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A cell-dynamical-system (CDS) model of the microphase separation of block copolymers is de-
scribed in detail. The model suggests a partial-differential-equation (PDE) model that allows us to
find a close relation between the block copolymer and spinodal decomposition problems. A detailed
numerical study of the CDS model is given, which indicates that hydrodynamic effects are crucial
for very late time-ordering processes. The strong segregation regime is studied analytically with the
aid of an exactly solvable PDE model, which is suggested by the universality supported by the CDS
simulations. The results obtained show that dimensional analysis gives the correct exponent for the

block copolymer lamellar thickness.

I. INTRODUCTION

A diblock copolymer (BCP) is a linear-chain molecule
consisting of two subchains @ and b grafted covalently to
each other [Fig. 1(a)]. The subchains a and b are made of
different monomer units 4 and B, respectively. In poly-
mer systems even a weak repulsion between unlike mono-
mers A and B induces a strong repulsion between a and
b. As a result, the different subchains tend to segregate
below some temperature T, but, as they are chemically
bonded, even a complete segregation of subchains @ and b
cannot lead to a macroscopic phase separation as in mix-
tures of two homopolymers. Only a local microphase
separation occurs: microdomains rich in 4 or B are
formed [see Fig. 1(c)]. These ordered structures are the
key to many valuable mechanical properties which make
block copolymers of great technological interest. Besides
its practical importance, the BCP microphase separation
is an interesting problem in itself, because it allows the
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FIG. 1. (a) A diblock copolymer molecule. We consider here
only the 1:1 block copolymer which has equal sized subchains a
and b. (b) Above T,, a and b subchains mix to make a uniform
disordered phase. (c) Below T, the subchains a and b tend to
segregate, but due to the covalent bonds between the subchains,
segregation is possible only locally to form a lamellar structure.
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possibility of studying a phase transition from a spatially
uniform state to a nonuniform state which can be con-
trolled by, for example, chemically modifying monomers.

The main purpose of this paper is threefold. First, we
explain the discrete space-time mesoscale (kinetic level)
model of the BCP melt in terms of cell dynamical systems
(CDS’s), which are computationally efficient discrete
space-time models,' 3 and have been successfully applied
to other phase-ordering problems.*”!! Originally, we
thought® our approach was essentially an alternative
derivation of the mesoscale model due to Leibler,'? but
we have found that there is a crucial difference in the
coarse-graining length scale. Our CDS model was dev-
ised by pursuing mathematical simplicity. We find that
our model is more physical than the model derived from
the purportedly microscopic description of the system.
Second, detailed computational results obtained with the
aid of the CDS model are given. Comparison of patterns
obtained in actual systems and our computation demon-
strates that hydrodynamic effects are crucial for very late
time-ordering processes. We also summarize a close con-
nection between spinodal decomposition and the BCP mi-
crophase separation.!®> Third, detailed results obtained
from an exactly solvable model'* are presented.

A brief summary of some experimental and theoretical
results directly relevant to our work is given in Sec. II.
In Sec. III, we model the BCP system in terms of cell
dynamical systems (CDS’s). Section IV describes our
computational results. The effect of hydrodynamics is
discussed here briefly. Even with our efficient model we
were unable to go into the so-called strongly segregated
regime, but we could verify a scaling hypothesis at least
in the weak segregation regime. In Sec. V, we point out a
close relation between the BCP problem and spinodal
decomposition. Dimensional analysis gives us the correct
exponent for the layer thickness in terms of the molecular
weight. In Sec. VI, the strong segregation regime is stud-
ied with the aid of an exactly solvable model. Section VII
is a discussion.
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II. BRIEF SUMMARY OF EXISTING RESULTS

Depending on the ratio of the block sizes and on the
solvent, different mesoscale structures are observed.!> '8
For a BCP in which the length of the subchains are
roughly the same (even BCP), a lamellar structure is ob-
served. The ratio of the interfacial and the lamellar
thicknesses characterizes the segregation regime. If the
temperature is not very different from the critical temper-
ature T, that is, if the quenching is shallow, the interfa-
cial thickness & is comparable to the equilibrium lamellar
thickness D. This regime is called the weak segregation
(WS) regime. If the quench is sufficiently deep, then
& << D and the system is said to be in the strong segrega-
tion (SS) regime. Hashimoto, Shibayama, and Kawai'®
have studied the dependence of D on the polymerization
index N for copolymers with lamellar structures. They
have found that D ~ N9 with the value of 6 depending on
the segregation regime. In the WS regime 6=1, and in
the SS regime 6= 2. They have found that £ is almost in-
dependent of the number-averaged molecular weight M,
within the range 21 X 10° to 102X 10. As a consequence,
the volume fraction of the interfacial region systematical-
ly decreases with increasing molecular weight.

The first important theory of block copolymer micro-
domain structure was presented by Meier,?° who con-
sidered spherical domains using random-flight statistics.
He found that the radius of the domains scales as N'/2
and that the domains have greater density at the bound-
ary. Helfand and Wasserman®' ~2* developed a micro-
scopic theory in the SS regime based on the random-walk
model. They obtained the free energy in terms of the
lamellar thickness. Minimization of this free energy gave
D ~ N% numerically.

Leibler'? devised the first mesoscopic theory. He de-
rived the free-energy functional for BCP in terms of the
order parameter i(r) defined as the local concentration
difference of monomers 4 and B. He studied the WS re-
gime with this free energy and found that D ~N1!/2,
Ohta and Kawasaki®® studied the SS regime with a varia-
tional approach, using the Leibler effective free-energy
functional. They obtained the SS exponent, that is,
D~N?%3. Later, they?® generalized their derivation of
the free-energy functional beyond the random-phase ap-
proximation, and confirmed their conclusion. Recently,
Liu and Goldenfeld?’ numerically determined the free en-
ergy as a function of the lamellar thickness for the Lei-
bler model to obtain both SS and WS exponents.

When the lengths of the subchains ¢ and b are not
equal (uneven BCP), various mesoscale structures are ob-
served.' '8 They are also theoretically studied in Refs.
21-25. We will not consider these cases in this paper nor
will we discuss the role of the solvent in the microphase
separation.”® We assume that chains are sufficiently flexi-
ble, so we will not discuss the stiffness effect.’

II1. A CELL-DYNAMICAL-SYSTEM MODEL

The cell-dynamical-system model for block copolymers
proposed by Oono and Shiwa® is based on the CDS model
for binary alloy spinodal decomposition by Oono and
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Puri.! ™3 In the latter case the general form of the CDS
for the order parameter ¢ in each cell reads

Yt +1L,n)=y(t,n)+I(t,n)—{{(I(t,n))) ,

with
J(t,n)=f(Pt,n))+D[{{P(t,n)) ) —P(t,n)]—Y(t,n),
(3.2)

(3.1

where (t,n) is the order parameter in the nth cell at
time ¢, D is a positive constant proportional to the
diffusion constant, and {{ ) ) is the isotropic spatial aver-
age. For a two-dimensional (2D) square lattice, we
choose

(e, N =L W)+ L5 3 (Pun) 3.3)
N NN

where W represents nearest-neighbor cells and NN
represents next-nearest-neighbor cells. The map f has a
flow with a single hyperbolic unstable fixed point and two
hyperbolic stable fixed points symmetrically located on
each side of the unstable fixed point. The exact form of f
is not important for the late-stage behavior, as was
demonstrated in Ref. 1. We will later exploit this univer-
sality to construct a solvable model. Here
f(¢¥)= A tanh[¢(1,n)] has been chosen. Above the criti-
cal temperature 4 <1, and below 4 > 1. The usefulness
of the scheme has been well demonstrated by various ap-
plications,? ! etc. Strictly speaking, the current numeri-
cal solutions of partial-differential-equation (PDE) mod-
els [in this case the Cahn-Hilliard (CH) equation, e.g.,
Ref. 30] should be considered as CDS simulations, be-
cause the adopted numerical schemes are too crude to get
the actual long-term solutions to the PDE.

To construct a CDS model of BCP, our strategy is to
find the minimum modification of the above CDS model
for spinodal decomposition. In ordinary spinodal decom-
position the domain size increases indefinitely. In con-
trast, the domain growth of BCP is limited by the co-
valent bond between subchains a and b. In other words,
the state with y=0 becomes more stable than that with
Y70 when there is no spatial gradient. The simplest way
to take this into account is to modify (3.1) as follows:
Y+ 1,n)=(1=BW(t,n)+I(n,t)—I(n,t)) , (3.4
where B is a small positive number. In a large bulk clus-
ter, ¥ is spatially uniform so that J and its local average
({(J)) become identical. Hence, in the bulk phase (3.4)
simply reads ¢¥(¢z+1,n)=(1—B)y(¢,n), which has the
fixed point at y=0. We could add thermal noise, but the
noise effect is not crucial as we will see below (see also
Ref. 31).

In the above construction of the model, there is an im-
portant implicit assumption that the local free energy
which drives the segregation of monomers is not affected
by the global chain connectedness (or the molecular
weight). We believe this is physically sound, because for
local segregation dynamics the effect of the total length of
the chain is extremely indirect. Hence, even the length
ratio of the subchains should not appear in the local part
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of the free energy. Furthermore, the local dynamics
should not reflect the molecular weight of the chain, be-
cause in our modeling each cell is considered to be con-
siderably smaller than the polymer size. In other words,
our CDS model has a coarse-grain scale finer than the
correlation length in the system. Hence, our model pa-
rameters A and 2 should not depend on the molecular
weight or the composition. Notice that this point is di-
ametrically different from the conventional mesoscale
models summarized in Sec. II. We feel that these models
are over coarse grained, if their derivation is justifiable
mathematically. This difficulty seems to be well recog-
nized by Kawasaki and Ohta.”? Liebler’s method is the
same as that used by Edwards in his theory of polymer
melt.>* It has been amply demonstrated that the method
is quantitative in semidilute solutions,* but for denser sys-
tems its mathematical soundness should be seriously
questioned. We are interested only in the long-time be-
havior of the system, so that the detailed mechanism of
diffusion is unimportant.

The partial differential equation corresponding to (3.4)
can be obtained if we trace in reverse the derivation of
PDE from the CDS given in Refs. 1 and 3. The result for
the BCP with equal size subchains is

%%=A(‘-‘r¢+u¢3—-ﬂA¢)_B¢ , (3.5)
which is essentially the Cahn-Hilliard equation’® with the
subtraction of By. 7, u, and D are positive phenomeno-
logical parameters, 7 being a measure of the quench
depth, and A is the Laplacian. Equation (3.5) can be
rewritten as

%%=A —r+u —DAY+B [dr'G(r,rir,1) |,

(3.6)
where G is the Green’s function for Laplace’s equation
AG(r,r')=—8(r—r’'), under a suitable boundary condi-

tion. If the above equation is rewritten as the ordinary
CH equation

3 _,OH
ot o5y ’

then the Hamiltonian H has a similar form as the one de-
rived by Leibler!? with B <N ™2, As is discussed above,
however, contrary to our interpretation in our previous
papers, the similarity is not straightforward, and could
even be fortuitous. The identification B <N 2 is still
justifiable dimension-analytically as is already mentioned
in Ref. 13. We do not discuss the problem of microscopic
computation of phenomenological parameters. This
should be much more complicated than was thought by
previous authors. It is fair to say that even for PDE
models we do not know how to compute phenomenologi-
cal constants. This comments also applies to the even
simpler CH equation.

(3.7

IV. COMPUTATIONAL RESULTS

Our simulations were performed on a CRAY X-MP
computer with 4 =1.3, $=0.5 with random initial con-
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ditions of an amplitude 0.05 and a periodic boundary
condition, unless otherwise stated in the figure captions.
Figure 2 exhibits the patterns obtained from (4.1) for a
200X 200 square lattice at different times. For uneven
BCP, the necessary minimal modification is to stabilize
an appropriate local concentration compatible with the
subchain size ratio. Let r be the ratio of the length of the
shorter subchain and the total chain length. In this case
we should stabilize =2r —1 instead of ¥y=0, so that we
obtain

Y(t+1,n)=y(t,n)—B[yY(t,n)—1+2r]

+J(t,n)—LI(t,n)) . 4.1)

The pattern resulting from this modification can be seen
in Fig. 3.

As discussed in Sec. III, there seems to be no really re-
liable derivation of the mesoscale model in this case, so
we used this minimal model for the uneven cases. Here
we have assumed that the molar volume ratio is
identifiable with the subchain length ratio for simplicity.
The choice B =0 recovers the ordinary spinodal decom-
position.

The patterns above are remarkably similar to the real
ones observed in thin film experiments by Douy and Gal-
lot'® and Kamf, Hoffman, and Kromer.!” Patterns ob-
served in cross sections of thicker films though, are quite
different from Fig. 2. They present a well-defined lamel-
lar structure in which the layers are mostly parallel to the
film surface.

In order to explain this difference, we have suggested
the relevance of spatial dimensionality,13 because the in-
terface of the 2D scalar model is always rough*®37 in con-
trast to the 3D counterpart.’® However, simulations on a
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FIG. 2. 200X 200 patterns with 4 =1.3, £=0.5, B=0.005,
r=4. The numbers denote time steps. The pattern does not

change significantly after about 10 000 steps.
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FIG. 3. 128X128 pattern after 30000 iterations with
A=1.3,9=0.5, B=0.02, and r =0.4.

3D system demonstrate that this is not the case; the
cross-sectional pattern in Fig. 4 have the same charac-
teristics as the 2D patterns. One might suggest that the
result is not surprising, because our model is determinis-
tic, but, as we see from Fig. 5, the addition of sufficiently
large thermal noise brings nothing new.

Rabin’® argues that since the molecules in our system
are large, there should be a penalty for interface bending
just as in the case of micelles. It is not difficult to incorp-
orate a penalty for a small radius of curvature of the in-
terface; we add a double Laplacian term to the free ener-

gy as
J'(t,n)=f(P(t,n))—yY(t,n)

+D[AY(t,n)—bA*Y(t,n)], (4.2)

where A is the discrete Laplacian: A--- ={ - )
— -+ and b>0. A pattern obtained with this scheme
can be seen in Fig. 6. Of course, domains try to avoid
configurations with small radii of curvature, so that the
pattern is locally ordered, but still no long-range lamellar
structure is observed. Thus we may conclude that the
suggested special property of the interface is not
significant in our system.

Suppose that we have obtained a pattern with parallel
but meandering lamellae. To straighten lamellae, many
polymer chains must be removed from positive curvature
interface portions. With the diffusion mechanism only,
this becomes prohibitively difficult after microdomains
are established. We need a mechanism to move polymer
chains perpendicular to the layer. The simplest realistic
mechanism is a flow which translates lamellae perpendic-

FIG. 4. Cross section of a 3D system with the lattice size
100X 100X 50 with 4 =1.3, ©=0.5, and B=0.02 at t = 1000.
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FIG. 5. Pattern after 30000 steps obtained from (3.4) with
noise added in the following way:

Yt +1,n)=(1—B)(t,n)+I(n,t)— (I (n,t))
+Cn.(t,n, +1,n,)—n(t,n.,n,)
+q,(t,ne,n,+1)—n,(t,n,n,)] .

Here, the lattice size is 128 X 128, B=0.02, and noise amplitude
C=0.05.

ular to the interface. The spatially nonuniform distribu-
tion of chemical potential establishes global flow in the
system, which can gradually distort global patterns. The
dynamics of BCP with a hydrodynamic effect will be dis-
cussed in a separate paper, but a prototypical demonstra-
tion in Fig. 7 and 8 clearly shows the importance of hy-
drodynamic effects. Here a thin layer of BCP melt is
sandwiched between two plates, i.e., is placed in a Hele-
Shaw cell. For the formation of layers it is also crucial to
have a suitable boundary condition as can be seen there.
Experimental conditions under which well-ordered lamel-
lar structures are formed seem to always have some kind
of fluidity and a substrate.

Although without hydrodynamics we cannot get a
well-ordered lamellar structure, the evolution of the
lamellar thickness is determined by local dynamics.

@ (b

FIG. 6. Effect of the penalty for the interface bending after
30000 timesteps. The patterns are 128X 128 and have 4 =1.3,
D=0.45, and B=0.02. In (a) b=0, that is, no penalty. In (b)
b=1.1. Both patterns were obtained starting from the same ini-
tial condition.
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FIG. 7. Effect of the boundary conditions in the formation of
lamella. Patterns on the left correspond to 10000 iterations,
and on the right, 30000. Here, 4 =1.22 and B=0.02. (a) and
(b) have periodic boundary conditions in both directions; (c) and
(d) have the central line fixed at 1»=0.5. The introduction of a
fixed boundary condition has promoted some ordering, but the
evolution of the pattern after 10 000 iterations is extremely slow.
Layers with large component parallel to ordering direction are
almost frozen.

Therefore, we may still use our model (3.4). Examining
the cross sections for patterns at ¢ =9000 time steps for
B =0.0008, we see that the interface is still with the same
order of magnitude as the domain size, indicating that
the system is in the weak segregation regime. Simula-
tions for smaller values of B are difficult due to finite size
effect even in 500X 500 lattices.

To study the dependence of the equilibrium pattern
size on B, we computed the static form factor S(k),
defined as S(k)=(¢,¢_,) with ¢, being the Fourier
transform of the order parameter, after sufficiently long
time. The average (k) of |k| is defined as

(k)= [ Zak kstk) [/ [ “dk sk,

where S(k) is the spherically averaged S(k). Regarding
(k)" as a measure of the lamellar thickness D, we find
D ~B® with a= —0.256+0.003 (see Fig. 9).'?

(4.3)

V. EXPONENTS AND SCALING
The equilibrium pattern should obey
BY=A(—1p+u’—DAW . (5.1)

Comparing this result with the CH equation [(3.5) with
B =0], we realize that dimension analytically [B ~'] cor-
responds to [t], i.e., [N?] corresponds to [¢] (square

6767

brackets denote standard notation). Hence the asymptot-
ic growth law 1(t)~t*¢ for the CH equation, which is usu-
ally the dimension-analytic result,*® should imply / ~ N?¢,
that is, 6=2¢. Notice that (5.1) has infinitely many solu-
tions, but the one with the lowest free energy should have
well-defined thin interfaces for sufficiently small B.

The results above suggest the following scaling hy-

FIG. 8. Effect of hydrodynamic interactions in the formation
of lamellar patterns, in a Hele-Shaw cell. To incorporate global
flow in our model, we followed Shinozaki and Oono (Ref. 11).
A term corresponding to the fluid motion was added to (3.5).
Assuming the incompressibility condition for the velocity field
V-v=0 the resulting equation is 9y /3t =A(8H /8¢)—v-V¢. v
can be calculated starting from the Navier-Stokes equation with
the introduction of the following approximations: (i) the fluid is
considered to be in the Stokes regime; (ii) the velocity field is
slaved to the slower process of phase separation; (iii) the dis-
tance between the planes in the Hele-Shaw cell is much smaller
than the domain size, so that we can eliminate A in favor of a
geometric factor —c2, which is roughly the inverse of the
interplate  distance  squared. With these we get
v=—1/c>v[Vp+yV(8H /8¢)], where p is the pressure and v
the kinematic viscosity. —y$V8H /8y is a force density felt by
the fluid due to the existence of a chemical “pressure” 8H /8.
The incompressibility constraint allows us to compute the pres-
sure, and hence the velocity field. A 128128 lattice is used
with 4 =1.22, D=0.45, v¢?=2.0, B=0.02. The patterns on
the left correspond to 10000 timesteps, and on the right, 30 000.
The systems in (a) and (b) have periodic boundary conditions in
both directions. (c) and (d) have the central line fixed at ¢=0.5.
We can see that the fixed boundary condition is essential for ob-
taining a well structured lamellar pattern. The ordered lamella
are formed from domains oriented perpendicularly to the fixed
surface, a condition that appears only when flow is added to the
simulation (compare with Fig. 7). Also it is important to notice
that although the equilibrium lamellar size is well established
before t =5000 time steps for this value of B; only after 30000
iterations is the ordered pattern obtained.
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FIG. 9. Empirical relation between the lamellar thickness D
and B. The solid line is the least squares fitting with a slope of
0.256 corresponding to 6=0.5, which indicates that the system
is in the WS regime. D represents the average over 30 100X 100
systems.

pothesis for the domain size:

D(t,B)=B°F(tB) , (5.2)

where F(x) is independent of B. Figure 10 shows the re-
sult of plotting our data according to this scaling hy-
pothesis. We see that indeed the relation (5.2) is verified.
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FIG. 10. The time evolution of the lamellar thickness D (a)
plotted directly and (b) scaled according to (5.2). The data
represents the average over five 500 X 500 systems. The same re-
sult could be obtained from only one system, since D is deter-
mined locally.
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Chakrabarti, Toral, and Gunton*' have recently per-
formed a Monte Carlo simulation of a BCP system and,
relying on our argument that N2~t¢, have scaled the
scattering function as

S(k,B)=D2*B)F(kD(B)) (5.3)

in two dimensions. They claim that their Monte Carlo
model and our CDS model or its PDE counterpart are in
the same universality class. It should be noted, however,
that their system is rather dilute with the monomer den-
sity far less than the BCP melt.

A more explicit discussion of the exponent equality for
the SS regime is as follows. Although the true equilibri-
um parallel stripe patterns require global transport of po-
lymers as we have discussed above, the width of the pat-
tern is determined by local rearrangements of polymers.
That is, the lamellar thickness is determined by the local
minima of the system free energy. The local minima can
be efficiently searched by local dynamics, which is driven
by the interface curvature. Thus the lamellar width is
essentially determined by this dynamics. Therefore fol-
lowing Allen and Cahn,** we can reduce the problem to
the study of the interface dynamics.*>>!3 Defining a lo-
cal coordinate n perpendicular to the interface and in-
tegrating the equation of motion for ¥, we get

[ dn [da’G(x(a,n),r;(a’,0)v(r,(a",1))

+5;—B [dn [drG(r,er,n<K(r ),
0

(5.4)

where a collectively denotes the coordinates along the in-
terface, K is essentially the mean curvature of the inter-
face, and ¥, is the modulus of the equilibrium value of
the order parameter far away from the interface. Let us
assume that there is only one relevant length scale I. A
simple dimensional analysis gives us [da]=[I]¢"},
[G]1=0IT7% [w]=[11/z], [K]=[I]"", and [dn]=1.
Hence we can reduce (5.4) to the following formal rela-
tion:

P, P _ 1
DR COR

Notice that the terms on the left-hand side of the formal
equation (5.5) do not occur at the same time. For ordi-
nary spinodal decomposition the second term is absent
since B=0 in this case, and we obtain / ~¢'/3, as found
by Kawasaki and Ohta.** For BCP microphase separa-
tion in local equilibrium, on the other hand, we do not
have the first term which originates from the interface
displacement. Consequently, we find that /~N?"* in
agreement with experimental results. Actually, 2 is twice
the growth exponent for the spinodal decomposition.

The derivation of 2¢ =0 is legitimate, if the interface
structure in a spinodally decomposing system and a BCP
system are similar, even if the thin interface condition is
not satisfied. Dimension analytically, when the interface
thickness is significant and the surface diffusion dom-
inates the coarsening process, [ (z)~t!/* is expected for
spinodal decomposition.** This regime corresponds to

(5.5)
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the WS regime for BCP’s, in which 6=
from the exponent equality.

1
+ as expected

VI. EXACT RESULTS

Ohta and Kawasaki’s variational computation of the
lamellar thickness exponent®® strongly suggests that the
dimensional analysis is actually exact. We would like to
demonstrate that this is indeed the case with an exactly
solvable model of BCP. To this end we exploit the
universality property that the global features of the mod-
el is not dependent on the details of the model. We know
from our experience with spinodal decomposition that
the details of the free energy functional are irrelevant.
The choice of the map f in (3.2) is not important as long
as it satisfies the conditions mentioned before. This is the
main reason why our gross modeling of spinodal decom-
position can give realistic results. Although this is an
empirical fact supported by computational results with
the aid of CDS, it is not hard to understand this univer-
sality intuitively. The details of the functional form of
the free energy affect the interface only. The interface
structure, on the other hand, affects the actual values of
surface tension, which may alter the time scale of the pat-
tern evolution, but not the coarsening mechanism.
Hence, the detail of the interface structure is unimpor-
tant.

We can exploit this fact to invent a potential function
which allows an analytical solution for the lamellar densi-
ty profile. We found the following potential convenient:'*

D(y)=L{p—sgn(y)]* .

This gives the correct local flow diagram, although it is
not differentiable at the origin. This causes a pathologi-
J

(6.1
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cal behavior for the WS regime, which is not our con-
cern. With this local free-energy function the cross-
sectional density profile of the lamellar structure in the

steady state obeys the following linear ordinary
differential equation, which is just (5.1):
d*y _d*%y _
———=B1y. (6.2)
dx? dx* v

The boundary condition at the interface where ¥=0 is
the twice differentiability of the driving force:
Y—sgn(¢)—d*p/dx>.

It is easy to find the general periodic solution which
gives a symmetric density profile for each lamella. It
reads

1 coshfx

_ coshax
V=TT

coshaD /2 |’

coshBD /2

x€[(—D/2,D/2], (6.3)
where a=[(1+V'1—4B )/2]'? and B=[(1—V'1—4B )/
2]'/2. This contains one free parameter, the thickness D.
Since we are looking for the equilibrium lamellar thick-
ness, the profile must minimize the free-energy density.
We can compute the free-energy density for the periodic
profile given by (6.3) as (cf. Ref. 27)

2
1 D/2 dy
F(D)=—5 [ ""dx | |2

2D

+(¢—1)2]
__B o2
2D Yo

Thus the full analytic formula for the free energy is
given by

dx [ “dy(x —DWxW(y) . (64)

D aD aD a 2alaft+1) | 1+4a
pp=2L 2 2 ab | la
y“DF n (a®—1)tanh > ] +tanh ) > v + Y
D BD BD B, 2B(aB+1) , 1+4B
+ = 2 __ 2 | PY + Y el 2
2 (B*—1)tanh > tanh > 5 + » + 2B
D D tanh® (3D /2) tanh(BD /2) , tanh(8D /2)
—2B | — — +
8p* 8> 4p° By
D _ Dtanh*aD/2) tanh(aD/2) | tanh(aD /2)
— - + , (6.5)
8a? 8a? 40’ ay
[
where y =V 1—4B. This free energy is holomorphic in  Minimization of the above expansion gives D ~B ~'/* for

V'B near the origin. For the small-B parameter, this can
be expanded as

‘/I—_ﬁF(D)zmll%)ﬁl—Z\/EM
2
g |D2 2 _ 19tanh(D /2)
24 cosh¥D/2) D
2
_tanh(D/2) (6.6)

2

sufficiently large D. Comparing (6.6) and (5.5), we may
conclude that the dimensional analytical result is not for-
tuitous. The density profile is shown in Fig. 11. It should
be noted that the density maxima occur near the phase
boundaries. This was already found by Liu?’ numerical-
ly.

We can compute the B-D relation numerically using
the full expression (6.5) for the free energy as a function
of D. The result is in Fig. 12. This is quite different from
the result due to Liu and Goldenfeld;?” in their case, a
smooth crossover to the WS regime was found. The
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FIG. 11. Cross-sectional density profile of a lamella given by
(6.6) with the equilibrium thickness.

pathological behavior of our model is solely due to the
nondifferentiability of the potential at the origin. For the
WS regime it is crucial that the square gradient term in
the free-energy density dominates the contribution of the
term ®. This is possible only when the contribution from
® is negligible at least qualitatively. For this to be true
must have a differentiable maximum near the origin. In
our case ® is of order ¥ near the origin, so that, for
smaller amplitudes of i, ® dominates the free-energy
density, and the WS exponent for our model becomes
larger than 1. Incidentally, the potential we adopted al-
lows exact closed solutions describing droplets when
B=0.

VII. DISCUSSION

We have discussed a mesoscale model of block-
copolymer microphase separation dynamics based on our
cell-dynamics-system model, and the partial differential
equations suggested by the former. Even with our com-
putationally efficient modeling scheme, we could not go
into the strong segregation regime. We need a better
modeling technique than CDS to this end. Although our
CDS model is not computationally efficient enough, the
CDS modeling method based on the philosophy of pursu-
ing the mathematical simplicity has suggested a physical-
ly sounder model than the existing mesoscale models de-
rived from more microscopic models as discussed in de-
tail in Sec. III. Furthermore, the partial-differential-
equation version of our model has clearly demonstrated a
close relation between the problem of BCP lamellar
thickness and binary alloy spinodal decomposition. This
has led us to conclude that there is a simple relation be-
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FIG. 12. Relation between B and the equilibrium domain
size D resulting from the minimization of the free energy (6.5).
The line has the slope + for B<107".

tween the exponents in each problem. An analytically
solvable version of the PDE model exactly gives the
lamellar thickness exponent in the SS regime.

We have pointed out the crucial importance of fluidity
to get globally ordered patterns. By adding solvent to the
system, and adjusting the temperature, it should be possi-
ble to study systematically the effect of fluidity on the
time evolution of mesoscale patterns. This experiment
could be done in two dimensions by sandwiching a BCP-
solvent mixture between two plates (i.e., in the Hele-Shaw
cell) as is demonstrated numerically in Sec. III. Al-
though the hydrodynamics in the Hele-Shaw cell is quite
different from the bulk hydrodynamics, the fluidity is not
spoiled. Spinodal decomposition of binary fluids in the
Hele-Shaw cell demonstrates drastic effects on the time
scale of the coarsening process.!! More detailed study on
the effect of flow will be discussed elsewhere.
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FIG. 2. 200X 200 patterns with 4 =1.3, £=0.5, B=0.005,

r=%. The numbers denote time steps. The pattern does not

change significantly after about 10000 steps.



128X 128 pattern after 30000 iterations with

FIG. 3.

0.02, and r=0.4.

B=

1.3, D=0.5,

A=



FIG. 4. Cross section of a 3D system with the lattice size
100X 100 X 50 with 4 =1.3, D=0.5, and B =0.02 at ¢t =1000.



FIG. 5. Pattern after 30000 steps obtained from (3.4) with
noise added in the following way:



@ (b

FIG. 6. Effect of the penalty for the interface bending after
30000 timesteps. The patterns are 128X 128 and have 4 =1.3,
0=0.45, and B=0.02. In (a) b=0, that is, no penalty. In (b)
b=1.1. Both patterns were obtained starting from the same ini-
tial condition.



(c) (d)

FIG. 7. Effect of the boundary conditions in the formation of
lamella. Patterns on the left correspond to 10000 iterations,
and on the right, 30000. Here, 4 =1.22 and B=0.02. (a) and
(b) have periodic boundary conditions in both directions; (c) and
(d) have the central line fixed at ¥»=0.5. The introduction of a
fixed boundary condition has promoted some ordering, but the
evolution of the pattern after 10000 iterations is extremely slow.
Layers with large component parallel to ordering direction are
almost frozen.



FIG. 8. Effect of hydrodynamic interactions in the formation
of lamellar patterns, in a Hele-Shaw cell. To incorporate global
flow in our model, we followed Shinozaki and Oono (Ref. 11).
A term corresponding to the fluid motion was added to (3.5).
Assuming the incompressibility condition for the velocity field
V-v=0 the resulting equation is dv /9t =A(8H /6U)—v-Vi. v
can be calculated starting from the Navier-Stokes equation with
the introduction of the following approximations: (i) the fluid is
considered to be in the Stokes regime; (ii) the velocity field is
slaved to the slower process of phase separation; (iii) the dis-
tance between the planes in the Hele-Shaw cell is much smaller
than the domain size, so that we can eliminate A in favor of a
geometric factor —c?, which is roughly the inverse of the
interplate  distance  squared. With  these we get
v=—1/c*v[Vp+¢V(8H /8¢y)], where p is the pressure and v
the kinematic viscosity. —¢'V8H /81 is a force density felt by
the fluid due to the existence of a chemical “pressure™ §H /8.
The incompressibility constraint allows us to compute the pres-
sure, and hence the velocity field. A 128 X 128 lattice is used
with 4=1.22, D=0.45, v¢’=2.0, B=0.02. The patterns on
the left correspond to 10000 timesteps, and on the right, 30 000.
The systems in (a) and (b) have periodic boundary conditions in
both directions. (c) and (d) have the central line fixed at ¢y=0.5.
We can see that the fixed boundary condition is essential for ob-
taining a well structured lamellar pattern. The ordered lamella
are formed from domains oriented perpendicularly to the fixed
surface, a condition that appears only when flow is added to the
simulation (compare with Fig. 7). Also it is important to notice
that although the equilibrium lamellar size is well established
before ¢ = 5000 time steps for this value of B; only after 30000
iterations is the ordered pattern obtained.



