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In 1974, Halperin, Lubensky, and Ma (HLM) [Phys. Rev. Lett. 32, 292 (1974)] predicted that the
nematic —smectic-A transition of pure compounds and their mixtures should be at least weakly first

order. One way to obtain such a prediction is to treat the smectic order parameter as a constant
and integrate out the director fluctuations. The coupling between the director fluctuations and the
smectic order parameter then generates a cubic term in the effective free energy for the
nematic-smectic-A(N-Sm-A) transition, which tends to drive the transition first order. So far,
however, there has not been clear experimental evidence in support of this prediction: Some materi-
als appear to exhibit a first-order transition but others a second-order transition. In this paper we

introduce two new approaches to test the predictions of HLM. First, we note that if a cubic term in

the effective free energy for the smectic order parameter is present, its effect is dominant near the
Landau tricritical point (LTP), where the quartic term in the free energy vanishes. In a mean-field

approximation, a universal scaling form of the latent heat can then be derived close to the LTP. Its
form depends sensitively on the presence of the cubic term. By reanalyzing earlier calorimetric
measurements near the LTP, we find that these data yield evidence for the presence of the cubic
term predicted by HLM. The second new approach to experimentally determine whether a transi-
tion is weakly first order or second order is a dynamical method. This general method is based on
the observation that when a transition is (weakly) first order, the dynamics of interfaces are sym-

metric about T„so that an interface can propagate into both phases, depending on whether the
sample is undercooled or overheated (corresponding to "melting" and "freezing"). For a weakly
first-order transition, a simple scaling relation for the interface speed can be derived. In contrast,
the dynamics of propagating fronts close to a second-order transition are very asymmetric. Results
of moving interfaces close to T, in 8CB-10CB (where CB represents cyanobiphenyl) and 9CB-10CB
mixtures are presented and shown to support both qualitatively as well as quantitatively the predic-
tion that the transition is always at least weakly first order. For the N-Sm-A transition in these
compounds, our comparison finds that the dynamic experiments are more sensitive than the adia-
batic calorimetry experiments by about one order of magnitude and more sensitive than the x-ray-
diffraction experiments by about two orders in detecting the phase-transition order.
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I. INTRODUCTION

A surprising phenomenon that was first predicted
theoretically some 15 years ago is that fluctuations can
drive a transition from second order to first order. This
prediction of Halperin, Lubensky, and Ma' (HLM) is
believed to apply both to the normal-metal —super-
conducting transition and the nematic (N) —smectic-A
(Sm-A) transition in liquid crystals. Unfortunately, for
type-I superconductors the first-order nature of the tran-
sition is only expected to become visible within a few pK
from the transition temperature. ' The effect therefore
appears to be immeasurably small. In contrast, for the
nematic —to —smectic- A transition (N —Sm- A transition)
HLM estimated that the temperature range where the
first-order nature of the transition is expected to manifest
itself is sufficiently large to be measurable.

According to their original paper, HLM (Ref. l) ex-
pected the normal-superconductor transition and the
N Sm-A —transition to be aluiays weakly first order.
Later more detailed work by Dasgupta and Halperin in-
dicates, however, that somewhere in the regime of type-II
superconductivity, the transition reverts to second order.
Indeed, as we shall discuss, the arguments of HLM are
simplest and most compelling in the extreme type-I limit:
in that limit, the first-order nature of the transition be-
comes apparent before critical fluctations become impor-
tant, so that the superconductor order parameter can be
treated in a simple mean-field approximation.

Historically, the N-Sm-A transition was believed to be
of first order but as pointed out by Kobayashi„McMil-
lan, and de Gennes in the early days of phase transi-
tions in liquid crystals, the Landau rules for phase transi-
tions applied to a free energy that contains only even
powers of the smectic order parameter g, did not exclude
the possibility that it could be second order. However,
the effect of layering could lead to an enhancement of the
orientational order in the smectic A phase relative to the
nematic phase. ' Formally, this coupling appears as a
renormalization of the coefficient of the fourth-order in-
variant of a Landau expansion. This is indeed observed
in several studies, ' and this effect may be used to
effectively "tune" the coefficient of the fourth-order in-
variant to reach the region near the Landau tricritical
point (LTP), the point in the phase diagram where the
coefficient of the fourth-order term vanishes.

The attractive feature of searching for evidence for the
HLM efFect at the N —Sm-A transition is the existence of
the LTP. Near this point, the experimental signature
should be clearest, while at the same time the HLM pre-
diction is well founded and simple, since a mean-field
treatment of the smectic order parameter g becomes pos-
sible. To understand why this is so intuitively, it is
sufficient to note that at the LTP, the upper critical di-
mension is d =3, so that (apart from logarithmic correc-
tions) mean-field theory is essentially correct. Alterna-
tively, one may note that approaching the LTP from the
second-order side corresponds in the analogy with super-
conductivity to taking the limit in which the supercon-
ductor becomes of extreme type I. As noted already

above, in this limit it is justified to treat the order pa-
rameter in a mean-field approximation and the analysis of
HLM unmistakably leads to the prediction that the tran-
sition should be weakly first order. Indeed, as will be dis-
cussed in more detail later, the analysis of HLM implies
that in this regime the efFective Landau free energy for
the smectic order parameter f contains an additional
nonanalytic cubic term proportional to B~—f~, with
8 & 0, as a result of the coupling of the director field with
g. Since B )0, this cubic term makes the transition first
order, regardless of the sign of the fourth-order
coefficient.

In spite of many sophisticated and accurate experi-
ments, there has not been clear experimental evidence to
support the HLM predictions that the N-Sm-A transi-
tion is at least weakly first order near the LTP. It was
found that some pure compounds and mixtures show a
first-order transition, while the data on other materials
were completely consistent with the phase transition be-
ing second order.

The problem with trying to settle the nature of a weak-

ly first-order transition with calorimetric or x-ray mea-
surements is, of course, that they can only set an upper
limit on the latent heat or a lower limit on the correlation
length at T„respectively. It is the purpose of this paper
to show that additional information on the order of the
N Sm-A phase —transition can be obtained both from a
more sophisticated scaling analysis of the latent heat in
the neighborhood of the LTP and from experiments on
interface propagation close to the critical point. In par-
ticular, we will show that close to the LTP, a universal
scaling form for the latent heat can be derived in the
mean-field approximation, whose form is sensitive to the
magnitude of the HLM cubic term. By reanalyzing ear-
lier calorimetric measurement near the LTP, we find that
these data do yield evidence for the presence of the cubic
term in the free energy predicted by HLM. Our second
new approach to study the order of the phase transition is
a dynamical one it is based on the observation that
when a transition is (weakly) first order, the dynamics are
symmetric about T„so that an interface can propagate
into both phases, depending on whether the sample is un-
dercooled or overheated; for a weakly first-order transi-
tion, a simple scaling relation for the interface speed can
be derived. The dynamics of propagating fronts close to
a second order transition are very asymmetric, however.
As we shall see, experiments on moving interfaces in a
number of mixtures provide additional qualitatiUe as well
as quantitative evidence that the N —Sm-A transition is
indeed weakly first order near the LTP.

This paper is organized as follows. In Sec. II, we first
review the results of HLM for the nematic —smectic-A
phase transition, in order to emphasize the fact that their
prediction is essentially based on the generation of a cu-
bic term in the free energy. We then analyze the Landau
free energy with a cubic term included in Sec. III. Since
the susceptibility is finite at the LTP in this case, we in-
troduce the idea of scaling it at any point on a phase tran-
sition line by its magnitude at the LTP. In this way, we
find a universal curve that can be used to compare all the
data. This scaling form is used in Sec. IV to reanalyze
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previous measurements of the latent heat in 6010-6012,
9CB-10CB, and 8CB-10CB mixtures. We then turn to a
discussion of the general ideas underlying the dynamical
approach in Sec. V and discuss its application to the
N —Sm-A transition in Sec. VI. A number of questions
raised by our results are briefly discussed in Sec. VII.

II. HALPERIN-LUBENSKY-MA THEORY APPLIED
TO THE NEMATIC- TO-SMECTIC- A

PHASE TRANSITION

The N phase breaks the continuous rotational symme-
try of the isotropic liquid phase in that the molecules
have some average orientation given by the director n.
The structure of the A phase consists of layers parallel to
n with thickness d of the order of the molecular length, '

so that the continuous translational symmetry in the
direction parallel to n is broken in the A phase. When
the layer normal is on average parallel to the z direction,
the smectic order parameter is a complex field f(r) that
specifies the amplitude and phase of the density modula-

tion p(r)=po[1+ Re[/(r)e ' ]I induced by the layering.
Here q0=2m/d is the wave vector corresponding to the
layer spacing d, and the complex field g(r) has its spatial
variation on scales larger than d.

Since the layer normal locally wants to be parallel to n,
the smectic order parameter locally wants to be of the

iqpz iqpn r iqpz+iqpbn r
form g(r)e ' =e ' =e ' ' if the director field
fluctuates by an amount 5n about the z direction. Hence,
the smectic order parameter is strongly coupled to the
director field; this is reflected in the form of the free ener-

gy density'f'($, 5n):

f (q, 5n) =, a I@I'+-,'Clt(l'+-, 'Elyl'+ IVp Pl'

+ ~(V~ iqo5n)—g~

+ —,'[K, (V 5n) +K2(n VX5n)

+K3(nXVX5n) ) . (la)

The I(; are the bare Frank constants. Note that M~~ and

Mz determine the correlation lengths
g~~

and g~ parallel
and perpendicular to n, respectively. Odd powers of f do
not appear in the free energy density because a change in
sign P~ —g just corresponds to a translation of the
smectic layers by d /2 and because the coarse-grained free
energy density has to be analytic in g.

In the absence of smectic layering, the long-wavelength
director fluctuations are soft —their energy is propor-
tional to k, where k is their wave vector. However, be-
cause of the coupling between lij and n, layering
suppresses transverse director fluctuations and the
strength of the long-wavelength transverse director fluc-
tuations is g dependent. As a result, on averaging over
the director fluctuations, the effective free energy density
acquires an additional P dependence.

This is most easily seen if we consider a homogeneous
value of p (1(=const) and neglect the fluctuations in g;
moreover, we will, for simplicity, work in the one con-

stant approximation E, =K2=E3=K. In this approxi-
mation, we have upon integrating over the director fluc-
tuations for the effective free energy f (f)

2

=~ lql+clyl'+El~I'+ lol&[5 ( )]'&

(lb)

f (g) =—'3 I@I'—-'a lql'+ —,'el@I'+ —,'El@I' . (4)

This form of the local free-energy density will be the basis
for the scaling analysis in Sec. III. Note that since the
remainder of our analysis will be on the level of a mean-
field approximation for which the fact that the smectic
order parameter P is complex does not play a role, we
will from now on treat l( as a real quantity. The impor-
tant feature of Eq. (4) is the presence of the cubic term
that makes the phase transition necessarily first order in
mean-field theory. This term is unusual in that it is non-
analytic at /=0. This nonanalytic feature arises because
al/ the long-wavelength director fluctuations have been
integrated out.

The above discussion illustrates the simplicity of the
HLM argument" that the N —Sm-A transition should
be a fluctuation-induced first-order transition. As men-
tioned in the Introduction, a similar argument holds for
the normal metal-superconductor transition. (The analo-

gy between this transition and the N —Srn-A transition,
discovered by de Gennes, is not perfect: only one length
is needed to describe the isotropic normal metal-
superconducting transition whereas the N —Sm-A transi-
tion is anisotropic and requires two coherence lengths

g~~

and g~. ) Note that although this argument includes the
fluctuations of n, the remainder of the argument is on a

Since the terms in f' quadratic in 5n can be written as

f dk~5n(k)~ (Kk +qogoj~tP~ ) we get from the standard
fluctuation formula for the thermally averaged director
fluctuations

& 15n(k) I'&- 1

Kk2+q2g2 ~q~2

This expression shows that a nonzero value of the smectic
order parameter opens a gap as k ~0 in the spectrum of
transverse director fluctuations. For & [5n(r)] &, we now
obtain

k
& ~5n(r) '&—

0 Kk2+ 2g2 ~q
2

k,' —&'lgl, a'&o.
E (3)

Here k, is a microscopic cutoff wave number which we
assumed is large enough that Kk, )&qogoj ~ P~ . When in-

tegrating over the director fluctuations, we see from Eq.
(lb) that its effect on the derivative of the effective free
energy f (P) will be through a term of the form
qo& [5n(r)] & ~/~ -k, ~g~ B'~g~ . —Hence, transverse
director fluctuations not only induce renormalization of
the coeScients A' but also lead to the introduction of a
new term —(8'/3) ~tt

~
in f. We thus obtain a local free

energy density of the form'
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mean-field level because fluctuations of f are ignored.
Near the LTP, a treatment on this level seems reasonable,
since the upper critical dimension for the LTP is 3. We
will confine our attention to this regime. In the language
of superconductivity, the LTP is the limit of extreme
type-I behavior, where the fluctuations in the gauge field
are indeed much stronger than those of f so the HLM
approach is again reasonable for this regime. ' For
sufficiently large C, fluctuations in P become more impor-
tant and the HLM argument becomes questionable; here
the transition may well return to being continuous, as is
argued for the case of type-II superconductivity by Dasg-
upta and Halperin.

On the experimental side, support for the theory of
HLM has been inconclusive. Some materials show
N-Sm-A transitions with immeasurably small latent
heats as measured by adiabatic scanning calorimetry '

while in a number of x-ray diffraction experiments the
coherence lengths showed no tendency to have finite lim-
iting values as the transition temperature Tz s z was
approached from above. Adiabatic scanning calor-
imetry measurements have also been made on various
mixtures that exhibit progressively smaller latent heats at
progressively larger nematic ranges. Such behavior is
qualitatively consistent with the existence of the LTP
which should appear due to the classical coupling be-
tween the nematic and smectic results. However, as
pointed out by Anisimov et al., ' there is an important
difference between the mean-field theoretical predictions
and N —Sm- A tricritical behavior. Landau theory
without the cubic term predicts that the latent heat L
along the first-order side of the transition line should be a
linear function of the distance to the tricritical point, i.e.,
in a mixture with concentration x,

L-x —x',
where x* is the tricritical concentration of the mixture.
Experiment ' does not support this prediction in the
case of the N-Sm-A transition. In the vicinity of the
N-Sm-A tricritical point the concentration dependence
of the latent heat appears to be nonlinear, looking ap-
proximately quadratic. In Ref. 18, it was found that such
behavior ~as consistent with the assumption that the
Landau expansion of the free energy contained a small
cubic term in the vicinty of the LTP. This was the first
experimental evidence supporting the predictions of the
HLM theory.

In passing, we also note that at a tricritical point, one
expects a specific heat exponent a= —,'. However, the fact
that experiments are done at fixed composition leads to
an appreciable (Fisher} renormalization of the exponents.
This has recently been analyzed in detail by Hill et al. '

Compounds with the larger nematic ranges have no
measurable latent heats at the N-Sm-A transition. Only
recently have the consequences of observing an interface
propagating at this transition been explored. ' It was
found that the N —Sm- A transition was first order even in
compounds with no measurable latent heat at this transi-
tion. We will show that these measurements are indeed
consistent with the existence of a small cubic term, lend-

ing further support for the theory of HLM. This com-
parison also shows that the dynamics of interfaces are
especially sensitive for the N —Sm-A transition because
these materials are transparent to light so that the inter-
face may be directly observed.

III. LANDAU DESCRIPTION OF PHASE
TRANSITIONS WITH A CUBIC TERM

To reveal universal features of data taken under widely
different conditions, the relation between all the mea-
sured parameters must be derived. In this section, we
will therefore derive a number of scaling expressions for
the free energy (4} in the mean-field approximation.

When B =0 in Eq. (4), C & 0 describes first order phase
transitions and C &0 second-order phase transitions. If
BAO, the transition remains first order even for C & 0: as
the transition temperature is approached from above, the
coherence length remains finite and from below, the or-
der parameter is nonzero. We refer to the condition
C =0 as the Landau tricritical point even when BAO. In
this analysis, we exploit the finiteness of the parameters
of the phase transition at the LTP to scale all quantities
by values assumed at this point. A relatively simple
universal function results that depends only on the
identification of the LTP.

A. Relationship between the susceptibility,
coherence lengths, and latent heats

The scaling expressions derived in this section follow
directly from the free energy (4) in the mean-field approx-
imation. Readers not interested in the derivation can
skip to the main results, Eqs. (18)-(20).

On a first-order transition line, the order parameter P
jumps discontinuously from /=0 to g, at TN s „. In
the following, we take g & 0 and do not carry the absolute
value sign in the cubic term. Since we do not consider
fluctuations and because of the even symmetry of Eq. (4)
guaranteed by the absolute value sign, limiting ourselves
to this case does not detract from the generality of this
procedure. In the mean-field approximation, then, P,
can be determined by minimization of Eq. (4) and requir-
ing that the free energies of the ordered (A phase, /%0)
and the disordered (N phase, /=0) phases are equal.
This yields

2 f = A, ', BP,+ —,'Cg, +—,'E—Q, =O (Q, &0—),
C

and

=A, BQ, +Cg—+EQ, =O ($, &0) .
1 d

C

The phase transition line is found by subtracting these
two equations to obtain

B —
—,'Cg, 2EQ, =O (g, &0)—.

g, is then the single positive root of Eq. (8). We assume
E and 8 are positive constants that do not vary for a
homologous series of compounds (compounds that differ
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only in the length of their aliphatic chains}, and that
goes linearly through zero at a temperature To

(AT~ s „),so that A =a'e with e=(T —Tp}/Tp.
At the LTP, C =0 so that

' 1/3
B
2E

(9)

Substitution of this result in Eq. (6) shows that the vari-
ous coeScients at the LTP are related by

4/3

A ' =a'e* =E B
c c 2E

E(q—» )4 — q»B
(10)

3 C
4 E

or, with the aid of Eq. (10),
2

4 1

3 (f')' (13)

With this expression, we may further simplify Eq. (11) to

z4,
» 3 g» 3 $»

(14)

Since the latent heat is related to the jump in the entro-

py by L =b,S/R, we obtain in the mean-field approxima-
tion

Throughout this paper, an asterisk will be used to denote
values assumed at the LTP. Substituting the results of
Eqs. (9) and (10}into Eq. (7},we obtain

c
A' f' A'

Equation (8) relates the coefficient C to the distance from
the LTP as

sition by scaling. For example, the coherence length
measured at Tz s „ in mean field is g, -y, so that

' 1/2
hS

AS'
1 2 hS

hS

—3/2 1/2

(19)

Equations (18) and (19) are particularly useful as they
only depend implicitly on the location of the LTP.

When bS/b, S»» 1, for negative values of C,
A, /A;= ,'(hS/bS—') and A, = ,', C /—E, a classical re-

sult for the case in which a line of first-order transitions
(B =0, C &0) ends at LTP and becomes a line of second-
order phase transitions for C &0. When ES/b, S' «1,
A, /A, '= 32(bS/bS')—' and A, =—',B /C, also a well

known result for the case in which B@0,E =0. Thus, as
B~0, A, ~0 like B and g, ~~ like 1/B.

B. Dependence of C on concentration in mixtures

McMillan and de Gennes predicted that molecular
length would be an important parameter to drive the
X—Sm-A transition towards an LTP. In this theory, the
shorter the molecular species exhibiting an X-Sm-3
transition, the less likely they were to exhibit the
smectic-A phase, therefore the larger the temperature
range of the nematic phase and the more likely the transi-
tion was to be second order. Thus, adding similar but
longer molecular species in a concentration x would tend
to drive C to zero like C =Cp(x —x ' }, with Cp & 0, be-
cause of the coupling between orientational and transla-
tional order (as before, x' is the value of the concentra-
tion at the LTP). This behavior of C is in agreement with
the analytical form predicted by Landau.

Substituting the linear dependence of C on x into Eq.
(13), a universal function of the distance to the LTP can
be found as

hS
R R TN-Sm- A

iy2=af= (15)

so that together with (9),
2/3

AS* 1 , B
R 2 2E

(16)

($0—

LQAcI0U—HLM th

The inverse susceptibility g, in the disordered phase on
the transition line is

(17)

6—
CO

CI

M0 4—

1 2 hS
hS*

AS
AS*

(18)
C

Thus, in the mean-field limit, using the definitions in Eqs.
(15)—(17},Eq. (14) can be related to the entropy jump at
the transition by the universal scaled relationship:

A
—3/2 0

-10 -5
l

0
Y Y

I

10

Equation (18) is a simple way to relate the measured la-
tent heat (L =T~ s „b,S) to the susceptibility that in
turn can be related to the relevant parameters of the tran-

FICs. 1. Universal crossover behavior for AS/hS* as a func-
tion of the concentration variable y —y

* near the LTP, as given
by Eq. (20).
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hS
hS'

—1/2

(x —x')—:y —y', (20)hS'
0.8—

where a= —38(a'Co/E). When bS/ES*»1, one ob-

tains the classical result of Landau theory:
y —y =AS/bS and hS/R =a(x —x ) valid far from
the LTP or everywhere if B =0. When hS/b, S «1, C
is large and positive thus y —y'= —(bS/b, S')'~ and
b,S/R =—,'[a'B / Co(x —x ) ]. The universal crossover
function Eq. (20) is shown in Fig. 1. Far from the
LTP, assuming a'=1, C=1, and 8=10, one has
b,S/R =10 . This value is not measurable even by the
finest adiabatic calorimeter. However, near the LTP the
situation is different. According to Eq. (16), b,S'/R
= 10 —10 ' (again taking a'= E= 1 and B= 10 ) i.e.,
quite accessible to adiabatic scanning calorimetry. Next,
we investigate the latent data for three mixtures using the
results from this section.

06—
CL

V)

04—

0.2—

0.3 0.4
I I I I

0.5 0.6 0 7 0.8
x (mole fraction 6012)

I I

09 10

FIG. 3. The latent heat of the 6010-6012 mixture fit to the
crossover form Eq. (20).
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IV. COMPARISON OF CALORIMETRIC
MEASUREMENTS WITH MEAN-FIELD SCALING

A. Phase diagrams of 6010-6012 and nCB mixtures

In Ref. 7, the results of the adiabatic scanning
calorimetry measurements of the N—Sm-A latent heat in
6010 (4-n-hexyloxy-phenyl-4'-n-decyloxybenzoate)-6012
(4-n-hexyloxyphenyl-4'-n-dodexyl-oxybenzoate) mixtures
were reported. The smectics-A formed by molecules of
this series are usually the one layer phases. The only
peculiarity of the phase diagram of this mixture is that
the nematic-smectic-A -isotropic triple point coincides
with pure 6012 (Fig. 2). Far from the apparent tricritical
point the concentration dependence of the latent heat is
close to linear, but when the latent heats become small,
they deviate from this linear behavior (Fig. 3). The latent
heat becomes too small to measure in this data set at the
apparent tricritical point at x =0.4.

Another system which was studied is the nCB (where
CB represents cyanobiphenyl) compounds, since coher-
ence length, latent heat, and velocity measurements have
been made for the pure materials 8CB and 9CB as well as
several mixtures of 9CB and 10CB. The n in nCB refers
to the length of the aliphatic chains associated with these
molecules. Thus, 8CB is shorter than 9CB which in turn
is shorter than 10CB. A layer thickness intermediate be-
tween that of the pure materials is observed in the smec-
tic phase of binary mixtures.

In agreement with McMillan's ideas, 8CB, being the
shortest molecule, exhibits a N —Sm- A transition that ap-
pears truly second order on the basis of adiabatic scan-
ning calorimetry and x-ray measurements. With increas-
ing concentration of 10CB, the temperature range of
the nematic phase narrows linearly and disappears at
x = 65% 10CB in 8CB (Fig. 4). Concentrations richer in
10CB transform directly from the smectic-A phase to the
isotropic liquid state. Adiabatic scanning calorimetry
identifies an apparent tricritical point at -30% 10CB in
8CB where the latent heat becomes immeasurably small'
(see Fig. 5). The x-ray data are not available for these
mixtures but have been published for 9CB, 10CB, and
their binary mixtures. Therefore, we also studied these
compounds.

For the 9CB-10CB studies, x-ray measurements re-
ported a tricritical point at —10%%uo 10CB in 9CB; i.e.,
9CB appeared second order. Latent heat measurements,
however, find that 9CB is weakly first order. (See Fig. 6.)
From these measurements, there is thus some doubt
about the order of the N —Sm- A phase transition of 9CB,
but as we shall see, the dynamical measurements find that
all the compounds, including 8CB and 9CB,
exhibit front dynamics consistent with a first-order
N —Sm- A transition. '

FIG. 2. Phase diagram of the 6010-6012 mixtures. The ar-
row labeled "Apparent TCP" indicates the point at which the
latent heat becomes immeasurably small, the one labeled "Lan-
dau TCP" the tricritical point as determined from the fit to the
crossover function with a cubic term included, shown in Fig. 3.

B. Crossover behavior of the latent heat
at the W —Sm- A transition of mixtures

Accurate measurements of the latent heat on the
N —Sm-A transition line were carried out by Marynissen
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FIG. 4. Phase diagram of the 8CB-10CB mixtures, after Ref.
12.

FIG. 6. Latent heat data from Ref. 12 of the 9CB-10CBmix-

tures fitted to the scaling function (20) to determine x and
as*.

et al. on the 8CB-10CB and 9CB-10CB mixtures using
high resolution adiabatic scanning calorimetry (Figs. 5

and 6). They described the decrease in latent heat they
observed in these mixtures by a quadratic dependence of
L on the concentration difference L -(x —x, ) for x near
x„where x, is the concentration of the apparent tricriti-
cal point. As argued first in Ref. 18, we believe that the
nonlinear relation they observed between L and x is a
consequence of a cubic term in the Landau free energy
[Eq. (4)] that becomes evident near a Landau tricritical
point.

In the nCB mixtures the LTP is too close to the nemat-
ic to isotropic transition to clearly observe the linear con-
centration dependence of hS seen far from the LTP in

the 6010-6012 mixtures —compare Fig. 3 with Figs. 5
and 6. We fitted all calorimetric data with formula (20);
Figs. 7 and 8 show all the data plotted in the universal

normalized form. Upper limits are shown for the latent
heats that have not been included in the fit. The results
of the fits are summarized in Table I.

Since Eq. (20) provides a good, quantitative description
of the data even when mixtures that do not exhibit an ob-
servable latent heat are included in the fitting procedure,
we conclude that Figs. 7 and 8 show that the experimen-
tal evidence is quite consistent with the existence of the
cubic term to describe this transition as predicted by the
HLM theory. Additional support for the theory for mix-
tures (and pure compounds) that have immeasurably
small latent heats are provided by the new dynamic tech-
nique' that we discuss next.

V. DYNAMIC TECHNIQUE
FOR ASSESSING PHASE TRANSITION ORDER

The dynamic behavior of interfaces does not directly
detect discontinuities in the thermodynamic properties

8CB -10CB mixture
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30—
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o 9CB -10—HLM the

01—
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I

-20
I

-10 10 20
FIG. 5. Latent heat data from Ref. 12 for the 8CB-10CB

mixtures fitted to the scaling function (20) to determine x* and
ES*. The data point for the pure 8CB was not included in the
fit.

FIG. 7. Normalized universal form showing that Eq. (20) de-
scribes the 8CB-10CB,9CB-10CB,and 6010-6012 mixtures.
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TABLE I. Parameters obtained from fitting the latent heat
data (Refs. 6 and 12) Eq. (20) and used in fitting the velocity
data (Ref. 14) to Eqs. {28)and (29).

(o) T&Tc

FIRST ORDER

(b) T& Tc

f(y)

Mixture

9CB-10CB
8CB-10CB
6010-6012

0.0983
0.4243
0.4828

AS*/R

0.0192
0.0261
0.0408

0.518
0.993
1.947

(U/~')*
(cm/sec)

770
540

but reflects the form of the free-energy potential driving
the interface motion. Cladis et al. ' were the first to real-
ize that this qualitative difFerence in the dynamic behav-
ior of interfaces can already be a powerful tool for deter-
mining the order of a phase transition when the interface
can be directly observed, and they used it to study the
N —Sm-A transition. In the following, we first describe
the basic idea underlying their approach, and then show
that, in combination with the analysis of the preceding
sections, even quantitative comparisons can be made.

A. General description of dynamics of propagating interfaces

(c) T&Tc

SECOND ORDER

(O) T& Tc

f(g)

FIG. 9. Illustration of the form of the free-energy f(f) for
first- and second-order transitions.

Let us first compare the possibility of creating fronts
and interfaces near a second order and a first order phase
transition before analyzing the dynamics in detail. For
simplicity, we will present the discussion directly in the
language of the mean-field approximation relevant to the
N —Sm-3 transition, but most observations apply also to
the more general case in which critical fluctuations are
important. Also, we will assume that the temperature is
homogeneous throughout the sample, in other words, we
assume that no temperature gradients are externally im-
posed and that the latent heat is negligible. We will come
back to these efFects later.

In Figs. 9(a) and 9(b) we illustrate the form of the local
free energy density f (P) for the case of a j7rst order tra-n

sition Abov.e T, [Fig. 9(a)], the absolute minimuin of
f (g) corresponds to the disordered state /=0, while
below T, [Fig. 9(b)], the free energy density has its abso-

100

lute minimum at QWO. However, even when T & T„ the
disordered state g =0 still corresponds to a local
minimum, so it is only metastable. As a result, there is a
finite surface free energy between the two states and a nu-
cleation barrier for the ordered state to form. Thus, as is
well known, the disordered state can be undercooled, i.e.,
can be brought to a temperature T & T, ; likewise, the or-
dered state can be overheated. A related manifestation of
the existence of the barrier in f (P) between the two mini-
ma is the fact that by increasing or decreasing the tem-
perature around T„ interfaces at a first-order transition
can be made to propagate in either direction, correspond-
ing to melting or freezing of the ordered state. Moreover,
if the interface is rough, the interface velocity is linear in
AT = T —T„so that the response is symmetric about T, .
Within the Ginsburg-Landau approach, this result can be
obtained as follows.

Consider for simplicity an isotropic free energy

10—
F= f dr (VP) f(P)—1

2M
(2l)

CA

CI
M

O1—

0.01—

O.OO1
-20 -10

I

10 20

whose dynamics are governed by the time-dependent
Ginsburg-Landau equation

r)g 5F I 2 df
dt 5g M dg

Here ro is the microscopic (bare) relaxation time of the
smectic order parameter. For a profile go(x —vt) propa-
gating with a constant speed v between the state g= f, on
the left (x~ —~) and /=$2 on the right (x~ ~), we
have

FIG. 8. Normalized universal scaling form on a log scale for
the latent heat.

d4o
VVp

I d 1('o df(f)
M dx~ dP

(23)
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Upon multiplying this equation by —dgo/dx and in-

tegrating, we see that the gradient terms drop out to yield
'2

+- dfo
'rav f dx

1 d d1"0 deodf
2M dx dx dx dg

(24)

where b,f =f2 f, —is the difference between the free-
energy densities of the two states. Since near a first-order
transition b,f is linear in T —T„and since the integral on
the left is positive for all T near T, [d1(v/dx in the in-
tegral can be approximated, to lowest order, by the U =0
solution of Eq. (23}], this equation confirms that the re-
gion corresponding to the lowest free-energy state ex-
pands. Moreover, in view of the fact that hf is linear in
hT = T —T„it confirms that v goes linearly through zero
at T, : v cc-b, T. We will explore Eq. (24) in more detail
later.

Near a second-order phase transition, on the other
hand, the behavior is very different. In this case, one nor-
mally does not see well-defined interfaces. To understand
the reason within a mean-field picture, consider Figs. 9(c)
and 9(d), where we have sketched the form of f near a
second-order transition. Above T„f (f) has just a single
minimum at /=0; for T & T„however, f(f) has a local
maximum at /=0 and an absolute minimum at some
finite value(s) /%0. If we imagine a situation in which a
system, initially at T & T, (so /%0} is suddenly brought
to a temperature T )T„g will relax essentially homo-
geneously to zero since as illustrated in Fig. 9(c),
df /dfAO for all /%0. Thus, in contrast to the behavior
at a first-order transition, no propagating interfaces can
be created by suddenly increasing the temperature above
a second-order transition temperature T, . For quenches
from T & T, to T (T„ the situation is different, howev-
er. In this case, the driving force in the bulk, where
/=0, vanishes since df/df=O. If fluctuations and ini-
tial inhomogeneities would be sufficiently small, one
could therefore in principle enter a regime in which the
dynamics are dominated by interfacelike fronts that
propagate into the unstable state /=0. A simple scaling
analysis shows that the speed of such fronts should vary
as v ac+~ T —T, ~

(the proportionality factor is known
from various theoretical approaches '). Of course, the
creation of such a front would not be feasible at phase
transitions in liquid crystals, where fluctuations are large.
In this case, one would expect to see a rapid local growth
of smectic patches everywhere in the sample rather than
the creation of we11-defined fronts. Nevertheless this type
of front propagation into unstable states has successfully
been studied near the Rayleigh-Benard and Taylor-
Couette instabilities ' where inhomogeneities and fluc-
tuations can be suppressed sufficiently. The speeds of
such fronts were found to agree with the above-
mentioned scaling.

In summary, propagating interfaces naturally occur
upon quenching or overheating a system that exhibits a

first-order phase transition, and the dynamics are sym-
metric and linear about T, . Near a second-order transi-
tion, however, fronts can only be created under carefully
controlled experimental conditions and their dynamics
are very asymmetric: on one side of T, well-developed
fronts do not exist, while on the other side of T„their ve-
locity increases as v'~6T~

B. Scaling relations near weakly first-order transitions

v /Ek'c
(v/e')'

(26)

In writing this scaling relation, we have assumed that
the microscopic time rp and the parameter a' do not vary
appreciably from mixture to mixture. Moreover, we
neglect the variation of the prefactor in (25) that depends
on the relative size of the coefficients B, C, and E and
hence on the composition of the mixture. This last effect
can actually be accounted for. From the Ginsburg-
Landau equation (22) with f of the form (4), it is easy to
show that in general one has near the first-order transi-
tion

v a'k. C
B2/3E 1/3

(e'~0), (27)

where g, —:(a 'e, M) ' is the correlation length at T, on
the disordered (nematic) side of the transition. From the
solutions of the interface propagation problems for 8 =0,
C (0, E &0 and for E =0, B & 0, C & 0, it follows that
g ( —ao ) =2 and that g (+ ao ) =3. For 8%0, we have
obtained g numerically from dynamical simulations of the
Ginsburg-Landau equation. As Fig. 10 shows, the factor
g varies monotonically between these two values, the
variation being such that in the scaling relation (26}, v

tends to be underestimated on the "second-order side"
C (0 and overestimated on the "first-order side" C &0
of the LTP. Nevertheless, since g varies only about
+20go with respect to its value at the LTP, we will

Let us now return to the case of a moving interface
near a first-order transition and investigate the scaling be-
havior implied by Eq. (24). From Eq. (15), we see that
one has f2 f, =—

,'a'P, e—' (e'=(T —T, )/T, is the dimen-

sionless distance from the first-order transition tempera-
ture T, ). Since the integral in (24) will scale as g, /g„we
obtain for the slope v/e' the scaling result

—OC

a'
(25)

7p

According to this expression, the interface moves faster
the larger g, is. Physically, this reflects the fact that the
friction experienced by a moving interface is smaller the
smaller P, is and the larger the interface width is (since
Bg/Bt = —VBQ/Bx is smaller). As described below, the
slope v/e' can be obtained from the dynamical measure-
ments of Cladis et al. ' In combination with the scaling
result (19) for g„ the velocity measurements can then be
compared with those of the correlation length g, as well
as the latent heat measurements by writing Eq. (25) in the
form
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FIG. 10. The factor g defined in Eq. (27) as a function of
C/B E', as obtained from the numerical solution of the
Ginsburg-Landau equation.

henceforth neglect this effect and use Eq. (26) to compare
the experimental data.

In the above discussion, we have assumed that the tem-
perature of the sample remains homogeneous. However,
at a first-order transition, the latent heat will induce a
temperature jump across the interface of order L/c,
where c is the heat capacity, so the above picture is only
accurate if L is small enough that this temperature
difference is small compared to the difference from T„
AT, or if the cell geometry is such that the hest is con-
ducted away sufficiently fast. If these conditions are not
met, the interface dynamics are not intrinsic anymore,
but instead become diffusion limited. Likewise, in prac-
tice care must be taken to ensure that the temperature of
the experimental cell is sufficiently homogeneous, since in
the presence of a temperature gradient an apparent inter-
face can be created even at a second-order transition.
Upon changing the temperature of the cell, the dynamics
of such gradient-induced interfaces will generally follow
the temperature response of the cell, as the position of
the interface will "ride" on the T = T, isotherm.

wait typically a few seconds for the front to appear in the
field of view, and then record the front passage with a
video monitor. From a frame-by-frame analysis, the
speed v (e) was found, with a resolution 0.1 s. In all the
experiments, stationary as well as moving interfaces were
observed —as discussed above, a signature that the
N —Sm-A transition in all the samples studied was weakly
first order. The data for v as a function of temperature
for the 8CB-10CB mixtures can be found in Ref. 14,
while we present the experimental results for pure 9CB
and for 22.4% 10CB in 9CB in Fig. 11. For the 22.4
mol. %%uomixtur e, th e fron t velocit yclearl ygoe s linearly
through zero as expected for weakly first-order transi-
tions with a small but measurable latent heat (the LTP is
estimated to be at x ' =9.8%; see also Fig. 6). Although
the uncertainty in temperature is the same for the 9CB as
for the mixture, its steepness precludes a precise deter-
mination of the slope as for the 22.4% mixture. Never-
theless, these data are consistent with a linear dependence
of v on e'. The data for some ten other compositions'
between these two values fall between these two extremes.

As discussed, temperature gradients can induce an ap-
parent interface; however, as the following observations
suggest, it is unlikely that the interfaces seen experimen-
tally were due to such gradients. (i) Small (2X2.5X0.7
mm ) platinum resistance thermometers, thermally sunk
to the cells, measured the temperature accurately to
0.01'C. The data used in the analysis were all taken at
constant temperature. (ii) Cells made of two glass plates
1 mm thick or two sapphire plates 0.5 mm thick with the
liquid crystal in the 13-pm gap between the plates were
used. Although the thermal diffusivity of sapphire is 26
times larger than the one of glass, within the experimen-

VI. RESULTS OF DYNAMICAL MEASUREMENTS
ON SCB-10CBAND 9CB-10CBMIXTURES

As described in Ref. 14, dynamical measurements of
the type discussed above were done on a large number of
mixtures. In this section, we first briefly describe the ex-
perimental procedure, and then analyze the data for the
8CB-10CB and 9CB-10CBmixture in terms of the scaling
expression discussed above.

0
E

A. Description of the experiments

The experiments were performed on glass and sapphire
cells that were typically 13 pm thick; a region of about 1

mm of the cell could be viewed through a microscope
with a video camera. The procedure was to start at a uni-
form temperature within 0.02'C of T„rapidly change
the temperature to some value T on the other side of T„

-2
-4

{T Tc)/Tc x )04

FIG. 11. Interface velocity u vs e'=(T —T, )/T, for pure
9CB and the 22.4% 10CB in 9CB mixture.
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tal accuracy of 20%, the interface velocities were found
to be the same in both cells. Thus it was concluded that
interface motion was not driven by thermal relaxation of
the cell and not governed by heat release in the interfacial
region. (iii) The data did not show a detectable asym-
metry for cooling or heating. (iv) The field of view was
always at a fixed position with respect to the heaters.
With a given part of the cell in the field of view, the inter-
face was found to propagate in a fixed direction with
respect to the sample, presumably determined by a nu-
cleation site. When a different part of the cell was
brought in the field of view, the propagation direction
was di6'erent with respect to the heaters. It was therefore
concluded to be unlikely that systematic temperature gra-
dients played a role. (v) In a narrow range around T„
static interfaces were observed; these were pinned at cer-
tain spots of the cell that presumably are imperfections.
Pinning is associated with the existence of a surface ten-
sion, and hence is a feature of a first-order transition (no
surface tension can be associated with a front between a
stable and unstable state).
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B. Analysis of velocity and coherence length data

Figures 12 and 13 show a plot of the slope v/e' as a
function of concentration for the 8CB-10CB and 9CB-
10CB mixtures. In Ref. 14, the velocity data were corn-
pared directly with estimates of the correlation length g, .
However, since AS is measured more accurately, we have
here chosen to fit the data by eliminating g, in favor of
b,S using Eqs. (19) and (20). In this way, the solid lines in
Figs. 12 and 13 give the velocity of each series of mix-

tures as an implicit function of the concentration x ac-
cording to

V V —I
(

1 + 2 s 3/2
)
—I /2

~l ~l 3 3
(28)

FIG. 13. Front speed plotted against concentration for the
8CB-10CB mixtures. The solid line is based on Eqs. (19), (20),
and (26) and the fit for the 8CB-10CBmixtures in Fig. 5.

I
i

I I I I [ I I I I i I I I I

0

bx +s —s
b

(29)

CB —lOCB mixture

1500—

IU
Ol

E 1000—

500—

11

I i I I I I I I I I I I I I I I I

0.0 0.1 0.2 0.3
x (mole fraction 10CB )

FIG. 12. Front speed plotted against concentration for the
9CB-10CB mixtures. The solid line is based on Eqs. (19), (20),
and (26) and the fit for the 9CB-10CBmixture in Fig. 6.

where s=b,S/b, S' and b =aR/b, S'. The values of b
and x * are taken from Table I and so are based on the fit
to the latent heat data. The agreement for the 9CB-10CB
mixtures is remarkable, taking into account that the solid
curve is obtained without adjustable parameters other
than the slope (v/e')' at the LTP, whose value is also
given in Table I. For the 8CB-10CB mixture, on the oth-
er hand, the agreement is only qualitative; however, the
last two points are far away from the LTP where the ex-
perimental error bars are large (in Ref. 14, the error was
estimated to be 50% for the 8CB data point) and where
we have no reason to expect the mean-field approxima-
tion to stay accurate. Note also that if we would take
into account the variation of the factor g in Eq. (26), this
would move the solid line upward (the velocities for small
concentrations would become larger), and so it would
bring the predicted values a little closer to the data
points.

We now wish to compare the various data with those
for the coherence length g, . Accurate x-ray measure-
ments of g, have been performed by Ocko, Birgeneau,
and Litster on the mixtures we consider. However, the
comparison of the experimental results is complicated by
the fact that even near the LTP, there is considerable an-
isotropy in g, measured in the nematic phase. Correla-
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tion lengths parallel and perpendicular to n diverge with
different effective exponents (vi and vt, respectively) that
depend on the temperature range of the nematic phase.
In mean-field approximation, one expects near the LTP
that v~~=v~= —,', but the x-ray data do not support this.
(Possibly, one observes a crossover due to the enhanced
Fisher renormalization near the LTP. '

) Moreover, only
three mixtures (14%, 20%, and 28% 10CB in 9CB}were
observed to show evidence of a finite g, at the first-order
transition temperature, so for most mixtures the x-ray
scattering data only give a lower bound for g, .

If, in spite of these caveats, the slope v/a' is plotted
versus the average correlation length g, =(gQ'II}' as
done in Fig. 1 of Ref. 14, the data are reasonably con-
sistent with the scaling relation (27). With a'g =1, a mi-

croscopic relation time vo of about 7.5X10 s was ob-
tained from this plot. Since diffusion coefficients are typi-
cally of the order of 4X10 cm /s, this value is con-
sistent with the naive expectation that vo should be of or-
der of the time it takes a molecule to diffuse half a layer
spacing.

In Fig. 14, we compare the measurements obtained by
different methods. Along the horizontal axis, we plot
6$/bS' as determined from the (fit to the) calorimetric
data, and along the vertical axis the ratio (A'/A )'
Since in a mean-field approximation this ratio equals

g, /P, this quantity can be used to plot both the data for
the correlation length (triangles) from x-ray experiments
and the data for the interface response v/E' (dots for the
9CB-10CBmixtures, crosses for the 8CB-10CB mixtures).
The triangles denote the values of the correlation lengths
in 9CB-10CB mixtures as measured by Ocko, Birgeneau,
and Litster; a triangle with a horizontal bar denotes the
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FIG. 14. Comparison of the data from three different experi-
ments. The ratio ( A /A)' plotted along the vertical axis is
equal to g, /g, . The solid dots denote data points from the
dynamical measurements in the 9CB-10CBmixtures, the crosses
those for the 8CB-10CB mixtures. Triangles denote correlation
lengths measured by Ocko, Birgeneau, and Litster (Ref. 9). A
triangle with a horizontal bar indicates a lower bound to the
correlation length, as the transition was concluded to be second
order on the basis of the x-ray measurements.

largest correlation length measured at compositions that
were concluded to have a second-order phase transition.
Hence the data points with a horizontal bar are a lower-
bound only to g, /g, . The solid line in this figure is the
mean-field scaling function which is given by (19) without
adjustable parameters. Although the fit is not perfect, we
conclude that all data points are consistent with the trend
given by (19), a crossover from g, ~ (6$) ' to
g, ~(ES} ' . Since in the absence of the cubic term

B~g—
~

in the free energy predicted by HLM the data
should follow the scaling g, ~(b,S) ' throughout the
first-order region (so that they would lie parallel to the
dotted line in the figure), we conclude that the crossover
manifest in the data points from three different types of
experiments provide good evidence for the HLM effect at
the N-Sm-A transition near the LTP.

It is instructive to compare the relative sensitivities of
the three types of experiment with the aid of Fig. 14. The
x-ray study of Ocko, Birgeneau, and Litster ceased to
distinguish the difference between the order of a transi-
tion at ES/bS -1 where a tricritical point is reported
at 10% 10CB in 9CB. The adiabatic calorimetry mea-
surements of Marynissen et al. failed at bS/bS'-0. 1

where a tricritical point has been estimated at —3%
10CB in 9CB (i.e., 9CB is first order on the basis of adia-
batic calorimetry measurements but its heat of transition
is so small one cannot exclude it being second order).
The dynamical measurements of Cladis et ttl. I4 still see an
apparently first-order transition for 8CB where b.S/
hS + 0.01.

VII. CONCLUSIONS

In this paper, we have shown that both the latent heat
data obtained through adiabatic scanning calorimetry
and independent interface velocity measurements for
three series of mixtures can be fit remarkably well near
the LTP by a crossover function consistent with a mean-
field free-energy density that has a cubic term. The ex-
istence of such a term implies that in the regime studied,
the N-Sm-A transition is at least weakly first order. The
existence of such a cubic term had been predicted in 1974
by Halperin, Lubensky, and Ma, ' and, to our knowledge,
the analysis presented here gives the first detailed and
quantitative evidence in support of this prediction. As
regards the newly introduced dynamical method to test
the order of a phase transition, we believe that the agree-
ment of the theoretical results for the Quctuationless
time-dependent Ginsburg-Landau equation (23) with ex-
periment is better than one could reasonably hope for, in
view of the various approximations made. Some of the
points that in this regard deserve further study are the
following.

(i) One prediction of simple Landau theory is that the
dependence of the front velocity on direction of propaga-
tion should re6ect that of the correlation length. In the
9CB-10CB mixtures, the anisotropy in the correlation
length is close to an order of magnitude; however, no
systematic anisotropy in the front velocity was detected
in the experiment. '

(ii) The dynamics of the director fluctuations were ig-
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nored in the above analysis of the front velocity. Can this
approximation be justified?

(iii) Even for 8CB where the transition appears to be
very weakly first order the visual contrast between the
nematic- and smectic-A phases was sufficient to see the
interface. Can the contrast (perhaps itself due to director
fluctuations) be understood and perhaps even be used as
an additional measure of the strength of the transition?

(iv) As discussed in Sec. V, our analysis of the tempera-
ture dependence of the interface velocity is only correct
as long as the dynamics do not become diffusion limited.
This certainly cannot be the case when the temperature
jumps b, T are much larger than L/c. For mixtures
whose transition appears to be very weakly first order, we
estimate on the basis of the parameters summarized in
Table I that L/c is indeed small enough to be negligible
(L/c might be smaller than 1 mK for pure 8CB, whereas
typically AT=20 mK). However, for the mixtures that
are strongly first order, L/c can become larger than b, T.
Depending on the sample geometry, the dynamical be-
havior might therefore show a crossover to a diffusion-
limited behavior for these mixtures. This possibility has

not been explored systematically, however.
(v) One might wonder whether an imposed twist could

have driven the transition weakly first order in the
dynamical experiments. Although we do not believe this
to be the case in view of the fact that the calorimetric
data on the 9CB-10CB mixtures are in such good agree-
ment with the dynamical measurements —which were
performed in quite different sample geometries —this
possibility deserves further study.

As regards the general applicability of the dynamical
experiments, we finally note that its usefulness appears to
be limited to phase transitions with a nonconserved order
parameter. In the case in which the order parameter is a
conserved quantity, the interface dynamics will typically
be diffusion limited, so that it will be difficult to study the
intrinsic interface dynamics.
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