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Dilute polymer solution in steady shear Sow: Non-Newtonian stress
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An expression for the stress tensor of a dilute polymer solution under shear has been derived via
renormalization-group theory. It is valid to first order in e( =4—d, where d is the spatial dimen-

sionality) to arbitrary How rates. The polymeric contribution to the viscosity exhibits shear thin-

ning for intermediate values of the shear. This thinning depends sensitively on the solvent quality
(amount of excluded volume): for good solvents, the thinning is greatly enhanced, as is observed ex-

perimentally. The first and second normal stresses are also calculated. The ratio of the second to
first normal stress for low shear is found to be a small negative quantity, approximately —0.03,
nearly independent of solvent quality. This is in reasonable agreement with the sparse experimental
results. A discussion of the Fokker-Planck operator and steady-state correlation functions for the
Rouse theory is provided.

I. INTRODUCTION

At present there exist few first-principles theoretical re-
sults for polymer systems under finite shear. For exam-
ple, only recently has the correct dependence of the none-
quilibrium steady-state end-to-end distance of a polymer
chain on the molecular weight been determined by Bird
et al. ' and later investigated via renormalization-group
(RG) theory. In this work, we provide a systematic cal-
culation of the non-Newtonian rheological properties of a
dilute solution of macromolecules under steady shear.

A dynamical theory of dilute polymer solution under
shear should include a description of hydrodynamic and
excluded-volume effects. Starting from an extensively
studied dynamical model that incorporates these effects,
we perform a first-principles calculation of the stress ten-
sor via RG theory to first order in e (=4—d, where d is
the spatial dimensionality). This allows us to evaluate the
reduced viscosity and first and second normal stresses.
The starting point for the calculation is a coupled system
of linear Langevin equations describing the chain and sol-
vent. In the dilute regime, renormalization-group stud-
ies on this model (without fiow) have already yielded
low-shear transport properties, such as the intrinsic
viscosity and the relaxation spectrum, ' as well as
time correlation functions. Very recently Wang and
Ottinger have calculated zero-shear rheological quanti-
ties in various good and poor solvent limits.

Less work has been done on this model for the case in
which the solvent flow field has a finite, constant gra-
dient. Yamazaki and Ohta' calculated the steady state
properties of a polymer in uniaxial elongational flow.
Later, Puri, Schaub, and Oono calculated the time-
dependent end-to-end distance of a polymer after the on-
set of simple elongational or shear flows. Rabin and
Kawasaki" have also recently performed some prelimi-
nary investigations of the model in the case of strong
shear.

We find the following results. For low-shear rates, the
solution is thinned due to the flow, whereas at very high

shear, the model predicts a shear thickening. The solvent
quality (temperature) is seen to affect the non-Newtonian
properties. For example, the thinning is greatly
enhanced for good solvents in contrast to poor solvents.
This result is reminiscent of the early results of Fixman, '

obtained from unrenormalized expansions.
We are able to calculate analytically some of the

lowest-order effects of the flow. For example, we deter-
mine the second normal stress in the limit of vanishing
flow. This is found to be negative, and in semiquantita-
tive agreement with experimental results. It should be
noted that, for long chains, some researchers have calcu-
lated positive second normal stress' ' both analytically
and numerically.

The paper is organized as follows. In Sec. II, we intro-
duce the dynamical model and derive the Fokker-Planck
(FP) equation governing the probability distribution func-
tion for the chain dynamics. In Sec. III, the equation
governing the polymeric contribution to the stress tensor
is derived to lowest order in e and solved. Plots are
presented for the reduced viscosity and the first and
second normal stress coeScients. In Sec. IV we discuss
the behavior for low flow rates, in which case we can
determine the second normal stress analytically. Section
V interprets the results physically and gives a brief com-
parison with experimental studies on polymer systems.
Other theories are critically reviewed, and a discussion
and conclusion are presented.

Many important results are derived or reviewed in the
appendices. Appendix A sketches a derivation of the FP
equation for a polymer chain under shear. Appendix B
reviews aspects of the solution to this FP equation for the
Rouse theory. Appendix C is a calculation of the
monomer-monomer correlation functions and the stress
matrix in the Rouse theory. Appendix D gives the expli-
cit form of the quantities necessary to calculate the stress
matrix to order e. In Appendix E we present the renor-
malized form of the dimensionless flow rate, and discuss
the solutions to the RG equation for quantities appearing
within the theory. Readers interested in results and a
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qualitative discussion need to read only Secs. II, III, and
V. ( f(k, r )f( —k', s)) =+2i)ok I 5(k —k')5(t —s) .

II. COUPLED LANGEVIN EQUATIONS FOR
GAUSSIAN CHAIN AND SOLVENT

We begin with the usual system of coupled I.angevin
equations describing the chain and solvent. Our aim is
to provide further justification for the elimination of the
solvent degrees of freedom in favor of an Oseen tensor
description of the polymer. We outline the approach
here, and provide greater depth in Appendix A.

The equation for the chain reads:

B,R(~, t ) =v(R(~, r ) }——1

o 5R~, t

+u(R(T, t), t)+e(7, t) . (2.1)

JVo +%)~t

1 ~od d R(~)
2 0 d1

2

(2.2)

(2.3)

No No

H;„,= f f d~dn5(R(~) —R(o)) . (2.4)

The white noise e satisfies the fluctuation-dissipation
theorem:

&e(r, t)e(~, s) & =2g 5(r s)5(7 0—)I, ' (2.5)

where I is the unit matrix, and energy units are such that
ks T= l.

The total solvent velocity field at a point r in the fluid
is given by v(r)+u(r, t). Here v(r) is the systematic part
of the solvent velocity field, and u(r, t ) is the fluctuating
part. The velocity field obeys a Navier-Stokes type equa-
tion which includes a force term due to the presence of
polymers. After eliminating the pressure from this equa-
tion, one arrives at the following Langevin equation (for
the solvent):

D, u(r, t)=goV u(r, t)

5&
d~ r —R~t +f rt

Here R(~, t } represents the position of the chain at time t
a distance ~ along the chain contour (0 & ~ & Xo ); go is the
bare monomer friction constant. & is the Edwards Ham-
iltonian:

(2.8)

In this study, we concentrate on simple shear flow and
thus represent the systematic velocity field by

v(r) =gA.r, (2.9)

where A is a d Xd dimensionless matrix having one
nonzero entry of value unity

A; =5;i5q, (2.10)

with 5 the Kronecker delta. We consider the dynamics
to take place in a generalized d-dimensional space, since
ultimately the presence of the excluded volume necessi-
tates studying the system in a perturbation approach
about d =4.

To derive a FP operator for the chain, we employ a
projection operator method similar to that used originally
in the study of the critical fluid by Onuki and
Kawasaki, ' and later in polymer dynamics by Lee,
Baldwin, and Oono. ' The derivation is standard and
presented in Appendix A. We argue there that the con-
vective terms appearing in Eq. (2.7) may be neglected for
the case of simple shear. A simplified argument is
presented below.

Consider the convective parts of the derivative appear-
ing in Eq. (2.7). The v Vv term vanishes identically.
How does the magnitude of the v (V u) and u (V v)
terms compare with the dissipative term iloV u? The di-
mensionless ratio which we may form by comparing these
two terms is equal to the time scale of the solvent divided

by the time scale of the shear flow. Thus,

+solv ~solv +poly

~sh ~poly Vsh
(2.11}

The dimensionless quantity proportional to the shear rate
is equal to ~,„/~,h. Since r „/~,&„

is very small, it is
consistent to neglect the convective terms, unless the
shear rate is extraordinarily high. Note that Puri et al.
argued that the convective terms do not contribute to or-
der g in the calculation of the end-to-end distance, how-
ever we have given a quite general argument not to con-
sider these terms.

The resulting equation governing the probability distri-
bution P I R, t ) for the chain dynamics has the usual
Oseen tensor form

a,P =Z,*P,
(2.6) where

(2.12)

with

D,u(r, t)=B,u(r, t)+[(u+v) V(u+v)]i . (2.7)

oo oo

F= XX
2Nogo BR Dp q

—2gNogoA R~
q

Here go is the bare solvent viscosity, and [ ]i selects the
transverse part. Also f is a transverse Gaussian white
noise with mean zero and correlations (in momentum
space) given by Here

a 8
aR 'q aRP q

(2.13)
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D =I(1+5 )5 + (k I—kk) drdo e'"' ' ' "leos cos
XD N0 K'T 7TO

k4 N0 N0
(2.14)

We have used an implied summation convention over q in

Eq. (2.13) g~", as we will henceforth. Note
(8/BR~ ) D„~=0. Equation (2.13) introduces the Rouse
modes R~ defined in Appendix C 1 in the usual way. For
momentum integrals we use the standard shorthand

per unit volume, and the superscript S when it appears
denotes a symmetrization of a matrix quantity. Also,
( Q ) = f2) [R ]Q W denotes a steady-state average of
property Q, where W is the steady-state distribution func-
tion solving X~ W=O. Note that the tensor Pr~'" must be
symmetric, ' so we have explicitly symmetrized o q.

We begin the derivation of a stress tensor equation
with

The presence of the flow introduces many subtleties
into the solution of the FP equation. Johnson' has
shown that one cannot completely study the time depen-
dence of a Rouse chain under flow by considering an ei-
genvalue equation for some diagonalizable operator.
Moreover, constructing perturbatively the steady-state
distribution function for the full system with hydro-
dynamics and excluded volume becomes extremely
difficult. For completeness, we include a discussion in
Appendix B.

III. CALCULATION OF THE STRESS MATRIX

N0Pp"" cp f dr( R=(~)),

which in Rouse modes reads

(3.1)

o. ~""=cp a
q=l

(3.2)

In this section we perform a calculation of the polym-
eric contribution to the stress tensor o ~'" of the solution
to order e. The presence of excluded-volume and hydro-
dynamic interactions necessitates a renormalized pertur-
bation theory for polymer dynamics. (For a nice review
see Oono. '

) In this procedure, molecular parameters are
divided into factors depending sensitively on microscopic
details and factors that do not. This leads to a non-Rouse
dependence of the polymer time scale on the chain
length. After renormalization, the hydrodynamic in-
teraction and the excluded volume interaction contribute
to order e. This provides a convenient way to solve for
the stress tensor in terms of perturbation theory in e, as
we shall see later.

Following Doi and Edwards, ' the stress tensor o ~""
may be found by considering the average internal forces
of a polymer chain spanning an imaginary plane. This
leads to the expression (in our notation}

R R .R ~
*8'=0 . (3.4)

Using Eqs. (2.13) and (3.4) in the steady state, and
di8'erentiating by parts, yields

2(R R )= ND o p
—Rp (3 6)

which can be derived from Eqs. (2.2) and (3.3}. Eqs. (3.5)
and (3.6}yield

—G(p}A Vc

where

S
+G(p (A R~ )

—(D~~ 3 =0, (3.7)
q

G(p)=
(mp)

G =g kPo. '
(3.&)

What we would like to do is to derive a closed equation
for the quantity o . Remarkably, this is possible to
lowest order in e. In order to derive such a closed equa-
tion, we make extensive use of the fact that the a=0
theory is Gaussian and employ Gaussian decoupling for-
mulas.

In the absence of the excluded volume and hydro-
dynamic interactions Eq. (3.7) yields

R D ~ —gA (R R )2ND(o (D~—p) =0 .~
~

e

(3.5)

S
Here we have defined the symbol =, to mean that only
the symmetric part of the matrix equality holds. We now
substitute

'2

where we have defined a tensor cr through S
[I—G(p)A ].o =I . (3.9)

(3 3)

We do not provide a derivation for the expression (3.1).
There is no reason to expect that (3.1) is a more reliable
result than the Oseen tensor description of the polymer
solution, particularly in the nonequilibrium situation.

In Eqs. (3.1)—(3.3},cp denotes the number of polymers

This is essentially the lowest order equation for o. and its
solution is simple [see Eqs. (C3) or (3.14)]. To acquire a
solution for o from Eq. (3.7}, our scheme is to move to
the right-hand side (RHS) of the equation most terms
that are of order e. However, the presence of the exclud-
ed volume and hydrodynamic interactions changes the
dependence of the time scale of the polymer on the chain
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length. Therefore we will maintain on the left-hand side
(LHS) of the equation those terms which lead to the re-
normalization of the dimensionless flow rate G(p ). This
quantity is the only remaining variable in the problem
and it explicitly involves the time scale. We are lead ulti-
mately to Eq. (3.12) which should be compared with Eq.
(3.9).

We begin this program by dividing the friction tensor
into a part preaveraged in zero flow and a remainder

D ~=D(p, q)I+D' (3.10)

where

2.0-

o 1.5-

1.0

05-
good

D(p, q )I= (D„),=, .

We can write to order e that

(3.11)
-2

iogio~

S
[I Ga(p—)A] 0 =Sp, (3.12)

FIG. 1. The reduced viscosity as a function of flow rate for
the good (Z = 00 ) and poor (Z =0.0) solvent cases.

where G„(p ) is the renormalized dimensionless flow field,

GR (p }=G(p ) 1 [D(p p } 1)— where

1 1 8 ~~int

2d 'p~ aR, aR,

(3.13)

and

[ri]0= lim [r)]
GR-0

[4,)o= lim [f, l .

(3.18)

(3.19}

and S is equal to the unit tensor plus e terms, as is given
in appendix D. The e terms of S may be evaluated using
the standard Rouse correlation functions (Appendix C}.
After renormalization (Appendix E), Ga (p ) becomes pro-
portional to gN ", where v is the critical exponent
governing the scaling between the end-to-end distance
and the contour length. This is the dynamical scaling re-
sult.

The solution to Eq. (3.11) is given by
&=g rIOM[ri)o . (3.20)

Thus Figs. 1 and 2 are normalized to unity in the limit of
vanishing shear rate. The Z variable describes the cross-
over from the poor solvent case (Z=O, Gaussian fixed
point) to the good solvent case (Z = ao, self avoiding fixed
point}. In the aforementioned plots, we have introduced
the dimensionless time scale P as

Ga(P»}=S+ (A Sp+Sp A )+ A Sp A

(3.14)

Since we derive the stress tensor as a function of 6&, we
must determine the linear relation between Ga and P, the
quantity used most often by experimentalists. Using Eqs.
(3.15), (3.18), and (3.20), it is straightforward to derive the
following relation:

The stress tensor may be evaluated from eqs. (3.2) and
(3.14), after performing the sum on p. Three important
rheological quantities summarize knowledge of the stress
tensor. The intrinsic polymeric contribution to the shear
viscosity is defined as

[~poly]

gcp 'qoM
(3.15) o 2

where M is the molecular weight of the polymer mole-
cule. The first and second normal stress coefficients are
defined, respectively, as

[o p04') —[pp&&~y]

[0&]=
cpg

[~ "'"l.,—P"'"l.,[k)=
Cpg

(3.16)

(3.17)
-2

logm p

In Figs. 1 —3, we have plotted dimensionless groupings of
these variables [rj]/[ vy]0, [f, ]/[@, ]0, and [@z]/[P, ],

FIG. 2. The reduced second normal stress as a function of
low rate for good and poor solvents.
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[~poly]

P/Gs = lim
G& ~0 Gg cp

(3.21) 0.04-

The RHS of the equation is a constant which may be
determined numerically from our result for the stress ten-
sor (the Rouse value is —,', =0.0833). We present the rela-

tion for both the good and poor solvent limits:

0.02-

0.0-

P=(8.72X10 )Gz, poor solvents

P=(8.04X10 )Gz, good solvents .

We discuss the curves in some detail in Sec. V.

(3.22)

(3.23)

-0.02-

0 04-

-2

gee

peer

IV. LOWEST-ORDER EFFECTS OF FLOW logio~

In this section we solve for the second normal stress
coefficient in the limit of zero shear. To lowest order in e
one may use Appendix D and expand in powers of the
How rate to write

FIG. 3. The ratio of the second to the first normal stress for
good and poor solvent cases.

[P~ ]z2
—[P~ ]33 [Sp ]22

—[S ]33

G2

477 gp

(4.1)

(4.2)

, , [—,'(1—u') —w]Icos[pm(1+ v )]+cos(pew )]
1

24m p

+
4 4

—R(p, w, v) —
2 2 [—,'(1—u ) —w]R(p, w, u)

2& p w 24~2p 2

where

R (p, w, u ) =2(+ I 1 —cos[pm(1+ v )]][1 cos(pew —)]—u (sin[p~(1+ v )]sin(p~w ) I )

To arrive at the total stress, we must perform sums on p. Thus we need (for 0 & u, w & 1):

(4.3)

z Icos[p~(1+u )]+cos(pew ) I
=———+1 1 w w2

~=) (p~)' 3 2 4
1 —v

2

(4.4)

00

4 R(p, w, u ) =w(1 —v')
~=) (pm)

00

2R(p, w, u)=w(1 —v2) .
~=) (p~)'

This leaves us with

v2 w w2+
6 4 6

(4.5)

(4.6)

(P "'"]~&—[~ "'"]»)
cp

G,' J'du I' 'dw
12 4~2~0 0 0

(4.7)

1 3 1 w wX —(1—v )
—w ———+

24 2 3 2 4
1 —v

4

1 v w w+—(1—u ) — +——
2 6 4 6

1 3—(1—v) —w w(1 —u)2
24 2

(4.8)
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After performing the U and m integrations, one finds 1.5

Cp
( [p pob'] —[g poir] )

0 1

4+rlo 720 X 24 X 12
7

864 X 12

163
2160X 14X 12

G~ (2.211X 10 ) .
4m g0

(4.9) 0.5

This agrees with the results of Ottinger and Wang. "
For long chains we find that in terms of the crossover

variables of the RG fiow (to lowest order in e):

0o, z 1=2' E'

1+Z 1 —(1+Z)
(4.10)

The variable Z represents the crossover from the Gauss-
ian fixed point Z=O to the self-avoiding fixed point
Z = oo. Thus for poor (Z =0) and good solvents (Z = oo )

one finds

([~~poly] [~poly]

= —(1.94X10 )P e, poor solvents (4.11)

, ([ '"] —[ "'"] )
cp

= —(1.71 X 10 )P e, good solvents, (4.12)

where we have used the relation between Ga and P from
Sec. III.

V. COMPARISON WITH DATA AND DISCUSSION

Starting from a well-accepted dynamical model for the
chain and solvent, we have performed a calculation of the
stress tensor for polymer dilute solution that is exact to
first order in e (where a=4 d). Our d—ynamical model
has been extensively studied via RG theory, and incorpo-
rates the hydrodynamic and excluded volume eFects.
The only first principles calculation of this kind previous-
ly performed are those of Wang and Ottinger who ex-
panded the stress tensor to second order in the How rate,
in order to find expressions for the normal stresses.

Figure 1 is a plot of the reduced viscosity as a function
of the shear rate. For low values of the shear rate, the
solution is thinned. This thinning depends sensitively on
the quality of the solvent (the magnitude of the excluded
volume interaction). For good solvents, the thinning is

greatly enhanced. This is a natural result, since the ex-
cluded volume suppresses the mobility, and the stretch-
ing decreases the importance of the excluded volume in-
teraction.

A comparison with data is shown in Figs. 4 and 5. In
Fig. 4, the reduced viscosity for good solvents is plotted
as a function of shear rate, and compared with the data
of Noda and Yamada. We see semiquantitative agree-

FIG. 4. The reduced viscosity as a function of the dimension-
less low rate for good solvents. The curve represents our
theoretical result. The data is 0 poly(a-methylstyrene) (sample
S-16: M=13.6X10 ) in toluene at 25'C, Noda and Yamada
(Ref. 20); &, polystyrene (sample S-9: M=7. 14X10 ) in ben-
zene at 30.0'C, Suzuki, Kotaka, and Inagaki (Ref. 29).

ment up to relatively high shear. From recent calcula-
tions by Ottinger, ' Bird, ' and others, it seems that the
finite extensibility of a chain is crucial in governing the
very high shear rate non-Newtonian properties. For ex-
ample, Ottinger has found that for finitely extensible
chains, the solution thins indefinitely at high shear. Since
our model does not incorporate this important effect, it is
not clear that our results should give reliable agreement
with experiment for very high shear. This may explain
the discrepancy between our theory and the available ex-
perimental data. For good solvents, at the shear rates at
which our data deviates from experiment, we estimate
that the chains are stretched to approximately five times
their original end-to-end distance. In Fig. 5, we see that

CO

oo

FIG. 5. The reduced viscosity as a function of the dimension-
less flow rate for poor solvents. The curve represents our
theoretical result. The data is from Noda and Yamada (Ref.
20): polystyrene (sample S-H: M=13.6X10 ) in decalin at
15.4'C.
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both theory and experiment show virtually no shear thin-
ning. Thus the thinning is primarily due to the excluded
volume effects.

A formula commonly found in the literature is

[.n jo = 1+const XP'
[n]

(5.1)

governing primarily the experimentally observed high-
shear rate behavior of the shear thinning. Actually, our
theory predicts that as the shear rate is increased to very
high values, the solution ultimately thickens. We have no
clear physical interpretation for this thickening mecha-
nism. Approximate numerical solutions of Magda
et al. ' and Ottinger' also find thickening. We discuss
their findings in some detail below.

In Fig. 3, we have plotted the ratio of the second to
first normal stress coefficients. We find that for low-shear
rates

lim = —0.03,
G o 0')

(5.2)

with only slight dependence on solvent quality. Accord-
ing to Larson, there is a broad range of values that has
been reported for this ratio at low shear, with most work-
ers finding values between ( —0.05) and (

—0.3). Recently
a value of —0.02 has also been reported. Our results
are in reasonable agreement with these experiments in
that this quantity is both small and negative. Keentok
et al. find that the ratio decreases as concentration de-
creases.

Finally, let us critically review other theories and nu-
merical works. Ottinger and Magda et al. have numeri-
cally studied the same Fokker-Planck equation in the ab-
sence of excluded volume. Since correlation functions de-
pend on the steady-state distribution function and the
steady-state distribution function depends in turn on the
conformational properties of the chain, analytically it is
very difficult to solve for the stress tensor. However,
these researchers preaverage the diffusion matrix, so that
the distribution function governing the chain dynamics is
Gaussian. This enables them to solve for the distribution
function and the correlation functions numerically in a
self-consistent manner. Magda et al. and Ottinger's re-
sults for the first normal stress are similar to ours. How-
ever, they find a positive sign for the second normal
stress, that is, not in keeping with our results (and inay be
due to preaveraging"). They find a very small shear thin-
ning in semiquantitative agreement with our results for
the theta solvent case. Since they cannot incorporate the
excluded volume, they are unable to study the solvent
quality effects.

Fixman' studied the effect of excluded volume on the
stress tensor, but considered only the lowest-order effects
of the flow rate. His results are similar to ours: the ex-
cluded volume enhances the thinning effects. However,
in Fixman's calculation the excluded volume parameter
may increase indefinitely with increasing solvent quality,
so that any degree of shear thinning may be achieved.
Our procedure is less arbitrary in that increasing the sol-
vent quality drives the excluded volume parameter to a

well-defined fixed point, and so the thinning may not be
arbitrarily great.

In summary, we have performed a systematic calcula-
tion for the non-Newtonian properties of a dilute solution
of polymers. Our result is exact to first order in the small
parameter e, using a RG approach. The model incorpo-
rates excluded volume and hydrodynamic interaction, but
does not include the effects of finite extensibility.
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APPENDIX A: PROJECTION OPERATOR METHOD

Here we use the Kawasaki formula to derive the
Fokker-Planck operator for the chain under fiow. We
show how it is possible to neglect the convective terms.
The Oseen tensor description for the critical fluid was
first derived by the reduction of kinetic models by
Kawasaki (see Ref. 15 and references therein). His for-
mula yields the effective generator of the dynamics of the
probability distribution for the appropriate field variable,
by projecting out the solvent variables. Let X' be the
Fokker-Planck operator governing the probability distri-
bution for the dynamical system given by the chain-
solvent system given by Eqs. (2.1) and (2.6). The X~
governing the chain variables

B,P( [RI, t ) =X~P( [RI,t ) (A 1)

is given by the formula (see Appendix D of Onuki-
Kawasaki):

~;=&z' &„+&~'6(s —6~'6)-'6~' &„, (A2)

where 5 is an infinitesimal number and we define projec-
tion operators P, 6 such that

6=1 P, —

W({RI,[uI} y&[W( [RI )

W([RI)= f$[uI W([RI, [uI),

(A3)

(A4)

(A5)

and W( [RI, [uI ) is the steady-state distribution function
satisfying X'W=O. Also in Eq. (A2), the average of a
quantity Q over solvent velocity flow field variables is
given by

I ~
W( {R{,[u{)

W( [RI )
(A6}

Precisely the same arguments which are used in deriv-
ing the effective Fokker-Planck equation in the case
without flow allow us to replace the second term on the
RHS of Eq. (A2) by

&~,'„,6(fi—m;6)-'6~, '„,&, (A7}

where Xo governs the full e=0 dynamics of chain and
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solvent and X;"„, governs the mode-coupling terms be-

tween the chain and solvent.
In the exposition given by Lee, Baldwin, and Oono, '

the Oseen tensor description is derived via Eqs. (A2) and
(A7} for the case without flow. The only subtle point in
the case we discuss here is that the Xo of Eq. (A7) in-

volves terms due to the flow. We may compare the mag-
nitude of the flow terms to the magnitude of the term
governing the dissipation of the solvent field. If the flow

is microscopically weak, then the terms due to the chain
are irrelevant.

Let us then compare the magnitude of the convective
terms to the dissipative terms. In momentum space the
convective terms are given by

—gA u(k)+gk A u(k),

whereas the dissipative term is given by

—gok'u(k) .

(A8)

(A9)

Since the chain length sets the distance scale in the prob-
lem, the dimensionless grouping we can form by consid-
ering a ratio of the convective terms to the dissipative
term is

F0
(A 10)

APPENDIX B: NOTES ON THE FOKKER-PLANCK
OPERATOR IN ROUSE THEORY

Here we discuss the Fokker-Planck operator for the
Rouse chain (no hydrodynamic or excluded volume in-
teractions) under steady shear flow. We show below that
for each mode p we can find a proportionality between
the dynamical operator —X* governing the probability
distribution of the Rouse chain under shear in the x,y
plane and the operator H:

The second grouping of Eq. (A10) is neglected under the
usual Markov assumption (it represents the ratio between
the time scale of the polymer and the time scale of the
chain). The conclusion is that the neglect of the convec-
tive terms is consistent with the usual Markov assump-
tion, unless the flow rate is microscopically strong. Note
that our findings disagree with that of Puri, Schaub, and
Oono, who found that the Markov description was
correct only to order g .

Equation (A7) with Eq. (A2) now yield the XF of Eq.
(2.13} in the usual' way. The operator XF corresponds
to the conventional Oseen description. A more complete
derivation of the above results will be given elsewhere.

P ——NtQ (86)

Note that the steady-state distribution function for the
Rouse chain is stationary, because the lowest eigenvalue
of D is zero and 1V annihilates the "ground state". How-
ever the higher states mix as a function of time (although
they all decay exponentially fast to the steady state).
Thus for the Rouse chain, we cannot completely study
the time dependence of the higher states by considering a
spectral representation for some diagonalizable operator.
(For a complete exposition, see Johnson. '

) Indeed the a
of Eq. (85) should be thought of as a transition rate, be-
tween (certain) eigenstates of D with the same eigenvalue.

That the problem with shear immediately brings us to
the most subtle points of the study of Fokker-Planck
operators is not at all surprising; indeed the study of un-
bounded linear operators in Hilbert spaces is still an area
of intensive research. Even the generalization of the pri-
mary decomposition theorem (which for linear operators
in finite-dimensional vector spaces states that any linear
operator may be uniquely decomposed into a pair of mu-

tually commuting operators such that one of the opera-
tors may be diagonalized and the other is nilpotent) to
Hilbert spaces is unknown. As is well known, it is quali-
tatively incorrect to think of unbounded linear operators
in Hilbert spaces as infinite-dimensional matrices, so that
much of our intuition built from the theory of matrices
breaks down.

We now construct the proportionality between X' and
H and give the form of a, a, b, and b+ of Eqs.
(81)—(85). The Fokker-Planck operator governing the
Rouse chain under flow may be written as

(pm )—&R--—X 2 Hp
p=i 0P'0

where

(87)

(88)

and all other commutators vanishing. Here

G(p)
(1+G'(p) i4)'"

is a constant which depends in a nonlinear way on the
flow. By.inspection N and D commute, and D is diagonal
in the familiar harmonic oscillator states. It is thus clear
that H cannot be diagonalized. Moreover X is nilpotent
in any finite-dimensional subspace constructed from the
invariant subspaces of D. To see the ramifications of this
last observation, consider first Q such that B,Q= DQ-.
Time-dependent solutions for Q are easily found from an
eigenvalue equation for D. Then solutions for P (govern-
ing each mode p at @=0)are given formally by

H=X+D,
D=a a+b b,

(81)

(82)

(83)

and T is directly proportional to the Rouse mode
1/2

2(pm. )
P

0
(89)

with

[b, b ]=[a,a )=1, (84)

Examining the form of Eq. (BS) shows that we only
need consider the x and y parts of the equation, since that
involves the only subtleties. This leaves us to consider
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the eigenvalues of the operator H given by

8 = 2—T—.[I G—(p)A ].a, —a
P P

We will write

D — 2 Tp BT BT CTP BT
P P P

N =H —
Dp

=G{p)B A.T +BT .(o —I) 8

(810)

(811)

(812}

(813)

2. Steady-state correlations

Here we calculate some correlation functions for
the Rouse chain under flow, namely
oz, o' '", ([R(r)—R(o' )][R(v)—R(o')]), as well as
((d R/dr)(d R/dr) )d,„. We also include expressions for
the sums that are necessary to evaluate these correlations.

In the absence of excluded volume and hydrodynamic
interactions, the quantity o. may be evaluated using Eq.
(3.19) at @=0. Thus we have S =I and the solution is
given by

with o defined in Eq. (C3). By inspection D, H, N
all commute with one another.

We will proceed to construct a, a, b, and b Con. sid-
er a coordinate transformation

T =0. ' MV (814)

where M is a rotation, as yet, unspecified. Note that
since o is a positive symmetric matrix, it has a unique
positive square root 0 ' . In these coordinates,

D= —2 —V.B —3 8
P p v v v

N =G(p)B .M o ' .A P' M.V
P P — P P

+B„.(I—M o 'M) 8„
P P

The first part of the transformation of Eq. (814) brings
D to a familiar harmonic oscillator form, which is un-

changed by the further rotation. The rotation M is
chosen such that N and D are given by Eqs. (81)—(815)
with

a=V +Brx V„

a = —B

2

o =I+ 'P'(A+A')+
P 2 2

with

G(p)=,, G =ggoN,' .6
(np }~

Using Eq. (3.6) at a=0, one obtains

(RR )=
~p

O'P

This implies

(RzR~ ) cos —cos
0 p=] 0 0

Using Eqs. (C3), (C5), and (C6) yields

Q(v, a )=r2(r, o )I+r4(r, cr) (A+ A )—
0

Q(r, o )
—= ( [R(r)—R(o )][R(r)—R(o')] )

(C3)

(C4)

(C5)

(C6)

(C7)

b = Vs+Br
(816) +r6(r, o ) A A

G
(C8)

bt= —B~

The construction of the rotation M is left to the interest-
ed reader as a straightforward but tedious exercise.

where

[cos(p m ~/No ) cos(p ~o /N—o ) ]
r, (~,cr)=2 g

p=l (pm )J
(C9}

APPENDIX C: ROUSE THEORY: STEADY-STATE
CORRELATIONS

1. Rouse modes: definition

We find it convenient to introduce Rouse modes in our
exposition and so we list here the definitions of Rouse
modes and the transformations from Rouse modes back
to chain coordinates:

R~ = I do R{o)cos
X0 0 0

We evaluate Eq. (C8) in several steps. First we define

f, (p)=2 g, ", lpl ~ 1 .
(pm. )J

(C10)

f2(p) = I pl
—

—,'u',

f4(s ) = ,'(I' Iv I'+ .'I '»-—-
f,(p) =—„',(8p' —10@'+61@i'—p') .

This in turn yields

(Cl 1)

Using the standard results for Bernoulli sums one may
calculate

R(~)=Ro+2 g R cos (C2)

Introducing this transform allows us to decouple the
modes in the absence of excluded volume and hydro-
dynamics.

r, (~,o)=IwI,

r4(r, o )=—,'w [—Iwl+ —', (1—v )],
r6(~, cr)= —„',w [lwl + —,'(1 —v )(1—v —w )],

(C12}
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w+o. —No

Xo

(C13)

Notice that the two natural symmetries of the problem
change the sign of either v or w. Namely, the interchange
of the chain coordinates reverses the sign of m, whereas
the relabeling of the chain ends reverses the sign of v.
Obviously the correlation function given by Eq. (C6) is
unchanged under these symmetries.

Finally, from Eqs. (C7) and (Cl 1), we arrive at

62
No

'
12

g«, o }=lwlI+ (A+ A ')w'[- lwl+-'(1-")]+ A A 'w'[lwl'+-'(1-"}(1 —"—w')]

We will also need the following results in Appendix D ( w )0):

(C14)

d ~Q( )[ ([ (N )d 1+G2 lwl(1 —v ) w (1—u ) + lwl (1 —v )

96 64 96
u)4

360
(C15)

The inverse of Q(r, cr ) is proportional to the following matrix which we define as

~w ~
F(r, o )—:Q '(r, o )det~Q(r, o )~(~w ~NO)'

62
=~wLI (A—+A )w [—~w~+ —'(1—u )]+ A Aw [~w~ +—'(1—v )(1—v —w )],12

(C16)

so that Y is unity in the absence of flow. We will need
this quantity in the expression for S .

We also may calculate

APPENDIX D: EXPRESSION OF STRESS

Here we explicitly evaluate S, which arises in the ex-
pression for the stress. To first order in e we find

dR(r) dR(r)
dr dr

1

(C17)

=No lim
2 [Q(r, o ) —l& & lI)—~-~ (r rr )'—

G &(N, &) — G~ r(N, r)—
(A+A }+ A

S =I+SI'"+S"'"+S'"
P — P P p 7

S~~"=—((D p p) ) (o' I), —

N 1 BD(s"'")'=- p& &r I p
2 np BR~BR

P

S
1S'"=— G(p }

2 KP

(D 1)

(D2)

(D3)

We see that the stress along the chain backbone is peaked
near the center of the chain. The implication is that, due
to the flow, the translational symmetry along the chain is
lost. The translational symmetry greatly simplifies the
calculation of equilibrium properties in certain approxi-
mation schemes.

Finally we may sum the last equation over all the
monomers, leading to

f dR(r) dR(r}

62
12 180

(A+A )+ A A

(C18)

The final result of Eq. (C18) may be derived directly from
Eqs. (C17) or (C3). The last quantity is proportional to
the polymeric contribution to the deviatoric stress in the
absence of excluded volume and hydrodynamic interac-
tions.

2

X A
int

BR~BR&

2

-( BR, i3R, I,=,
'0'p

S'

(D4)

The I on the right hand side of Eq. (Dl) corresponds to
the Rouse theory; the remaining terms are of order e.
The second and third terms are from the hydrodynamic
interaction and the fourth from the excluded volume.
The second term in all that arises if the diffusion matrix is
preaveraged (hence the nomenclature "pre" and "non").
Conventionally the nonpreaveraged te;rm is considered to
be small and is often neglected. The mathematics of the
dynamical theory is far easier in its absence. However we
find that Sp'" has a flow dependence which is both
significantly larger than and of opposite sign to S "".

The bulk of the work involved in this paper is in
evaluating the above expression. Ultimately Eq. (Dl) can
be reduced to three integrations. Two of these integra-
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tions will involve the chain coordinates. A further in-

tegration will arise in the following way. Consider the
form of D~ given by Eq. (2.14). We wish to reduce Eq.
(Dl) by a series of Gaussian conformational averages and
by Gaussian integrations [involving the It integral of Eq.
(2.14)]. To this end we introduce an identity to reexpress
the 1/k term of Eq. (2.14):

1 dP —1/2Nok /P 1/2Nok

,'N—ok o P
(D5)

This is more transparent on making the substitution
P= 1/(1+a). It is the form Eq. (D5) which will be most
suitable for computer integrations.

The results are

and

S H' H'
S,"=—,' f P(1 P—

)deaf

dv f dwJ „(p,v, w) 313 I+—(1+~,) I
4m-2q0 0 0 w w w

(o'~ I),— (D6)

f dPP(1 P—)f dv f dw [J„,„H&(trH&)+2J„,„H&H&
4~ 21o o o o (1rp) w

2H &
J—„,„K& H&tr(—H & J„,„)]o~ . (D7)

In order to arrive at the expression (D7), we needed to perform a sum over q, hence we used f2,f4,fs of Appendix C.
Finally

G(p ) 1 1d 1
—

~d Jex

( ~)2 o o

Definitions made in Eqs. (D6) —(D8) are

J~„=—,
' Icos[pm. (1+u)]+cos(p1rw) J,

Y —I 0
(det1') /

(D8)

(D9)

2

J„,„={cos[p1r(1+u)]—1 j[cos(pew) —1] G(A+A )+ G A A [—', (1—v )
—w]

+{sin[p1r(1+u)]sin(p1rw)] G(A+A )+ G A A (1—v —w )
16 96

(D10)

J,„=2{1 —cos[pn(1+ v )]}sin (D 1 1)

Also,

H p=I+13H' . (D12)

where

bG +Pa G— —aG
—aG Pa G

L

(D13)

The matrix H' is only nonzero in the upper 2 X 2 block
where it is given by

APPENDIX E: RENORMALIZATION

Here we renormalize the expression for the dimension-
less Aow rate. The exposition is by now standard, ' and
we keep details to a minimum. In the Z limit the hydro-
dynamic interaction and the excluded volume interaction
become functions of the one variable Z. With Appen-
dices D and E in hand the stress tensor may be evaluated
numerically.

We wish first to evaluate Eq. (3.13). This equation
reads

1a= r4 w, v

1b=
~ ~

16(W, V)
2 w

1 —1.
( 1 +PbG2 P2a 2G2)1/2

(D14)

(D15)

(D16)
1 1

2d p7T

'2
G11 (p ) =G(p ) 1 —[D(p,p )

—1]

BJV;„t

BR BR

Finally r4, r6 as well as Y,o~ are given in Appendix C;
Eqs. (D6)—(D8) (and the subsequent definitions) then
yield (Dl). Equation (4.10) may be used to express S~
solely as a function of Z and p.

(El)

The correlation function of Eq. (El) is evaluated at zero
shear rate. From Eqs. (2.14) and (3.11),we find
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(0 ey2 d 1
D(p,p) —1= (2IrN0)'

1

d —2

I I —v Jex cos[p1T( 1 + v )]+cos(p Irw )

4~'
2 dv dw

1 —e/2

Also

300 1 500 300—+ + f yd(p)+ln
8~2~ g 32~2~

2N0
(E2}

0 1 8 int 8
2 dy2N&yI f Id f I —

~d 1 sin (pIrw/2)sin [pm(1+v )/2]
w

= —v0(2m ) —+ ln(4N0/p ) +f,„(p ) (E3)

correct to first order in e. The quantities fh„d(p) and

f,„(p ) which appear in Eqs. (E2) and (E3) are given by

Combining Eqs. (El)—(E3) and (E6)—(E8) yields to first
order in e:

and

( f Id cosw 1 + fP&d cosw

1 p~ sinw
dw

POT 0 W

( ) f d
SII1 W W + f'P &&d SII1 W

w w

(E4)

GR(p)=
'2

G
—(e/8)(u /u )+(3e/8)(f/g*)zP

1+— „[f,„(p ) f,„(p=1)]-
9

3
„ [fhyd(p ) fhyd(p = 1}l

2 P~/2 sin w sin2W+ W
pIr o w I 2w

(E5}
where

(E9)

In order to absorb the divergences appearing in Eqs.
(E2) and (E4), we introduce first the standard dimension-
less parameters uo, go,

(6/8)(u /u ) —(3p/8)(g/g )

GR =g(N
L

U =u L-~/2
0 0

00= nokoL
(E6)

+ [f.,(p =1)]—,[fhy, (p =1)]
E u 3

and then renormalization factors and renormalized vari-
ables (the latter appear on the RHS)

No =(ZIv ) 'N,

uo =(Z„) 'u,
o=Z

ko=zq Ig.

(E7}

ZQ 1+ )
2K 6

The renormalization factor Z„may be determined by
second-order perturbation theory and Zz by calculating
the end-to-end distance. Note that the Aow should not
affect the renormalization factors, as long as the How is
microscopically weak. Knowing Zz and Z„, we may
determine Z& by removing the divergences that appear in
the expression for Gz. The results are

where

=0, (El 1)

P„(u )=L u
a

bare 2
[(u' —u )/u*],

8 ge 3('—g 1 u* —u

aI. , 2 4 g 4
(E12)

(E10)

which is correct to first order in e. Here u' and g" are
the fixed points of the renormalization group transforma-
tion: u'=Ir e/2, g'=2m. e.

In order to find the appropriate scaling variables one
writes the renormalization-group equation for o~:

L +P„(u) +P&(u, g) +y~(u)N
8 8 8

au & '
ay

" aN

Z„=1- 2Q

7T E'

Z(=1- u 3g
2m e 8m e

(E8) yN(u )=L lnZ~ =—(u/u') .E

8

We may derive the results for the beta functions from
Eqs. (E6) and (E7). Here ~h„, signifies that the bare mi-



6784 P. R. BALDWIN AND EUGENE HELFAND 41

croscopic parameters Uo, go, and No have been held fixed.
We seek solutions to the renormalization-group equa-

tion (E10):

where
w=u/(u' —u),
z =(g'/g')/(u/u') .

(E15)

o =o (L,N, u, g, g,p), (E13)

where recall g is the Bow rate, u is the renormalized ex-
cluded volume parameter, and g is the renormalized fric-
tion coefficient. The solution has the form

The solution must be invariant under the reparametri-
zation of the model. Let [ ] denote the engineering di-
mension of a quantity with respect to the chain variable
~. Then

o =o Lw ', N(1+w) ',(1+w),g,p
Z

[~l=[N) =[L)=C

[g 1=c
(E14) Hence we can write

(E16)

(E17)

1 —z
CLw ' CN(1+ w) ', (1+w), gC

Z
(E18)

If we choose

CN(1+w) "4=1, (E19)

after some algebraic manipulations we can write

2mN
cr =o (2nN/L)'~ w(1+w) '~, 5,gN~,p (E20)

where

5=(1+w ) (1—z)/z .

In the Z limit N ~ 00 with uN' fixed, we can incorporate the solvent effects into a single variable Z defined by

(E21)

Z =(2~N /L )'"
u Q

so that
T

Z Nd/2 2m.N
0'p =C7p, g L

—(e/4)( u /u )

sP

(E22)

(E23)

In terms of Z then

Z 1

1+Z 1 —(1+Z)-'"
' —(e/2)(1/1+ Z)

Z 27TN

1+Z L

(6/2)( 1/1+ Z)+ (3e/8)(Z/1+ Z)[( 1+ 2 ) /1 —
( 1+Z) ]2+N

L
(E24)

(E25)

One can then show that Eq. (E9) may be rewritten

G ~gNdzz(2~N/L)" "~ ~ '~gN"

with

1 E uv= —+
2 16 u»

being the critical exponent.

(E26)
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