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Kinetics of the Soret efFect: Transient in the transport process
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A Green s function is given for the canonical form of the thermodiffusion problem. The analyti-
cal and numerical solutions obtained for an initially homogeneous mixture reveal that the process at
the boundaries is enhanced during the initial phase. This has to be related to the observations made

by Tanner [Trans. Faraday Soc. 23, 75 (1927}]that the concentration change is "extremely rapid" at
the boundaries. Impact on liquid-alloy crystallization is briefly analyzed.

I. INTRODUCTION

The solution of the phenomenological equations of
thermodiffusion have been discussed in detail by de
Groot. ' So as to obtain tractable solutions he made some
approximations, giving rise to the well-known result that,
in a binary mixture between a cold and a hot plate
separated by distanced I., the evolution towards the
steady-state concentration distribution is established with
a characteristic time of B=L /rr D, where D is the iso-
thermal diffusion coefficient. The coefficient D is general-
ly around 10 cm s ', thus B is large.

However, Tanner observed with an optical method
that "an extremely rapid concentration change" occurred
near the walls of his cell. Thomaes has shown by an ap-
proximate Fourier expansion of the solution that the gra-
dient of concentration near the boundaries should
behave, at the very beginning of that process, differently
than in the relaxation phase, but quantitative results were
affected by the approximation.

Such a behavior could be evaluated under microgravity
conditions, thus avoiding remixing current induced by
density gradients. This transient phenomenon, if its
characteristic time is actually very small, could be of
technological importance if it appears at the solid bound-
ary of a crystal growing from the melt. If the motions in
the liquid phase are oscillatory this behavior could also
contribute to striations within the crystal.

The Soret coefficient measurement (SCM experiment )

will be launched on the "EURECA" (European Retriev-
able Carrier) automatic platform of ESA by the U.S.
Space Shuttle in 1991 and recovered after six months. In
this investigation, the thermodiffusion process will be
performed on 20 binary organic and electrolytic mixtures
with a good level of microgravity (10 g). An analysis
of the samples will be performed on earth after retrieval.
The SCM experiment will be monitored by measuring the
electromotive force between electrodes in a cell contain-
ing a silver nitrate aqueous solution. The present paper
relates parts of the preparatory work performed in order
to understand the kinetics of the Soret phenomenon.

II. CANONICAL EQUATIONS
FOR TRANSPORT PROBLEMS

and the associated transport flux J& is given by

J,= D,2VN, ——N, (1 N t )D', ~ V T—, (2)

where T is the temperature and D, z and D &z are the iso-
thermal diffusion and thermodiffusion coefficients of com-
ponent (1) in (2). The same equations hold for Nz but
with D&2= D2&. Therefore the subscripts 1 and 2 will

not be written anymore and the quantities will refer to
component 1 (the solute) and D' will be positive when the
solute migrates towards the cold side. The values of D'
for the organic mixtures are 2 or 3 orders of magnitude
smaller than the isothermal diffusion coefficient so that
the chemical separation that is obtained with a tempera-
ture difference between cold and hot plates of about 10 K
remains small. In this situation, the phenomenological
coefficients in the expression of the fluxes can be con-
sidered constant. In particular, the temperature profile in
a one-dimensional geometry with conducting walls will
be linear at steady state. The temperature field will be
considered steady during the concentration profile estab-
lishment because the Lewis number (defined as the ratio
of Prandtl to Schmidt numbers: JUL, =JVp„/JVs, =D/K,
where K is the thermal diffusivity) is of the order of 10
for organic mixtures and of 10 for metallic melts.

For small mass fractions X of the studied component
(solute) we may thus express the divergence of the flux by
(see Refs. 1 and 6, for example)

V.J,= —D(V N+S VN),

where the coefficient S that we define as

We shall consider that the components of an in-
compressible, nonreacting binary mixture are in a non-
convective state near thermodynamic equilibrium.
Then, if X, is the mass fraction of one of the two com-
ponents, the continuity equation is

5,N, +V J, =O
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S=(1—N0)(D'/D )V & (4) G(r, t }=(4nDt) " exp[ r—/(4Dt)] (12)

B,J DV'J—= DV x—(V XJ)=0. (6)

This "canonical" form may be obtained also for
thermodiffusion, if S is assumed constant, using the pre-
liminary transformation

N'(ryt) f ( )
N(ryt)

J'(r, t )
' J(r, t)

where a is an arbitrary origin for the space vector r and
where f is defined by

is considered constant. In Eq. (4), N0 is the mass concen-
tration of the solute in the initially homogeneous mixture
and D'/D is the Soret coefficient (of solute in solvent).

At the boundaries, the continuity equation is no more
valid. Two limiting situations can be considered: ab-
sorbing walls (where N =0) and impervious —or
"reflecting" —walls (where J.n=O, n being a vector nor-
mal to the surface).

In pure diffusion (S=O} the elimination of J or N be-
tween Eqs. (1) and (2) with previous assumptions gives,
respectively,

d, N DV —N=O

and

(n being the number of spatial dimensions considered in
the problem).

The similitude with Brownian motion is we11 known:
6 is the probability that a particle is moved from rp to I
during a time t —t0. In particular

lim 6 (r —r0, t —t0) =5(r—r0),
t ~0+

lim G(r —r0, t —ta) =0,
t~+ oo

(13a)

(13b)

and

(13c)

F(x, t)= &P(x,xa, t)F(xa, ta) }„

where the Green's function is now given by

P (x,x0, t) =P+ (x,xa, t) P(x,xa—, t )

(14)

(15)

When absorbing barriers are introduced, the symmetry
expressed by the first equality of Eq. (13c) is broken. This
problem can easily be solved in a one-dimensional
geometry with use of the method of images. One gets, if x
is the space variable,

f (r, t)=exp(S Dt/4+S r/2) .

Then

(8)
and I'+ are given for a semi-infinite medium extending
between x =0 and x = + 00 by

a
N' DV2 N-'
J4 J4

0
DV X(VX—J') (9) Py(x x0 t)=G( x0+x t) (16)

The right-hand side (rhs) of Eq. (9) vanishes when VN
remains parallel to S (as in the one-dimensional problem).
The previous conditions are preserved by the transforma-
tion (7). So, the four problems of diffusion and ther-
modiffusion with absorbing or reflecting boundaries that
have been defined above, may be reduced to the canonical
problem

dF DV F=O, —

with, at the boundaries

P~(x x0 t)= g G( xakx+2pL t) (17)

From the following property

RB„P~(x,x0, t ) = d„P+(x,x0, t ), — (18)

with Eq. (15) and absorption boundary conditions we ob-
tain

When the medium extends between x =0 and x =L, re-
sults (14) and (15) apply with the infinite expansion

F n=0. (10} a„F=&(P,+P )a„F&x, . (19)

(For absorbing boundaries F will be N or N' and for
reflecting boundaries F will be the vector J or J'}.

III. SOLUTION OF THE CANONICAL PROBLEM

This could have been found by the method of images
also, using the fact that if F is submitted to absorption
conditions at the boundary, 5„F will be submitted to
reflection conditions.

The problem (10) will be solved independently of the
initial conditions. For an infinite medium the solution is

F(r, t ) = & G(r —ra, t —ta)F(ra, t0) ),

where the angular brackets are placed for integration on
the space variable r0, and where the Green's function is
the normalized Gaussian distribution of standard devia-
tion (Dt)' defined by

IV. ANALYTICAL SOLUTIONS FOR THE
THKRMODIFFUSION PROBLEM

A. Evolution of operator

In the infinite medium, the result (11}can be used for
both N' and J'. Turning back to the original variables,
we have for the mass concentration N:
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N(r, t ) = ( G (r —ra+ SDt, t )N(ro, 0) ), (20) J ( x, t ) =exp( S—Dt /4 S—x /2)

To the pure diffusive process, a drift phenomenon is add-
ed that has a constant velocity drift equal to SD.

As can be seen by Eq. (4) this velocity is proportional
to the temperature gradient. For a one-dimensional
semi-infinite or finite medium with impervious boun-
daries we have

X((P+ P—)exp(Sxo/2)J(x&, 0))„. (21)

The concentration distribution can be deduced from Eq.
(21) by the continuity equation [Eq. (1)]. The classical
Fourier expansion for the finite one-dimensiona1 cell is
also deduced from Eq. (21) with the identity:

+ oo + oo

p= 00 2
G(y+2pL, t)=1/(2L)+ — g cos(spy/L)exp( tp m—D/L ) .

p= 00

(22)

B. Behavior of an initially homogeneous mixture

(23)

where erfc(x) is the "complementary error function" and
Jp is equal to —NoSD.

The flux is equal to Jo everywhere for t ~0+ except at
the boundary where it vanishes (the solution found is
consistent with the boundary and initial conditions in the
sense of distributions' ). Thus step initial distribution of
the fiux" evolves toward a stationary value that, accord-
ing to Eq. (23), is zero for S negative and [1—exp( —Sx)]
for S positive. The wall is then enriched in solute coming
from an infinitely extended reservoir (thus not leading to
a stationary concentration). The solution will be con-
sistent only for finite times and distances from the wall.

To further analyze how this happens we may look at
the enrichment rate deduced from Eq. (23) by the con-
tinuity equation:

d, N/Jo = —2G(x +SDt, t)

—(S/2)exp( —Sx)erfc[(x SDt)/(4Dt)' )
—.

(24)

The limiting temporal values for the enrichment rate are
reported in Table I.

When S is negative, the solute is rejected at infinity.
Thus the enrichment rate is negative and tends to zero at
finite distances. This rejection starts at the wall. For S

TABLE I. The limiting temporal values for the enrichment
values for positive and negative values of S.

S&0 S&0

lim B,N
0

lim B,N

( 2+S/2 )NOSD 5(x ) 2N() SD6(x )

N SDS exp( —Sx)

For the semi-infinite medium extending between x =0
.and x =+00 the evolution of the flux for an initially
homogeneous situation is given by

J(x, t)/Jo= —,'erfc[( —x SDt)/(4—Dt)'~ ]
—

—,
' exp( —Sx )erfc[(x SDt ) /(4—Dt )' ~'],

positive, the enrichment rate is positive and different
from zero at the beginning only at the wall. This may be
called the "squashing of solute" onto the wall. Enrich-
ment then proceeds into the bulk by the combined action
of retrodiffusion from the wall [first term of Eq. (23)] and
thermodiffusion from and to the other regions [second
term of Eq. (23)].

Because the second term is of the order S (for S(0
only at finite distance, say —Sx ~ 1), the behavior of the
enrichment rate is well approximated by

B,N = —2JOG(x +SDt, t) (2&)

if (Dt )'~ and (x +SDt)/(4Dt)'~ are small (say much less
than 1). Thus for short times the layer defined by

x ~ 2(Dt)'" SDt— (26)

will be submitted to a squashing-retrodiffusion process.
The time for which this is valid may be estimated say-

ing that the diffusion length (Dt)'~ is much less than the
length L of the "infinite" cell. This lead to t &&8 and
x &&L. A more precise statement is obtained further
below.

V. ESTIMATIONS FOR A FINITE CAVITY
WITH IMPERVIOUS %'ALLS

Computations have been performed for a closed one-
dimensional cavity with 300 terms in the Fourier expan-
sion. " The spatial variable is reduced by length L of the
cell, the time by e. The flux and the concentration ex-
hibit a weak dependence on the value of SL when they
are reduced, respectively, by the reference flux —NOSD
and by the stationary concentration distribution. The ap-
proximation usually performed, the stationary distribu-
tion multiplied by the temporal factor [1—exp( t /B)], —
may be obtained considering the first two terms in the
Fourier expansion of the solution. This "two-terms" ap-
proximation shows no dependence on S.

There is an important discrepancy between this ap-
proximation and the exact solution. In this later, the spa-
tial dependence of the evolution of the reduced flux and
concentration at the beginning of the process is very pro-
nounced.

The flux evolves from a rectangular distribution to-
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F1G. 1. Evolution of concentration vs time at different depths of the cavity with impervious walls. Concentration is reduced by
the stationary distribution and time by the characteristic diffusion time e, The enhanced curve shows the approximation that can be
used for larger times.

x, SD5r +(D5r )'"— (27)

and will thus disappear by diffusion if it has born far
enough from the wall. Suppose now that this wall is pro-
gressing with a mean velocity v due, for example, to a
crystallization process. The time required for the con-
centration fluctuation to reach the wall will be given by

5t =xo/(u +SD) .

At this time it will be spread between the wall and

(D5t)' =[xo/(S+u/D)]'

(28)

(29)

If this last ratio is small, the concentration inhomogenei-
ty will be squashed nearly completely on the crystalliza-

ward zero. " The behavior of the reduced concentration
distribution [N(x, t) No]/N(—x, ~ ) is shown in Fig. 1 by
its evolution in different points of the cell near the bound-

ary and for small values of the reduced time. The value
SL =0.01 is taken from pg experiments performed on
Sn-Co melts' and from ground-based experiments per-
formed on organic mixtures in a flow cell."At t =0.026
already 10% of the chemical separation is reached at the
boundaries and only 0.2% at x =0.16 L. The "two-
terms" approximation (also shown in Fig. 1) predicts a
value of 2'f/o everywhere in the cavity. Thus for short-
time intervals after the establishment of the temperature
gradient, there is a discrepancy of about l order of mag-
nitude between the two models. In the exact approach
the effect is lowered in the bulk and enhanced at the im-
pervious boundaries. This can be explained by the
squashing of the pure thermodiffusion flux on the walls
and by retrodiffusion in the bulk from the boundaries.

During this phase let us now consider a small element
of volume located at xo. A small concentration inhomo-
geneity drifting with a speed —SD, with S positive, dur-
ing a time 5t will be spread by difFusion on an interval of
about

tion boundary. Thus the depth I for which concentration
inhomogeneity may be of importance for crystal growth
is about

1=(S+u/D) (30)

and the corresponding time for the migration of the fluc-
tuation is

5t =B[rrD/(u+SD)] /L (31)

VI. CONCLUSIONS

The Green s function for one-dimensional diffusion and
thermodiffusion problems have been written for reflecting
or absorbing frontiers. It is valid when frontiers are mov-
ing. Analytical and numerical solutions deduced for the
one-dimensional geometry reveals that up to some per-
cents of the difFusion characteristic time, a "drift" pro-
cess, in which the concentration change at the walls is
highly enhanced, is governing the evolution of concentra-
tion distribution. This should be taken into account espe-
cially in crystallization and double diffusively instability
problems.

Typical values for u and D are, respectively, 10 and
10 cm s '. Thus 1 is about 0.1 cm and 5t about
(0.1/L ) B, L being expressed in cm, and will not be very
sensitive to S for this amplitude of the velocity of crys-
tallization.

The initial phase will be of importance for most practi-
cal situations in crystal growth because the effect is of
short characteristic time. Even if the component is re-
jected from the wall, or only partially absorbed, the high
variation of concentration by the Soret effect in a very
short time may signi6cantly afFect the other physical pro-
cesses involved in the crystallization. Such a variation
may be induced for example by a temperature perturba-
tion.
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