces the de-
gree of ordering. This is reflected in a broader spatial dis-
tribution, fewer harmonics in S (k), and thus a larger L,
(Fig. 4).

Epitaxial locking of the first layer to the solid occurs at
higher wall-fluid interactions. At €,r =1.8¢, the first lay-
er has crystallized and is locked into the wall potential
(Fig. 6). P,(r) shows that the fluid atoms in the first layer
are well-localized about the centers of the sides of the
unit cell. The mean-square displacement of a fluid atom
from one of these sites, [r2P(r)dr~0.017d?, is below
the Lindemann criterion for melting. S,(k) shows many

.

il

_—"';—._——"
——

FIG. 8. P(r) (left) and S(k) (right) in the two fluid layers
nearest the walls for the parameters of Fig. 6 except p,, =2.52p.
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sharp Bragg peaks, including several higher-order har-
monics. The magnitude of these peaks is consistent with
the Debye-Waller factor?> for the calculated mean-
squared displacement. The peak heights scale with the
number of particles per layer as expected for a solid. Fi-
nal evidence for crystallization is the absence of measur-
able diffusion within the first layer.

The peaks in P and S become progressively smaller and
broader in the second and third layers. Although the
second fluid layer has not crystallized at g,,/e=1.8,
diffusion parallel to the wall is roughly half that in the
bulk fluid. This layer crystallizes for ¢,,/eX 3. The
third layer never crystallized in our simulations even for
€,,/€=100 and r,=3. At this distance the ordering po-
tential from the wall is dominated by that from the neigh-
boring crystallized layers. Since this corresponds to the
case £, =€, there is no epitaxy even when the second
layer is completely crystallized. This explains the satura-
tion of L, in Fig. 4.

These crystallized layers correspond to a wetting phase
between the solid wall and the liquid. As shown by Hein-
buch and Fischer the number of solid layers decreases as
T increases further above the melting temperature.’
Solid wetting layers at solid-liquid interfaces are difficult
to detect experimentally. However, solid wetting phases
have been observed at many solid-gas interfaces.?* As
here, the phase typically extends over only a few atomic
layers.

Very different structures within the fluid layers were
observed in simulations with unequal wall and fluid den-
sities. Figure 7 shows the results for e, /e=0.4,
pw/p=2.52, and (8u?)=0. Note that the solid-induced
modulations in P,(r) observed for p,/p=1 are barely
evident here. Consequently, it is not surprising that there
is substantial slip: L;~1.8. Only for ¢, X e does the
main peak in S, (k) exceed ~3 and L; become negative.

In Fig. 8 we present results for g,,,/e=1.8. Note that
the contact layer is only partially locked to the wall po-
tential and there is no epitaxial ordering in the second
layer. The ridge between peaks in P,(r) results from the
incommensurability of fluid and solid layers. This
mismatch makes it more difficult for the first fluid layer
to move in towards the wall than in the case p,/p=1
[Figs. 2(b) and 2(c)].

For ¢, X 5 the first layer forms one of a family of com-
mensurate structures. An example is illustrated in Fig. 9,
which is a time-averaged projection onto the xy plane, of
all fluid atoms in the first layer for €, =5.5¢, p,, =2.52p,
and (8u?)=0. The positions were averaged over 257 at
U =0. Note that the fluid has the same periodicity as the
wall in the (11) direction, but a high-order (71/88) com-
mensurate structure in the (11) direction. The dynamics
of this structure are closely related to that of the well-
studied Frenkel-Kontorova model.?> It is only weakly
pinned to the substrate potential along the high-order
commensurate direction. In our sheared systems, the
drag from adjacent fluid layers was sufficient to depin the
structure leading to motion along the (11) direction. As
€,y increased, the density of the first layer increased and
it became more strongly pinned to the substrate. By
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FIG. 9. Particle positions, projected on to the xy plane, of
atoms in a wall layer (open squares) and adjacent fluid layer
(closed circles) for U =0, ¢,,,=5.5¢, p,,=2.52p, and (8u?)=0.
The positions were averaged over 257. Note that the fluid has
the same periodicity as the wall in the (11) direction, but a
high-order commensurate structure in the (11) direction.

€,r/€=15 the densities of the wall and the first layer
were equal and the first layer became completely locked:
V. .l/U=1.

There are two possible alignments of the high-order
commensurate phases because of their broken symmetry.
For 1.8S¢,,/e <5 domains of each orientation coexist-
ed. These domains were metastable and produced large
fluctuations in the observed slip BC (Fig. 4). Presumably
the fluctuations would average out in sufficiently large
samples.

Thus far, we have shown that the qualitative features
of fluid flow near solid boundaries can be understood in
terms of structure induced in the fluid. We now extend
this analysis by showing in a more quantitative fashion
how L, correlates with the in-plane structure. In Fig. 10,
L, is plotted against the main peak in the structure factor
S,(G,), where G, is the shortest reciprocal-lattice vector.
Results are shown for p,/p=1 and 2.52, kzT/e=1.1
and 1.4, (8u?)/d*=0 and 0.01, and 0.2<¢, /e <25.0.
Note that for each density, values of L at different T and
(8u?) collapse well onto a single curve. Moreover, for
L2 —10 [S,(G,)/5,(0)<0.3], the curves for different
densities collapse. This is rather surprising since G, is
not the same in the two cases. The two densities only
give different results at large S,(G,). In this limit the
first layer is locked and the flow BC depends on the cou-
pling between first and second fluid layers. This coupling
is higher for p, =p because the two fluid layers have the
same density. For p,/p=2.52 and large ¢,,, the two
densities are different and L, is larger.

If we consider a locked first layer as part of the wall,
S,(G;) should determine the slip boundary condition.
To check this correlation, L, was increased by 1 to reflect
the locked first layer and plotted against S,(G,). The re-
sults for both wall densities fall near the other values in
Fig. 10. Note that only systems with S,(G,)>0.55(0)
were considered. This includes all systems with
[V, |/U=1 in the first layer and a few systems with

strongly pinned high-order commensurate structures.
The correlation between S and the flow boundary con-
dition should not be surprising. The former reflects the
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FIG. 10. Correlations between L, and S,(G,) for systems
with  kpT/e=1.1 and <(du?)/d*=0 (circles), and
(8u?)/d*=0.01 (diamonds); kzT/e=1.4 and (8u’)/d*=0
(triangles), and {8u?) /d*=0.01 (squares). The open and closed
symbols indicate p,,/p=1 and 2.52, respectively. The starred
points denote S,(G,)/S,(0) and L;+1 for those systems with
S$1(G;)>0.58,(0) and L, > —20.

degree of positional correlation between atoms in the first
truly fluid layer and those in the underlying solid. The
latter reflects the effective viscous coupling between fluid
and solid.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have presented the first systematic
study of the structure and flow of LJ fluids near solid
boundaries. The effective BC for flow was quantified by a
slip-length L;. Both the structure and L varied widely
with the wall geometry and the strength of the wall-fluid
interaction.

The usual hydrodynamic no-slip BC (L; =0) arose nat-
urally for systems with equal wall and fluid densities.
However, at large €,,, epitaxial ordering was induced in
the first one or two fluid layers near the wall. These lay-
ers became locked to the wall and L; was negative. Slip
BC’s (L, > 0) were only observed at very weak ¢,

Increasing the wall density decreased the effective cor-
rugation of the wall, and reduced the amount of ordering
within the fluid layers. This increased the amount of slip
observed at small €,,,. The system was only able to over-
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come the elastic cost of epitaxy at large wall-fluid interac-
tions where commensurate structures formed in the first
fluid layer. These structures were initially high-order
commensurate in one direction. They were weakly
pinned in this direction, and continued to slide relative to
the solid. As ¢,, increased further, the density of the
first layer increased to that of the solid and it became
locked.

We showed that all of the changes in flow BC could be
correlated to changes in the degree of order induced in
the fluid. In particular, results for Lg for a variety of pa-
rameters were collapsed onto a single curve as a function
of the magnitude of the largest peak in the in-plane struc-
ture factor S of the first nonlocked fluid layer.

The crystallized layers adjacent to the solid walls cor-
respond to a wetting phase. In our simulation at most
two layers of this phase formed. Experiments indicate
that much thicker layers can form in some cases.?* This
would lead to large negative values of L,.

Variations in fluid structure and flow near solid sur-
faces can have a large impact on single- and two-phase
flow in confined geometries. For example, L, determines
the effective size of capillaries for single-phase flow and
thus the permeability of porous media. Preliminary stud-
ies of moving contact lines,?® intersections of fluid inter-
faces with solid surfaces, indicate that the amount of dis-
sipation increases rapidly as L; decreases. This may
reflect the increase in the effective viscosity of the first
few fluid layers. Sensitive dependence of dissipation at
the contact line on fluid structure near the solid may ex-
plain the large differences in experimental results for
homologous compounds.?’ Future work on single fluids
should address how the shape as well as the size of fluid
molecules affects flow BC’s.
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