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Acousto-optical four-wave-mixing processes in compressible artificial dielectrics

D. Rogovin
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Compressible artificial dielectrics, such as bubbly fluids, have sufficiently large acousto-optical
coefficients that they can be utilized as nonlinear media for acoustical-optical four-wave-mixing pro-

cesses in which two of the input beams are sound waves and the other two are electromagnetic
waves. We examine frequency shifting and acoustic-beam deflection at visible wavelengths as well

as acoustically pumped optical phase conjugation at microwave frequencies in these media.

I. INTRODUCTION

Several years ago, Shiren, Arnold, and Kazaka'
achieved an acousto-optical analog of optical phase con-
jugation via degenerate four-wave mixing in glasses and
generated a backward-wave phonon echo. These experi-
ments, conducted at 9 0Hz, involved the generation of a
time-reversed acoustic pulse in response to a pulsed
acoustic signal utilizing microwave beams as the pump
waves. Their results, which are of interest in themselves,
stimulate one to examine the reverse effect, i.e., acousti-
cally pumped optical phase conjugation. For this pro-
cess the probe and conjugate beams are electromagnetic;
but the pump waves are acoustical beams. More general-
ly, we investigate acousto-optical four-wave-mixing
(AOFWM) processes, in which we seek to control the
electromagnetic beam's phase, frequency, or propagation
direction. To date, such processes have not been studied
in great detail and this paper examines the feasibility of
achieving AOFWM processes in compressible, artifical
dielectrics. More precisely, we present a theory of
acoustically pumped phase conjugation of microwave ra-
diation as well as beam deflection and frequency shifting
of visible light by higher-order acoustic index gratings in
compressible artifical dielectrics.

Our motivation for utilizing compressible artifical
dielectrics arises from the large acousto-optical
coefficients that these media possess. For example, the
first-order correction to the optical dielectric constant of
a bubbly fluid, e, (Q), arising from sound waves of fre-
quency 0 is

e, (Q) = —9e„fo[(e„—1)/(e„+2)](p/3ypo)R (Q),

pressure is 3 kPa, e, /e„=2.5X10 . This is three orders
of magnitude greater that its value in the absence of the
microbubbles and encourages one to consider higher-
order processes with such two component, compressible
media. The studies presented here suggest that the
acousto-optical coefficients of this class of active media
are sufficiently large, that a variety of AOFWM processes
should be experimentally accessible. In contrast, we find
that the efficiencies for AOFWM processes, in which the
signal waves are electromagnetic, are essentially negligi-
ble for most solids and liquids due to the fact that they
are not sufFiciently compressible.

This paper is organized into four sections, of which
this, the first, is the Introduction. In Sec. II, the problem
of AOFWM processes is formulated and the physics of
counterpropagating pump-induced index gratings in opti-
cal media is examined. Such index gratings are of
paramount importance for achieving AOFWM processes
in compressible artifical dielectrics. In Sec. III, we inves-
tigate acousto-optical frequency shifting and beam
deflection of visible radiation by these second-order
acoustically generated index gratings. We also study
acoustically pumped microwave phase conjugation in
compressible artifical dielectrics. Detailed numerical re-
sults are presented and we discuss possible experimental
verification of these theories. Finally, in Sec. IV we
present our conclusions and to underscore the unique
properties of this class of nonlinear media, contrast them
to typical liquid and solid-state media.

II. BASIC CONCEPTS
AND PROBLEM FORMULATION

where et, is the dielectric constant of the host fluid, fo is
the equilibrium volume fraction of bubbles, e, is the ratio
of the dielectric constant of the bubble to e&, p is the
pressure generated by the sound wave in the fluid, y is
the ratio of the specific heats, R(Q) is the bubble
response function which peaks at Q=QO, the resonance
frequency and po, the ambient pressure. For a compressi-
ble, artifical dielectric composed of a 1% volume fraction
of 2.5-pm bubbles, irradiated by a sound wave whose

A. Counterpropagating pump-induced index gratings

In optical phase conjugation, both static and dynamic
index gratings are created by the nonlinear interaction of
electromagnetic waves in a material medium. For most
nonlinear media, the coupling between the probe wave
with either pump beam will generate a number of static
index gratings. These gratings are periodic, with spatial
periods,

(2.1)
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and contain all of the phase information impressed on the
probe wave. Here, +K refers to the two counterpro-
pagating pump waves and Q is the probe wave vector.
Phase-conjugate radiation is generated in the following
fashion. The +K pump beam and the probe couple to-
gether to create an index grating with spatial periodicity
A . This grating coherently scatters the counterpro-
pagating pump beam to produce a wave that is phase
conjugate to the probe. A similar event occurs with the
A+ grating.

The counterpropagating pump waves can couple to
produce two different types of index gratings: (i) a static
grating with a spatial period of 2K and (ii) a spatially uni-
form high-frequency index grating, which oscillates at
twice the laser frequency, i.e., 2'. The static pump grat-
ing can lead to modulation effects in phase conjugation
which have been discussed elsewhere. For most non-
linear media, the high-frequency, spatially uniform index
grating plays no role in phase conjugation. However, for
sufficiently fast media, usually those whose nonlinear
response is essentially electronic, phase-conjugate radia-
tion can be produced by a process similar to parametric
downshifting of the probe wave. Specifically, the probe
beam is scattered by this high-frequency index grating
and its frequency is downshifted, i.e., co~co —2'= —co.
To obtain a greater understanding of the physics of this
grating and how it itnplies the possibility of acoustically
pumped microwave phase conjugation, we review phase
conjugation in optical Kerr media.

We suppose that an optical Kerr medium, character-
ized by a third-order susceptibility g' ', is irradiated by
coherent light. The dielectric constant e(r, t) is

ing t~ —t, i.e., time reversal or phase conjugation. In
fact, we have

PN„(r,t)= —vrE y' 'Eo(e, .ez)(E /2)e

Xexp[i(Q r+cot)]+c.c. (2.6)

Next, we determine the contribution of this term to the
four-wave-mixing coefficient ~. Inserting the expression
for the nonlinear polarization into the wave equation for
the conjugate wave, making the slowly varying envelope
approximation (SVEA) and assuming a steady state, we
have

dE&(z)/dz= 2im—Ky' 'Eo(e, ez)(E~/2)e~, (2.7)

which implies a contribution to the four-wave-mixing
coefficient of

a.=2mEy' '(e, ez)EO . (2.8)

The only feature of this index grating that is crucial to
phase conjugation is the fact that it oscillates at twice the
probe frequency. Other electrical quantities that appear
in Eq. (2.4) are the pump energy density U „=Eo/8m,
the scalar product (e, e2) of the pump polarization vec-
tors, and the nonlinear susceptibility y' '. It follows that
optical phase conjugation should be possible with other
types of pump waves, provided the active medium has an
analog of y'3', denoted by 5, which couples the probe
wave to the pump beams to create a nonlinear polariza-
tion. Specifically, if the electromagnetic waves are re-
placed by acoustic waves, the mixing coefficient for
acoustically pumped, optical phase conjugation is

e(r, t) =eo+4my' 'E (r, t) . (2.2)
lc=2nE5A~„~ .. (2.9)

Here eo is the linear dielectric constant of the medium
and E(r, t) is the electric component of the total radiation
field, which we write as

E(r, t) =Eoe, cos(K r tot)+Eoe2—cos(K r+cot)

+(E~/2)epexp(iQ r cut)+c —c.(2.3)

If the medium response time r»1/co, then Eq. (2.2) is
averaged over a time long compared to the optical
period, but short compared to the response time.

Focusing on the contribution to the dielectric constant
arising from the two pump waves and denoting this by
5e(r, t), we have

B. Acousto-optical interactions

Following standard procedure, we write the energy
density UT as

UT = Uq + U~ + UAO (2.10)

U„=c''A /2!+c' 'A /3!+c' 'A /4!+ (2.11)

where the first term refers to the acoustic energy, the
second to the energy associated with coupling of the
medium to any electrical or electromagnetic fields, and
the third is the acousto-optical interaction. The different
energy densities, in turn, consist of the following:

5e(r, t)=2m'' 'Eo(e, e2)[cos(2K r)+cos(2cot)] . (2.4)
where A is the acoustic amplitude, usually a tensor, equal
to

PN„~(r,t)=5e(r, t)E(r, t) . (2.5)

The spatially varying component of this grating, i.e., the
cos(2K r) does not directly give rise to a phase-conjugate
wave. However, the spatially uniform piece will down-
shift the probe wave by 2'. This is equivalent to rep1ac-

In Eq. (2.4), we have assumed that the medium exhibits a
broadband response for simplicity. This is not a neces-
sary condition and the derivation below can be general-
ized to more realistic frequency responses. The nonlinear
polarization PNL ~(r, t) generated by this index grating is

Bit( Bit(.

ij 2 (2.12)

with u; the displacement and x the position. A,-~ is di-
mensionless and equal to the acoustical displacernent of
the material divided by a characteristic length. For pho-
nons, A; is on the order of a typical lattice displacement
divided by the atomic separation, usually 10 or less.
The coefficients e" are constants with dimensions of
N/m or J/m . The coupling to the electromagnetic field
1S
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U =y"'E /2!+y' 'E /3!+y' 'E /4!+ (2.13) constant by 1.7 X 10 at visible wavelengths and
3.6X10 at microwave frequencies.

where E is the electric component of the radiation field

and the coefficients g" are the different nonlinear suscep-
tibilities. Finally, the acousto-optical interaction is

U~o=aAE+PEA +5E A + . (2. 14)

For most material media, P is on the order of 1 —10
N/m and 5 is about equal to Py' '/y' ' implying values

of order 10 or less.

C. Nonlinear acousto-optical coef5cients
for compressible, artifical dielectrics

E=Ep [ 1+3[(E,—1)/(e„+2)]fo] (2.15)

An acoustic wave will give rise to both volume pulsations
and shape deformations. If the microbubble is small
compared to the acoustic wavelength, then only its size
will be altered and the acoustic amplitude A is

Suspensions of compressible microparticles should
have large acousto-optical coefficients and are logical
media for AOFWM processes. At visible wavelengths,
an aqueous suspension of bubbles whose dimensions are
much less than the wavelength of the incident light can
be utilized. At microwave frequencies, nonaqueous sus-
pensions of compressible microparticles must be used to
ensure that the incident microwave radiation will propa-
gate in the host fluid. Finally, an aerosol of plant cells
might be suitable for infrared wavelengths.

We first evaluate the coefficient for AOFWM processes
in a bubbly medium assuming that the host fluid is com-
pletely passive to both acoustic and electromagnetic radi-
ation. The expression for the dielectric constant of a
two-component medium is

III. FOUR-WAVE-MIXING
ACOUSTO-OPTICAL PROCESSES

In Sec. III A frequency shifting of visible laser light in
a bubbly medium is studied. In Sec. IIIB we examine
beam deflection and in Sec. III C acoustically pumped op-
tical phase conjugation of microwave radiation in the
same medium is discussed. Finally, Sec. IIID is con-
cerned with possible experimental confirmation of these
theories.

An expression for the radial pulsations of a microbub-
ble driven by a sound wave of frequency 0 and wave vec-
tor K is required. The sound wave generates a sinusoidal
pressure of amplitude p

p(r, t)=p cos(K r —Qt), (3.1)

Qo=(3ypolpro)" . (3.3)

Solving Eq. (3.2) for the fractional change in the bubble
size, we find

which tends to compress and expand the microbubbles.
To simplify matters, the microbubbles are assumed to
respond linearly to the acoustic waves, so that the equa-
tion of motion for 5r (t) is

d25r d5r
2 +(Qo/Q) +Qo5r = (PIPro)cos(—K r —Qt),

dt

(3.2)

with Q the bubble Q. The microbubble's resonance fre-

quency is equal to the speed of sound divided by the bub-
ble size

A =5rlro . (2.16) 5r(r, t)lro= —(p/3ypo)R(Q)cos(K r Qt+!(}),—

Here ro is the equilibrium bubble radius and 5r is the
change in bubble size due to the applied sound waves. To
evaluate the dielectric constant when the suspension is
driven by sound waves, the equilibrium volume fraction
in Eq. (2.15) must be is replaced by its instantaneous
value. Thus fo~f (r, t)=4mNR (r, t)/3 with N the mi-
crobubble density and R (r, t) the instantaneous bubble
radius (of the microbubble located at the point r) which
oscillates in time due to the impinging sound waves. The
third-order susceptibility can be extracted from the ex-
pression above by noting that

R (Q) —Q2/[(Q2 Q2)2+(Q Q/g)2]1/2

sin!!}=(QoQ)/[Q[(Q'—Qo) +(QoQ/Q)']'~'j .

(3 4b)

(3.4c)

If instead of a bubble a hollow flexible shell of thickness
h «r, is used, the resonance frequency Os is

(3.4a)

where the response function R (Q) and the phase lag P
between the microbubble pulsations and the acoustic
pressure wave are

R (r, t)=ro+5r(r, t), (2.17) Qs = ( 3P ~ ro /Ps h ) Qo &&Qo ~ (3.4d)

and identifying the coefficient of the term proportional to
5r,

where ps (p&) is the shell (air) density.
For counterpropagating pump waves, the induced non-

linear index grating is

y=9E„[(e„—1)l(e„+2)]fol4m . (2.18) 5e(r, t)=0 5foez [(e„—1)l.(e, +2)][pR (Q) lypo]
For an aqueous suspension of microbubbles, with a
volume fraction of 1%, 5=6X10 at visible wave-
lengths. In the microwave region of the spectrum, a no-
naqueous suspension of microbubbles with the same
volume fraction has 6=2.87X10 . Thus, if the bubble
size changes by 10%%uo, AOFWM will change the dielectric

X[c s2o( tQP+)+c 2oKsr] . (3.5)

The first grating oscillates at twice the acoustic frequency
and gives rise to frequency shifting if 0 (&co, the optical
frequency. If A=co, then this grating will backscatter the
optical beam to form its phase conjugate. The second
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grating is static in nature; however, it is spatially periodic
and will deflect the light beam without shifting its fre-
quency. This feature discriminates the AOF%'M process
from any second-order diffracted light arising from the
standard acousto-optical scattering, i.e., the effect of
first-order changes in the composite's dielectric constant.
On resonance, 5e(r, t) attains its maximum value

5e(r, t) =0.5foe„[(e,—1)/(e„+2)](pQ/ypo)'

X(cos2K r —cos2Qot) . (3.6)

A. Optical frequency shifting by counterpropagating
acoustic beams

(3.7)

The oscillating grating will up- and downshift the in-
cident radiation in multiples of 20. Spectrally decompos-
ing E (r, t) via

The physical situation is depicted in Fig. 1. Two coun-
terpropagating sound waves drive a bubbly fluid to form
the index grating described by Eq. (3.5). Phase mismatch
can be utilized to isolate the effects of these two gratings
on a probing laser beam. In particular, the phase
mismatch associated with the static grating can be max-
imized by employing a configuration in which the light
beam propagates parallel to one of the sound waves. For
this configuration the phase mismatch parameter is KL
(L is the optical path length) and for 100-MHz sound
waves with a 1-cm path length, KL exceeds 10 . Thus
beam deflection by the static grating can be ignored and
we may examine frequency shifting due to the oscillating
grating in isolation.

The electric field amplitude of the radiation field obeys
the wave equation

T

18 62~
V — E(r, t)= — [E(r,t)cos2Qt] .

v Bt 2c Bt

wave equation and making the SVEA, we find that the
amplitudes A obey the differential-di8'erence equations

2
2m 0 4mkQ

U U

E' CO

2c
(3.10)

Equation (3.10) is a Bessel function recurrence relation, '

provided co is replaced by co, which is justified for all
reasonable values of m. Thus, if the optical path length is
L, then

A =( i) J—(e2kL/2@I ) . (3.11a)

The intensity of the mth shifted beam I (Q) is

I (Q)=I(IJ fo kL
~r 1 pR (Q)
6'„+2 2ppp

(3.11b)

where Ip is the initial laser intensity. Figure 2 depicts the
frequency dependence of the intensity for the m =0, +1,
and +2 components for the case of an aqueous suspen-
sion containing 1% volume fraction of 0.25-)um bubbles.
The suspension is irradiated by an Ar+-ion laser beam as
well as two counterpropagating acoustic beams, each
with an intensity of 1 W/m . The microbubbles have a Q
of 10. An examination of this figure reveals the follow-

E CO

(A I+ A +, ) . (3.9)
2c

For sound waves, A&&co, and it is clear that phase
mismatch is negligible. In particular, for this process the
phase mismatch parameter is 4=QL /v, which is on the
order of 0.1 for a 1-cm pathlength, Ar+-ion laser light,
and Q = 10 cycles/s. Accordingly, Eq. (3.9) reduces to

E(r, t)= g A exp[i(lt r —cv t)], (3.8)

with ~ =co+2mQ, inserting this expression into the

COUNTERPROPAGATING
ACOUSTIC BEAMS

"tII

II' ~I!~'ll=::,I

[(II
I O'I as sa~

OPTICAL .
I

Il 'I I' . SHIFTED
BEAM Ij

g: . :II OPTICAL
BEAM

0.8 0.9

I

I

1.2

FIG. 1. Parallel beam configuration for frequency shifting of
optical beams by a uniform, high-frequency index grating creat-
ed by two counterpropagating sound waves.

FIG. 2. Intensities of the unshifted and first two shifted com-
ponents for acoustic intensities of 1 W/m, l%%uo volume fraction
of 0.25-pm bubbles and Ar+-ion laser light.
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ing: off-resonance, i.e., ~
0—Qp ~ /Qp & 0. 15 very little ra-

diation is shifted. As the acoustic frequency is tuned to
resonance (Qp =8 X 10 ), significant radiation is up- and
downshifted into the co+20 modes. Further tuning to-
wards line center gives rise to higher efficiency for fre-
quency conversion to these modes and significant
amounts of the second sidebands, i.e., coz=co+40 appear.
Further in towards line center, the first sideband intensity
decreases and the second sideband begins to dominate the
line spectra. The fundamental mode vanishes altogether
at 0.960p. At line center, the second sideband dominates
the spectrum.
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B. Optical beam de8ection by counterpropagating
acoustic beams

Next, we examine beam defiection by the static index
grating. To isolate the effects of this grating from the one
studied above, we again resort to phase mismatch. The
phase mismatch parameter for the high-frequency grating
is 4 =0L /U, which must be on the order of 10 to ensure
that this grating can be ignored. For 0=10 cycles/s, 4
will exceed 10ifL &200 cm.

The wave equation for the electromagnetic wave is

V — E(r, t)= — k E(r, t)cos(2K.r),2 1 8 e2 2

v Bt

(3.12)

which tends to deflect light at angles 8, given by

tang =2mK/k . (3.13)

The electric field can be conveniently decomposed into a
series of deflected components A via

E(r, t) = g A exp[i(k r rot)], — (3.14)

elk
(A )+ A~+2) . (3.15)

2Ep

where the amplitudes obey the differential-difference
equation

4mK(k cos%+mK)A —2i(k+2mK) VA

FIG. 3. Beam geometry for optical deflection via the static,
spatially periodic grating generated by two counterpropagating
pump waves.

and the undeflected beam intensity is

e„—1
Ip(L) =Ipcos fp e„+2

pR (0)
21'Pp

(3.16b)

Figure 4 depicts the intensity of the defiected and
undefiected waves as a function of the acoustic wave fre-
quency.

C. Acoustically pumped microwave phase conjugation

a „(0)=2m Kfpal, [(e,—1)/(e, +2))[pR (0)/ypp]

(3.17)

We consider a nonaqueous suspension of microbubbles
irradiated by two counterpropagating acoustic pump
beams and a microwave probe beam which is orthogonal
to the pumps, as depicted in Fig. 5. This configuration is
chosen to minimize acoustic losses and is discussed in
Sec. III D 2. To simplify matters we neglect any gratings
created between the acoustic pump waves and the elec-
tromagnetic probe beam. The analysis of Sec. II gives the
following value for the four-wave-mixing coefficient Kg ..

In deriving Eq. (3.15), we have made the SVEA and 4 is
the angle between K and k. For this case, phase
mismatch is a serious issue. In particular, the mismatch
parameter for defiected light of order m is 2mKL (K/k).
For visible light and Q = 10 cycles/s, K/k (0.03, KL is
on the order of 10 or more, so the angle %' must be ad-
justed. If we set 4'=m/2+E/k, then only the m = —1

mode or the m =+1 mode will appear. Thus we must
employ a configuration in which the acoustic and optical
beams are nearly orthogonal to one another, as depicted
in Fig. 3. For either case, the intensity of the deflected
beam at L is

0.8--

0.6--

0.4--

0.2-- I+)(L)

I

0.6

lo(L)

I

1.5
I

2

e, —1
I~, (L)=Ipsin2 fp E„+2

pR (0)
2Tpo

(3.16a) FIG. 4. Intensities of various components of the deflected
light by the second-order acoustical gratings.
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EXITING CONJUGATE NAVE

ACOUSTIC PUMP BEAMS

EXITING PROBE 0.25 - ~.

0.2--
III

0.15--

0.1--
p = 0.3pp

FIG. 5. Beam configuration for acousto-optical phase conju-
gation in a bubbly medium.

0.05--
p = 0.2p~

p=0-ipo .
1.02 1.04 1.06 1.08

«„(Q)=(!rfo/4A,)(p/ypo) (Qo/Q) (3.18)

For p/pa=0. 2, Qo/Q=0. 1, and a volume fraction of
20%%uo, the four-wave-mixing coefficient is on the order of
10 for 10-cm radiation. If Qo/Q=0. 75, and the other
parameters have the same values, a& =2.5X10; then,
~~L =0.1 for optical path lengths on the order of 400
cm. These values of p/po require very mild acoustic
pressures, approximately 20 W/m . 10-cm radiation cor-
responds to a few gigahertz; which implies microbubble
sizes on the order of several hundred angstroms.

On resonance, the four-wave-mixing coefficient is

«„(Q)=2!rKfoel, [(e,—1)/(e„+2)](pQ/3ypo), (3.19)

where we have used the expression for the resonance fre-
quency of a microbubble. For a bubble Q of 10, 500-
MHz radiation, a volume fraction of 20% and an acous-
tic pressure of 20 W/cm, the four-wave-mixing
coefficient achieves a value of 0.03, so that optical path
lengths on the order of several meters should be sufficient
to readily observe the effect. Note that for resonant sys-
tems acoustic absorption will be a problem.

Figure 6 depicts the frequency dependence of the four-
wave-mixing coefficient for a nonaqueous suspension of

Note the sensitive dependence on the frequency since
«„(Q)declines as (Q —Qo) far from resonance, so that
the efficiency decreases as (Q —Qo) in the small signal
regime. As a specific numerical example, consider the sit-
uation in which Q»QO where, with A, the radiative
wavelength,

FIG. 7. Efficiency for generating phase conjugate radiation
using a 1% volume fraction of microbubbles.

consisting of a l%%uo volume fraction of microbubbles. The
bubble Q was chosen to be 5, with e, =0.5 and et, =2.
The suspension is irradiated by 2.4-6Hz microwave and
acoustic radiation. The frequency dependence of the
four-wave-mixing coefficient is exhibited for three
different values of p/po: 0.1, 0.2, and 0.3. The corre-
sponding efficiency for generating phase-conjugate radia-
tion is depicted in Fig. 7 for an optical path length of two
meters. An examination of Fig. 7 reveals that the
efficiency can exceed several percent if the acoustic pres-
sures are on the order of 20 kPa. Long optical path
lengths can be obtained if the acoustic and microwave
beams propagate parallel to one another and the suspen-
sion is maintained in a waveguide.

D. Experimental considerations

The visible and microwave experiments are markedly
difl'erent and it is convenient to examine them separately.

1. Frequency shifting and dejfection of visible light

Maintaining aqueous suspensions of submicron sized
bubbles presents no fundamental problem and techniques
to produce and maintain these suspensions are well
known. The principal difficulty, which we believe will
beset these experiments, is scattering. The scattering
length Lz for light propagating through a microbubble
suspension is

Ls =f0(kro) eg [(e 1 )/(e +2)] /ro (3.20)

xL
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-0.001 ——

-0.0015—-

-0.002--

1.)2 1.04
I I

p = 0.1po

—p = 02po

= 0.3p()

1.(6
I

1.08

r r
r rr

and we require that the scattering length be large com-
pared to the optical path length and that Lz ' be small
compared to the shifting parameter. Thus we require

(3.21a)

foe! [(e„1)/(e„+2)][pR—(Q)/po] kLs »1 . (3.21b)

For water, e&=1.69, so that e„=0.59 and the second
condition places the following limitation on the experi-
mental parameters:

pR (Q)/po »1.45(kro)" . (3.22)

FIG. 6. Frequency dependence of the four-wave-mixing
coefficient for acoustically pumped optical phase conjugation.

If the acoustic pressure is on the order of 10 kPa, then
R (Q) must exceed 15(kro)' . If we use the He-Ne line
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at 6328 A, then we require rp & 3100 A, if we wish to ex-
amine resonant conditions for a bubble Q of 10. Off reso-
nance, the suspension will have to be driven harder to
compensate for the decrease in R (Q) if frequency shift-
ing is to dominate scattering. The scattering length for a
suspension which consists of a 10 volume fraction of
3000-A microbubbles is 2.5 cm. Finally, we note that
when Q =Op the microbubbles will resonantly absorb and
scatter acoustic radiation. The formulas for phase shift-
ing and beam deflection are still valid as the acoustic
pump waves are counterpropagating and the product of
the two pressure waves has equal intensity throughout
the medium. More precisely, p ~p e, where a is
the acoustic attenuation coefficient. The acoustic at-
tenuation length is on the order of 1 mm, which should
not rule out experimental investigation.

2. Acoustically pumped optical phase conjugation

For microwave experiments it is necessary to use no-
naqueous suspensions of microparticles. Such suspen-
sions must be stabilized by a surfactant, but well
researched techniques are available. For the acoustically
pumped microwave experiments, scattering of elec-
tromagnetic radiation is not an issue. However, acoustic
losses will prevent any resonant experiments. This
difficulty can be appreciated by noting that the attenua-
tion length due to acoustic absorption is

~= o/fo

0
and the bubble size must be on the order of 100 A for res-
onant excitation at 1-cm wavelengths. Reasonable acous-
tic attenuation lengths would require volume fractions on
the order of 10, which reduces the efficiency to un-
detectable values unless either very long optical path-
lengths or high microwave probe powers are employed.
Instead, there are two possible alternatives: Q «Qp 01
Q &&Qp. At low frequencies, the acoustic attenuation
length will increase by a factor of (Q/Qo) and should be
suitable. At high frequencies, a smaller volume fraction
of microbubbles can be employed, but the shorter wave-
length might ensure sufficiently large efficiencies. We ex-
amine these two limits below.

As a specific numerical example, consider a microbub-
ble suspension consisting of 25-A microbubbles irradiated
by ultrasonic waves with Q = 10 cycles/s and 100-cm mi-
crowave radiation. If the volume fraction is 10, then
the attenuation length will be 25 crn and kL =0.01 if
L =3000 cm. The required acoustic pressure is 30 kPa.
Next, we consider high frequencies. Here, we irradiate
large bubbles, on the order of 1 JMm, with acoustic waves
such that 0=10" cycles/s. Although the microbubbles
are no longer resonant with the incident sound wave, the
attenuation length is still on the order of ro/fo. Thus at-
tenuation lengths on the order of 1 cm are possible if the
volume fraction of rnicrobubbles is 10 . However,
much higher acoustic pressures are required to achieve
meaningful changes in the bubble amplitude and detect-
able phase conjugate powers. In particular,
R (Q) =(Qo/Q) if Q)&Qo. This requires acoustic

powers in excess of 10 W/cm and probably confines one
to the low-frequency situation.

IV. CONCLUSIONS

In this paper we have developed a theory of acousto-
optical four-wave-mixing processes in which control of
the electromagnetic wave's phase, frequency, or propaga-
tion direction is sought. Prior research into such higher-
order acousto-optical effects focused on processes that
utilized electromagnetic waves as the pump beams and
control was achieved of the acoustic wave's phase. These
processes did not require specialized media, for two
reasons: (i) electromagnetic intensities are much greater
than the corresponding quantity that will appear in the
processes of interest to us, i.e., the quantity A, and (ii) the
acoustic wavelength sets the spatial scale over which
events occurred. Due to the slow group velocity of sound
waves in all media, the acoustical wavelengths are very
much shorter than the corresponding optical wavelengths
at a given frequency. This ensured that the various four-
wave-mixing coefficients that control the efficiency of
these acousto-optical processes are reasonably large so
long as the coupling constant g is not too small. This sit-
uation does not prevail for processes which seek to effect
the propagation characteristics of electromagnetic beams,
especially at low frequencies. These issues motivate us to
search for specialized media which are endowned with ei-
ther very large acousto-optical coefficients or are very
compressible.

As noted in Sec. II, the acousto-optical analog of the
third-order susceptibility y is on the order of 10 -10
Furthermore, the pump amplitude A is on the order of
the acoustical displacement of the material divided by a
characteristic length. For most liquids and solids this is
on the order of 10 or less. The mixing coefficient for
any four-wave-mixing processes of interest to us is gen-
erally of the form

4a =2mk5A

and will be of order 10 for visible light. To achieve
values of kl. on the order of unity would require optical
path lengths of 10 cm. One scheme to overcome this
difficulty is based on using a material which is highly
compressible as the active media. As noted in Ref. 3 and
in the Introduction, microbubbles are very compressible
and it is quite easy to achieve fractional changes on the
order of 1 —10%, even with very low acoustic powers.
Such large values of A lead to kL on the order of unity
for optical path lengths of 1 cm or less at visible wave-
lengths. In the microwave region of the spectrum, much
longer optical path lengths are required. However,
theory indicates that such processes are at least possible
on the laboratory scale.

In this paper we examined three different types of
acousto-optical processes: frequency shifting and beam
deflection of visible light as well as acoustically pumped
optical phase conjugation at microwave wavelengths.
The first two effects have well-defined first-order analogs.
However, they have a number of interesting differences
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that are worth noting. In first order, frequency shifting
and beam deflection are intimately tied together due to
the fact that both processes arise from the same acousti-
cally generated index grating. However, for AOFWM
processes frequency shifting and beam deflection can
arise from two different index gratings. Specifically, two
counterpropagating, degenerate acoustic beams will in-
duce two different types of index gratings in a material
medium: a spatially uniform, high-frequency grating
which oscillates at twice the acoustic frequency and a
static grating whose spatial periodicity is twice the pump
wave vector. The first grating leads to frequency shifting
without beam deflection while the second gives rise to
beam deflection without shifting the frequency. By an
appropriate choice of beam configurations it is possible to
separate these two gratings and examine them in isola-
tion. Since these process simultaneously involve two
sound waves, the frequency shift and beam defiection
occur in multiples of +20 and +2K/k, which differ
significantly from first-order effects. Furthermore, the
mixing coeScient is proportional to the square of the
acoustic pressure and these features can be utilized as a
convenient means to separate AOFWM effects from
first-order processes.

Acoustically pumped optical phase conjugation has
not, to our knowledge, been proposed elsewhere. This is
an interesting process as it involves the direct conversion
of phonons into photons of the same frequency which is
unique in acousto-optical processes. It is very unfor-
tunate that it cannot be studied at resonant excitation,
since experimental investigation would be far more con-
venient. Another diSculty lies in the nature of the mi-
crobubbles themselves in that they cannot support large
oscillations of sufficiently high frequency to carry out mi-
crowave phase conjugation at useful wavelengths. In par-
ticular, it would be useful to have compressible artifical
dielectrics whose resonance frequencies are on the order
of 180 6Hz. With such a system it would be possible to
drive it nonresonantly at 18 GHz, which is a convenient
wavelength for experiments. It might be possible to
achieve such high frequencies with slightly more rigid
media, such as plant cells or some other structure.

To conclude, we note that the highly compressible na-
ture of microbubble suspensions makes them ideal for
study of AOFWM processes at relatively low acoustic
powers. If resonant behavior is too lossy, with respect to
acoustic absorption, it is still quite possible to examine
these processes off resonance.
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