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Analysis of exact enumeration data for self-avoiding walks attached to a surface
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An analysis of exact enumeration data for self-avoiding walks attached to a surface is consistent

with pl =0.694+0.004 and y» = —0.353+0.017 in three dimensions and consistent with the predic-

tions of conformal invariance theory in two dimensions. Estimates of y, are strongly influenced by

a confluent term in the generating function. We argue that this confluent term arises from a sum

over lattice layers required to construct the generating function. An analysis of the data that allows

for this confluent term is consistent with the scaling relation y, =y+ v.

I. INTRODUCTION Ctv
=g[Civ —Ct't(z)], (1.7)

The properties of self-avoiding walks (SAW's) attached
to an impenetrable surface have been extensively studied.
In particular, it is known' that the limits

where C~(z) is the number of walks with initial vertex at
a point distance z from the impenetrable surface, is

lim —lnC~'= lim —lnC~= lim —lnC~=lnp
w- X w- X w- N

C'-p X'
and scaling arguments lead to the prediction

(1.8)

(1.3)
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Scaling arguments lead to the result

(1.4)
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(1.1)

exist for the number of X-step walks in the bulk Cz, the
number of S-step walks attached to the surface by the in-
itial vertex Cz, and the number of walks attached to the
surface by both initial and finale vertices C&'. It is gen-
erally believed that the asymptotic behavior of these
quantities is described by

N~y —1

'Ys 7+~ . (1.9)

Results for the exponents in two dimensions obtained
by conformal invariance and close to four dimensions by
renormalization group methods are (inherently) con-
sistent with these scaling predictions. However, although
precise estimates of y& have been obtained in three di-
mensions by exact enumeration techniques, consistency
with the scaling relations [especially (1.9)] has been
difficult to achieve.

A particular difficulty of exact enumeration techniques
is that a knowledge of p for the lattice considered is, in
general, required to obtain the values of individual ex-
ponents. However, exact values of p are not, in general,
known. Here we shall consider the elimination of this
difficulty by the device of forming the ratios '

R =QCN(r)r C&-1V (1.6)

where v is the exponent describing the divergence of the
root-mean-square (rms) end-to-end distance R of the
walks

CN7CX ~

Cw /C

CN/CN . (1.10)

where C~(r) is the number of ¹tepwalks with end-to-
end distance r. More generally, if the values of the bulk
exponents and any one surface exponent are known, all
other surface exponents may be obtained from scaling re-
lations.

Similarly, the expected asymptotic behavior of the (glo-
bal) function

The generating functions for each of these ratios diverge
at unit value of the argument thus eliminating p as a vari-
ational parameter in the analysis. Consequently, the re-
sults obtained take the form of differences between a sur-
face exponent and the bulk exponent y. Both of the scal-
ing relations considered may be expressed in terms of
these differences and v. Since precise estimates of y are
available, we effectively obtain estimates of the surface
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exponents. A further advantage of this method is that

y&& is expected to be small and negative and such ex-
ponents are notoriously difficult to estimate by series
analysis techniques; however, the generating function for
the ratios Cz/Cz' has an exponent y —y»+1 which is
expected to be large and positive ( )2). In order to pro-
vide some feeling for the accuracy obtained when p is
eliminated in this manner, we have also analyzed the ra-
tios

gr C~(r)/C~

for the square and simple cubic lattices to obtain esti-
mates of the exponent v.

In Sec. II we briefly review the techniques used to ana-
lyze the exact enumeration data. Section III describes
the results obtained for v, y —

p& and p p]& ~ The
analysis of Cz/CN and reasons for the exceptional behav-
ior of the exponent estimates are discussed in Sec. IV. In
the summary in Sec. V we comment on the usefulness and
perceived precision of the analysis techniques used.

II. SERIES ANALYSIS

The singular behavior (of interest here) of the generat-
ing functions for the ratios described in Sec. I is expected
to be of the form

G(x)-A(1 —x) "[I+8(1—x) '+ ] . (2.1)

The confluent term with exponent (h —6, ) represents a
possible nonanalytic correction term and the ellipsis indi-
cates analytic and (possible) less singular nonanalytic
corrections. Our principal interest here will be the accu-
rate determination of h from the known coefficients in the
expansion of G(x)

G (x)=gg~x (2.2)

In all cases considered the coefficients gz are known for
%~)V,„, where N, „ is dependent on the series con-
sidered.

A. Neville table analysis

Defining

PN gN /gN —j

we construct the sequence

eN =N(PN 1) . —

(2.4)

(2.5)

The sequence eN is then zeroth-order estimates which are
expected to approach the value of (h —1) as N~ 00. The
sequences ez are linear extrapolants of these estimates
and higher values of r give higher-order extrapolations.

This procedure is expected to be e6'ective when the

An estimate of the exponent h may be obtained by con-
struction of a Neville table generated by the recursion re-
lations'

e~=[NeN ' (N r)e~ ', ]/r —. —

physical singularity at x, ( =1) is the closest to the origin.
For loose-packed (bipartite) lattices a singularity also
occurs at x = —x, and in this case the procedure must be
modified. For loose-packed lattices we de6ne

2 =
Pw IA'~x —2 ~

eN =N(pN —1)/2,

e~=[«~ ' (N —2r)e—w 21/2-r

(2.6)

(2.7)

(2.8)

In general, the columns corresponding to r =1 and
r =2 show the best convergence in the later entries (en-
tries for higher values of r tend to be unstable due to a
sensitivity to irregularities in the initial estimates). The
central estimates and error bounds quoted in the follow-
ing sections and tables are based on the later entries in
the column of the table which shows the best (apparent)
convergence and the stability of neighboring entries in
the table. Since the error bounds reflect only a judgment
on the stability and convergence of the estimates they are
subjective and, indeed, subjectivity in the error estimates
is a common feature of the methods we describe.

g'"'G'(x) =P' 'G(x) (2.9)

to O(N, „—1).
The pole of the [I/n] approximants closest to the ori-

gin on the positive real axis and the residue at this pole
provide an estimate of the x, and h, respectively. A plot
of the pole residue pairs shows a correlation between the
exponent and critical point estimates. An estimate of the
exponent corresponding to an assumed value of x, (in
particular for the generating functions corresponding to
the ratios in Sec. I x, = 1) may then be obtained by draw-

ing a smooth curve through the pole residue pairs. The
errors quoted for this pole residue method reflect only the
uncertainty in the drawn curve.

C. Baker-Hunter confluent singularity method

The above methods do not allow for the presence of
confluent singularities and may be adversely affected by
the presence of such confluent terms. The Baker-Hunter
method' attempts to deal with such singularities by
forming an auxiliary function y, such that g has simple
poles at 1/h, , 1/hz, . . . , where the h s are the ex-
ponents of the confluent terms. The first X,„+1 terms
of g are constructed from the known coefficients of G by
making the change of variable to y

e ~=(l —x/x, ) . (2.10)

B. D log Fade ayproximants

The D log Pade approximant ' method replaces the
generating function G(x) by its logarithmic derivative.
Since the logarithmic derivative is expected to have a
simple pole at x, it may be approximated by a [m/n]
Fade approximant formed by the ratio of two polynomi-
als P' ' and Q'"I of degree rn and n respectively chosen
to satisfy the equation
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The kth coefBcient of g is then obtained by multiplying
the kth coefficient of G(y) by k!. The location of the
poles in y may then be estimated from Pade approxi-
mants to this function.

III. TESTS OF THK SCALING RELATION
y+ & 2y] y I i

A. Estimates of v

Before proceeding to the analysis of the surface series
we present in Table I the estimates of the exponent v ob-
tained by applying the methods described in Sec. II to the
generating function +„C~(r)r IC& for the square and
simple cubic lattices.

For the square lattice the Neville table and Baker-
Hunter methods give values in good agreement with the
expected two-dimensional result v=0. 75. (In view of the
subjective nature of the error bounds the small discrepan-
cy with the Neville table results may be neglected. ) The
estimates obtained by the D log Pade method do not in-
clude the expected value of v within the error bounds.
This indicates that the error bounds obtained from
"pole-residue" plots should be treated with caution.

The results obtained for the simple cubic lattice by all
methods indicate a central value somewhat higher than
the value v =0.592+0.002 previously obtained by
analysis of exact enumeration data. However, the Ne-
ville table and Baker-Hunter methods are both consistent
with this if the error bounds are taken into account.

B. Kstimates of y —yl and y —y]i

the exponent for an f star attached to the surface by the
end vertex of one arm by y, (f), then

y(f) y—(f)

is independent of f. Exact enumeration results for y(f)
and y, (f) in two dimensions are available for f =3.
Combining the results of Refs. 13 and 14 we obtain
y(3) —y, (3)=0.39+0.07. Despite the wide error
bounds, the agreement of the central estimate with the
values reported in Table II (for f = I) is rather satisfacto-
ry.

In three dimensions only numerical results are avail-
able for comparison. We note that all methods give
reasonable consistency for y

—y, when a comparison of
the results for different lattices is made. Based on the
overall variation in the estimates in Table II we estimate

y
—yi =0.47+0.01 .

For the estimates y
—y» the best consistency is obtained

by the Neville table method. The D log Pade approxi-

TABLE II. Estimates of (a) y —
y& and (b) y —y» for the

square (sq), triangular (T) diamond (Di), simple cubic (sc),
body-centered-cubic (bcc), and face-centered-cubic (fcc) lattices.
Methods are labeled as in Table I. The dash indicates that
insufficient convergence was obtained.

Method
Lattice

TABLE I. Estimates of v for the square (sq) and simple cubic
(sc) lattices from the Neville table (1), D log Pade approximant
(2), and Baker-Hunter (3) methods.

Method
Lattice

sq

sc

0.7490
+0.0003

0.595
+0.003

0.746(5}
+0.001

0.5975
+0.0005

0.7500
+0.0013

0.599
+0.007

The estimates for the exponent differences y —y, and

y —y» are presented in Table II. Results for the two-
dimensional lattices may be compared with the predic-
tions of conformal invariance theory

y —y i =0.3906. . . ,

y» = 1 ~ 5313 ~

In all cases we obtain reasonably good agreement with
the conformal invariance results. This indicates that nei-
ther a strong background term nor a strong confluent
term are influencing the results in these cases. Recently,
scaling theory has been extended to more general struc-
tures. "' A consequence of this scaling theory is that if
we denote the bulk exponent for an f star by y( f) and

sc

bcc

fcc

sq

sc

bcc

fcc

(a) y —yl
0.390

20.001
0.389

+0.002
0.47

+0.01
0.4670

+0.0015

0.4685
+0.0020

0.4674
+0.0003

(b) y —y»
1.525

+0.010
1.515

+0.001
1.50

+0.03
1.50

+0.01
1.52

+0.01

1.52
+0.03

0.3870
+0.0008

0.385
+0.002

0.464
+0.001

0.458
+0.006

0.460
+0.008

0.450
+0.005

1.538
+0.002

1.530
+0.005

1.61
+0.01

1.47
+0.05

1.48
+0.09

0.393
+0.006

0.397
+0.012

0.456
+0.013

0.47
+0.09
—0.06

0.44
+0.12
—0.06

0.47
+0.04

1.56
+0.06

1.51
+0.02

1.50
+0.025

1.39
+0.06

1.44
+0.12
—0.06

1.47
+0.04
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mant and Baker-Hunter methods result in somewhat
scattered estimates for the simple cubic and diamond lat-
tices. Based on the overall variation in the estimates we
obtain

y yj&= 1 50+0.03

A convenient form for the scaling relation is

Using the above estimates for the exponent differences,
we obtain

2(y —yl) —(y —yii)= —0.56+0.05 .

While this is consistent with

v =0.592+0.002,

the large error bounds clearly defeat a precise compar-
ison.

It is notable that if we base our estimates on the Ne-
ville table results alone we obtain the more precise esti-
mates

y
—y i

=0.468+0.002,

y y&&
= 1 ~ 515+0.015

and adopting these values we obtain

2(y —y', ) —(y —y „)= —0.579+0.019 .

This apparent superiority of the Neville table may indi-
cate that the approximants are being influenced by an an-

alytic background term. (This is perhaps not surprising
since the singular part of the generating function for CN'

vanishes at x, .)

Adopting the Neville table results for the exponent
differences and

and

x, =0.24092

for the square and triangular lattices, respectively. A
second real positive pole corresponding to 6& ~1 was
clearly present. To obtain a value for the exponent y, 2 of
the confluent term [the analog of (h —6, ) in Eq. (2.1)] we

plotted the position of the second pole as a function of
the first pole position (Fig. 1) and read from this a value
of y, 2, assuming y, =y+ v= —",„and obtained

y,2= 1.375+0.008 .

We note that this is larger than, but numerically close to,
y. In two dimensions the correction to scaling exponent
is expected to be 6, ) 1. ' Hence the conventional
correction to scaling term does not explain the presence
of a confluence with exponent numerically close to y in
two dimensions. An analysis of CN/C~ for the three-
dimensional lattices indicates a value of y, —y
significantly higher than v=0. 592+0.002 in all cases
(Table III). It is noticeable that the analysis for the dia-
mond lattice, for which the longest C, series in three di-
mensions is available, results in somewhat lower values of
y, —y than those for other three-dimensional lattices.
We repeated the procedure of plotting the first and
second real positive pole positions in the Baker-Hunter
auxiliary function to the generating function of C~ (Fig.
2) for the three-dimensional lattices, assuming

x, =0.3474 (diamond), 0.2135 (simple cubic ), 0.1531(5)
(bcc), and 0.0996 (fcc). The approximants are less well
converged than those for the two-dimensional systems;
however, assuming that a single line may be used to
represent the correlation between the pole positions for
all of the three-dimensional lattices, we read from Fig. 2

y = 1.162%0.002,

we obtain

y i
=0.694+0.004,

yi) = —0.353+0.017 .

0.90-
O
CL

'e 4
O

0.86-
(h

IV. TESTS OF THE SCALING RELATION y, —y =v
0.82-

In two dimensions we may compare our results with
the conformal invariance value of v=0. 75. We find that
the Baker-Hunter method gives good agreement with this
prediction while the other methods give estimates which
are too high. This might be assumed to indicate that a
confluenee with 6

&

( 1 is present. Inspection of the
second pole on the real positive axis of the Baker-Hunter
auxilliary function indicated that such a confluent term
was present. To ensure that the apparent confluence was
not an artifact of analyzing the ratio Cz/Cz we repeated
the Baker-Hunter analysis for the Cz generating function
series assuming

x, =0.37905

0.78-

0.74-

I

0.474 0.476 0.478 0.480
First pole

FIG. 1. First (abscissa) and second pole (ordinate) closest to
the origin on the real positive axis, of the Baker-Hunter auxilli-

ary function to the series C, for the square (~) and triangular
(A ) lattices.
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TABLE III. Estimates of y, —
y from the series Cz/Cz.

Methods are labeled as in Table I. The dash indicates that
insufficient convergence was obtained was obtained.

stand this consider the argument that leads to the scaling
relation y, —y =v. For this purpose it is useful to divide
Cz into three parts

Method
Lattice

N

C~ g [C~ Cw(z)],
z=0

(4.1)

sq

Di

sc

bcc

fcc

0.765
+0.004

0.7634
+0.0002

0.615
+0.003

0.650
+0.015

0.65
+0.05

0.649
+0.002

0.77
+0.01

0.78
+0.02
—0.01

0.625
+0.025

0.60
+0.05

0.65
+0.05

0.740
+0.02

0.743
+0.002
—0.001

0.754
+0.007
—0.009

0.610
+0.025
—0.020

0.69
+0.09
—0.08

0.67
+0.15
—0.13

g+ a)

CN= g [Cw —C'(z)],
CO

(4.2)

C~ = g [CN —Cx(z)],
2 —g+ CO

(4.3)

where co=o(g). To evaluate C~ we assume the scaling
form

Ny+v —] (4.4)

C' (z) = 2 (zip) ' N~ 'p,

(this scaling form has recently been tested numerically' );
if this form is assumed throughout the range of the sum
required to construct Cz and we replace the sum by an
integral, we obtain

the value of y, 2 corresponding to y, =y+ v and

y = 1.162+0.002 and v=0. 592+0.002,

The scaling behavior for z »g has not (to the best of our
knowledge) been studied in detail for SAW's. However,
by analogy with the Ising model and mean-field theory
cases, ' we assume

y,~=1.21+0.02 .
C~ —C~(z) ~ exp( z/g)N~ —'p, (4.&)

This is, as in the two-dimensional case, higher than but
numerically close to y.

The probable source of a confluence with exponent
equal to y is the sum used to construct Cz. To under-

I.I0

O
l.00-

4i
(h

0.90-

6,80-

0.70-
l

6.54 0.56
I I

6,58 0.60
First pole

FIG. 2. First (abscissa) and second pole (ordinate) closest to
the origin on the real positive axis, of the Baker-Hunter auxilli-

ary function to the series C, for the diamond ( A ), simple cubic
(~), body-centered-cubic ( X ), and face-centered cubic (+ ) lat-
tices.

If this form is substituted into the sum for C~, we obtain

C+ ~ N&+ -»
N (4.6)

The essential point here is that the scaling forms for
C~(z) used to evaluate C~ and C~ are, in fact, only valid
in the regions z «g and z»g, respectively. Conse-
quently, these scaling forms should not be used in
evaluating Cz. In the region of z used to evaluate C&,
C~(z) and C~(z)have the same exponent but different
amplitudes. After performing the sum we obtain

(4.7)

if we assume that there is no correction to the N depen-
dence resulting from the variation in the amplitudes, and
co =a+ o(1), where a is a constant.

In what follows we shall assume, as a working hy-
pothesis, the presence of a confluent term with exponent
y. In two dimensions we do not expect other confluent
terms with similar exponents to be present. However, in
three dimensions an additional difficulty is the expected
presence of a correction to scaling term with exponent
y+v —5,. Estimates based on the e expansion predict
6,=0.5, ' in which case this term wi11 have an exponent
larger than, but very close to, y. A situation in which
two confluent terms with exponents that are numerically
very close together is expected to be very difficult to
resolve for the methods of analysis described here. The
procedure describe in the remainder of this section is ex-
pected to be most useful in the simpler case described for
two-dimensional systems.

Adopting the hypothesis that the generating function
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of Cz is of the form

G, (x)- A (x)(1—x/x, ) *+B(x)(1—x/x, ) (4.8)

TABLE V. Estimates of y, —y from the Euler transformed
series (1—pz)C& using the Neville table method described for
open (a) and close-packed (b) lattices.

f(x)- 2 (x)(1—x /x, ) '+B (x), (4.9)

were analyzed by each of the methods described in Sec. II
(Table IV). In addition, since the Neville table results for
the loose-packed lattices are sensitive to the singularity at
x = —x„we have applied the Euler transform

we multiply G, (x) for each lattice considered by
(1—x/x, )r using the values of x, given above and
y=1. 162 for three dimensions and y= —'„'=1.3438 for
two dimensions. The resulting functions, which are ex-
pected to be of the form

Method
Lattice

sq

Di

sc

bcc

0.751
+0.002
0.600

+0.001
0.62

+0.003
0.585

+0.015

0.758
+0.002

0.60
+0.01
0.63

+0.01
0.60

+0.02
—0.03

z = (1+x, )x /(1+x) (4.10)

to the generating function [prior to multiplying by
(1—z/x, )r] and used the Neville table analysis for the
resulting f (z) (Table V). In general, this improves the
convergence of the first Neville table column, but the cen-
tral estimates are not strongly aftected. In the Neville
table analysis the r =0 column is, generally, the best con-
verged and the error bounds for the Neville table method
in Tables IV and V reflect only the spread in the last few
entries of the r =0 column of the Neville table.

In two dimensions the results for the square lattice are
in good agreement with y, —y =v. In particular, the Ne-
ville table method gives excellent agreement with the ex-
pected y, —y= —,'. The Baker-Hunter method also gives
good agreement with the scaling relation for the triangu-
lar lattice.

For three-dimensional lattices, the Neville table
method gives the most consistent results (between lat-
tices) and the results obtained are in good agreement with
the scaling relation. The Baker-Hunter method results
are also consistent with this, though spread through a
rather wide range. Again we note that the longer dia-
mond lattice series tend to give results closer to the ex-
pected value of v for a given method. We have also re-
peated the D log Fade approximant analysis for the dia-
mond lattice using the most extreme values for x, and y
allowed by the published error bounds. ' However, the
resulting change in the estimates of y, —y are small com-
pared with the discrepancy with the expected value of v.

V. SUMMARY

sq

Di

sc

bcc

fcc

0.75
+0.03

0.59
+0.03

0.605
+0.005

0.58
+0.03
=0.6

0.779
+0.001
=0.75

0.64»
+0.02

0.720
+0.004

0.77
+0.02

0.746
+0.017
—0.015

0.600
+0.002

0.53
+0.13
—0.10

0.59
+0.03
=0.61

TABLE IV. Estimates of y, —
y obtained from the series

(1—px)yC, . The D log Pade approximant method for the tri-
angular lattice gives exponents close to the expected —,but

values of x, =0.2406 rather than the expected x, =0.2409 (c.f.
Refs. 18 and 23). The last few entries in the r =0 column of the
Neville table for the triangular lattice give estimates of
y, —y=0. 737, but these have a persistent upward trend. En-
tries marked by an asterisk required extrapolation from one side
in the pole-residue plot. The dash indicates that insufficient
convergence was obtained.

Method
Lattice

Our principal aim has been a numerical verification of
the scaling laws relating surface and bulk exponents for
self-avoiding walks by the analysis of exact enumeration
data. In addition to the methods described in Sec. II, we
have also used the inhomogeneous partial differential ap-
proximant method' and the confluent singularity
method based on a generalized Roskies transformation.
These methods give results consistent with those de-
scribed above. However, the Adler method did not indi-
cate a confluent term more singular than the first analytic
correction term in any of the cases studied.

As a test case we analyzed the ratios Q„C~(r)r /C~
(Sec. IIA). Our estimates (Table I) are consistent with
the expected values of v= —,

' for two dimensions and
v=0. 592+0.002 for three dimensions, though the central
estimates in three dimensions favor slightly higher values.

Applying the techniques described in Sec. II to the ra-
tios C~/C~ and Cz/Cz' (Sec. IIB) we obtain estimates
of y —y, and y —y» (Table II). These estimates are con-
sistent with the scaling relation y —v=2y& y» and in
two dimensions are consistent with the predictions of
conformal in variance theory. Combining our results
based on the Neville table analysis with the result

y = 1.162+0.002 in three dimensions, we obtain

y i =0.694+0.004,

y» = —0.353+0.017
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In Sec. IV we have attempted to test the scaling rela-
tion y, —y=v. With the exception of the Baker-Hunter
analysis for the two-dimensional lattices, all methods of
analysis applied to the ratio C~/C~ resulted in estimates
of y, —y too high to be consistent with the scaling rela-
tion. Further examination of the poles of the Baker-
Hunter auxiliary functions to C~/C~ and C~ revealed
the existence of a confluent term with an exponent nu-
merically close to y. We have argued that a confluent
term in Cz with exponent y arises from the summation
over a region z =g in the formation of Cz. To test this
hypothesis we multiplied the generating function of C~
by (I —x/x, )~ and analyzed the resulting function. In
two dimensions we obtain good agreement with the pre-
diction y, —y= —,

' obtained from the scaling relation and
conformal invariance value of v. In three dimensions the
Neville table analysis for the diamond lattice indicates

y, —y =0.60+0.01,
and the results obtained for other lattices are consistent
with this but with wider error bounds. This is in good
agreement with the scaling relation. It should be recalled
that in three dimensions we also expect a correction to
scaling confluent term with 5, &1. The presence of this
term would certainly be expected to interfere with the
analysis and it is perhaps not surprising that our best
behaved results are from the analysis technique which as-
sumes the least about the form of the function, that is,
from the r =0 column of the Neville table. We conclude
that the leading exponent of Cz does obey the scaling re-
lation y, —y=v, but the analysis of this function is
strongly affected by the presence of a confluent term with
exponent y.

Lastly, we comment on the use and perceived precision
of the analysis techniques. In general, a comparison of
the results for different lattices indicates that the error es-
timates obtained by considering the results for a single
lattice from a single method of analysis may be over op-
timistic. More importantly, each method of analysis
makes assumptions regarding the form of the function be-
ing analyzed. As an example, consider the Baker-Hunter
analysis which, as we have demonstrated, is useful for
identifying and dealing with confluent terms. It is not
difficult to see that if the function to be analyzed contains
an additive or multiplicative analytic term that can be ex-
panded about x, and is such that the coefficients in the
expansion do not vanish at high orders, the auxiliary
function will have a set of poles on the real negative axis
close to the origin. In the worst possible case this will be
a dense set arbitrarily close to the origin. A Pade approx-
imant analysis of the auxiliary function will certainly be
aff'ected by such a set. (Experience with this method
shows that, in general, defects on the negative axis and
close to the origin will appear in the approximants and it
has previously been noted ' that if x, is used as a varia-
tional parameter, the approximants are well converged
for values of x, such that the defects appear on the nega-
tive part of the axis only. ) On the other hand, an additive
analytic term is (expected to be) innocuous in a Neville
table analysis.
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