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We present the calculation of Ruelle's rotation number {frequency) 0 for a chain of damped and

driven coupled Duffing oscillators using the recently discovered symplectic structure of the system.
A relation between the eigenvalues of periodic orbits and the winding number ~Q ~

/co is conjectured

by making use of their Krein signatures. The occurrence and nonoccurrence of plateaus with

respect to the driving frequency cu can be explained via this relation.

I. INTRODUCTION

The investigation of nonlinear dynamical systems has
become a research area of increasing interest among phy-
sicists. The availability of high-speed computing devices
including graphics has helped considerably in under-
standing basic features of nonlinear dynamical systems.
Facts and data can be compiled for various systems and
hints gathered for general laws to be handed over to the
mathematician for proof. Therefore the numerical study
of model systems has become a common practice and
serves as starting point also in this article.

For dissipative dynamical systems interest is centered
around the characterization of limit sets, mainly their at-
tractors. In this context the calculation of ergodic quan-
tities, especially the Lyapunov exponents, entropy, and
information dimension, shall only be mentioned.

For Hamiltonian dynamical systems —which do not
have attractors —the interest is centered around ergodic
(and similar) properties of their trajectories. For these
systems, but extending to a wider subclass of dynamical
systems which display a symplectic structure, Ruelle has
defined a rotation number. It has not yet been widely
used, except for two-dimensional mappings, and,
through an independent approach, for driven dissipative
single oscillators. In the latter case a quantity called
torsion frequency has been introduced. In the Appendix
we show that this torsion frequency coincides with
Ruelle's rotation number. The investigations of driven
single oscillators have shown that the torsion frequency
(i.e., Ruelle's rotation number) helps in understanding
some bifurcation scenarios of the oscillators. '

Having these successes for single oscillators in mind,
we approach the determination of Ruelle's rotation num-
ber for high-dimensional systems in the hope of reward-
ing results. In this article we present the numerical inves-
tigation of Ruelle's rotation number for a chain of
damped and driven Duffing oscillators. In particular, we
study the connection between the eigenvalues of a period-
ic point x and the associated rotation number Q(x). This
study will lead to a deeper understanding of the meaning
and relevance of Ruelle's rotation number for coupled os-
cillators, especially near bifurcation points.

Ruelle's rotation number is essentially based on the

the Hamiltonian H being periodic in time, i.e.,
H(t, q, p)=H(t+T, q, p) for some period TWO. [The
Hamiltonian of the coupled oscillators considered is
given explicitly in Sec. IV, Eq. (23).] Thus the equations
of motion are closely related to the Hamiltonian equa-
tions. The only difference is the linear damping term
with the damping constant d. If d goes to zero, the Ham-
iltonian equations are recovered. It can be shown ' that
this simple viscous damping does not destroy the sym-
plectic structure of the system.

%e now recall the notion of symplecticity and its
modification to dissipative Hamiltonian systems. Intro-
ducing the matrix

—1 0 (2)

where each entry in J is an NXN block and 1 is the
N XN identity matrix, Eq. (1) can be written more com-
pactly as

x=JV„H(t, x) —d(O, p)"=v(t, x),

x = (q, p )'"E 1R (3)

V„H denoting the gradient of H with respect to x. The
presence of J is the hallmark of the "symplectic proper-
ty."

symplectic structure of Hamiltonian systems [see
definitions (19) and (20)]. At first sight, Hamiltonian
structure and dissipation seem to exclude each other.
The reason the rotation number is defined for the chain
of oscillators that we will introduce is that this chain be-
longs to a class of dissipative systems which preserve
essential features of Hamiltonian systems. This was
discovered independently by Valkering et al. , who called
these systems "dissipative Hamiltonian systems. "

The equations of motion for the system of N oscillators
investigated can be written

BH(t, q, p) . BH(t, q, p)
r)pt t)9t

i=1, . . . , N (1)
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Definition l. A 2n X 2n matrix A is said to be symplec-
tic if and only if

AJA"=J (4)

X(to)—= I(to, x)CM~x&IR j . (6)

P is then the stroboscopic flow map restricted to the
Poincare plane, i.e., P =P ~z~, ~

(for details, see Refs. 8
0

and 12).
The linearization of (t ~z~, ~

with respect to a point x of
0

the Poincare plane X(to) is denoted D„P'~z~, ~. For the
0

system introduced, D„P'~ z~, ~
is represented by a 2N X 2N

0

matrix. Therefore, let y E IR be an infinitesimal pertur-
bation of a point x=(q, p) of the nonautonomous system
at some time to. Then, after time t, this perturbation will
be given by y(t) =D„P'~z~, ~y in the linear approximation.

Taking as time t the period T of the driving, one gets the
linearization of the Poincare map, i.e., D„P ~ z~, ~

=D„P.
0

The dissipative system introduced preserves the sym-
plectic structure because the following generalized sym-
plecticity relation holds:

D„P'~z~, ~J(D„P'~z~, ~)'"=e 'J Vt ER .

Thus the linearization with respect to a Poincare plane of
the flow map after some time t is symplectic times the
scalar e "'. If d goes to zero, this scalar goes to 1 and we
recover the symplecticity of Hamiltonian systems. Note
that

g(r) —dt/2D
pter (8)

is symplectic in the usual sense. As a matter of fact,
D„P'~z~,

~
is, times a scalar, a symplectic matrix. There-

0

fore the geometric properties of symplectic matrices, i.e.,
the properties of eigenspaces and eigenvalues, which are
investigated by the theory of symplectic geometry, ' are

holds. J is called the symplectic tensor.
For Hamiltonian systems it is well known" that the

linearization of the flow is a symplectic matrix. For dissi-
pative dynamical systems of the general form (3), we can
find a generalization of the symplecticity relation (4) [see
Eq. (7)].'

To state this result, we have to put forward some nota-
tion. Due to the periodic driving, the nonautonomous
system (3) is equivalent to an autonomous system with
phase space M =Sz XR . This latter is obtained in the
usual way by adding the equation 8=1, i.e., by introduc-
ing time as new explicit state variable,

z =(H, x)=V(z) =(1,v(z) ),
z = ( 8, x ) ESr' X IR =M,
V(z)eT, M .

The circular component Sz.= IR(mod T) reflects the
periodicity of the driving. Let P' be the flow map of this
autonomous system. The periodic driving gives rise to a
global Poincare map P with respect to a Poincare hyper-
plane X(to) (Poincare plane for short),

essentially preserved. Perhaps the most striking result is
the following.

Lemma 1. Let A be a 2N X 2N matrix fulfilling

AJA"=AS AWO

Then, p being an eigenvalue of A, A, /p is an eigenvalue of
A as well.

As a result of (7), many concepts developed for Hamil-
tonian systems can be applied to coupled oscillators. In
fact, our analysis will show that understanding essential
features of the behavior of the oscillators is only possible
by referring to their symplectic structure. For example,
we could show that the Lyapunov spectrum with respect
to the Poincare plane has the symmetry point —d/2 or,
equivalently, the Lyapunov spectrum of the Poincare
mapping has the symmetry point —dT/2. For d =0 the
center of symmetry of Hamiltonian systems is contained
in this relation. Another consequence and the topic of
this article is that the concept of Ruelle's rotation num-
ber can be transferred to damped and driven chains of os-
cillators.

In this article we investigate the meaning of Ruelle's
rotation number. For symplectic high-dimensional sys-
tems, this number has been found to be a generalization
of the torsion frequency well investigated for single oscil-
lators. ' At first sight, the surprising fact about this gen-
eralization is that also for high-dimensional systems, e.g.,
N oscillators, N ) 1, it is only one rotation number which
is associated with the system. Our analysis will elucidate
this fact. Furthermore, we will conjecture a relation be-
tween the eigenvalues of D„P and Ruelle's rotation
number for a periodic point P (x)=x. This relation will
make use of the Krein signatures, which give further in-
formation about the stability of symplectic systems. ' '

The paper is organized as follows. Before the rather
abstract definition of Ruelle's rotation number for the
high-dimensional case is given in Sec. III, its meaning for
a single periodically driven oscillator is discussed. The
geometrical meaning of the rotation number can easily be
seen in this case of a two-dimensional Poincare plane. In
Sec. III Ruelle's rotation number is introduced in the
context of a chain of oscillators. In Sec. IV we give the
detailed equations of motion and present numerically cal-
culated rotation numbers. With dependence on the exter-
nal driving frequency co, we calculate the associated
winding number

~
Q(x)

~
/co for periodic points x. The cal-

culation will demonstrate that the winding number shows
plateaus for some bifurcations, while for others it does
not. In Sec. V we analyze the special properties of the
eigenspaces and eigenvalues of periodic orbits and give a
relation between the eigenvalues and the winding number
using their Krein signatures. In Sec. VI we test the given
relation numerically. The most important verification of
the conjectured relation will be that it will enable us to
explain the occurrences and nonoccurrences of plateaus
of the winding number.

II. TORSION FREQUENCY FOR SINGLE OSCILLATORS

For a single oscillator, Ruelle's rotation number turns
out to be equal to the torsion frequency investigated in
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Refs. 4 and 5. The proof for its equivalence is given in
the Appendix. The torsion frequency was first intro-
duced for periodic orbits to count the twists of the invari-
ant manifolds of periodic attractors. ' A related ap-
proach is the following. For a given periodic orbit, near-
by starting trajectories are more or less twisted around it.
Figure 1 shows a typical situation. The rotation of a
neighbor trajectory starting at (to, x+y) in the same
Poincare plane X(to) as (to, x) is contained, in a linear ap-
proximation, in the linearization D„P ~z~, ~

of the flow
0

with respect to X(to). The torsion frequency gives the
averaged radiant frequency of the rotation of the tangent
vector y(t}=D„Q'~z~, ~y around the reference orbit

(to+ t, x(to+ t)) [with x(to) =x] as time t goes to infinity.
Formally, the torsion frequency can be defined using

the QR decomposition of the linearization D„P'~ x~, ~,0

D„P'ix(, )=Q(t)R(t), (9)

where Q(t) is an orthogonal matrix and R (t) an upper
triangular matrix with positive diagonal elements. The
QR decomposition is also used for the calculation of the
Lyapunov spectrum. The Lyapunov exponents are deter-
mined by the positive diagonal elements of R as time t
goes to infinity. ' The orthogonal matrix Q contains the
information about the torsion. For orientation-
preserving flows, detD„Q'~xI,

~
is always greater than 0

0
and therefore Q(t) is a pure rotation, i.e., detQ(t)=1
holds. Thus Q(t) can be written as

r

cos8(r) —sin8(t)
sine(r) cos8(r) (10)

For single oscillators one can derive a differential equa-
tion for 8 and thus calculate Q(x) just by solving a
differential equation. This approach can be found in Ref.
5.

The above-defined torsion frequency was interpreted

x =x+Y

~, ~

Y
ssP~%r

x II
V

~y(T)=D„Y ~t„~ y

E(t ) E(to+T) =E(to)

FIG. 1. A neighbor trajectory (dashed line) is twisted around
a reference orbit (bold line) due to the torsion of the local flow.
The rotation frequency gives the radiant frequency of this twist-
ing for time t to infinity.

The angle e is uniquely determined up to a multiple of
2~. Setting 8(0)=0 (because D„P ~z~, ~=1) and follow-

ing 8(t) continuously, the torsion frequency Q(x) is
defined by

Q(x)= lim
8(r)

by Parlitz and Lauterborn as the (orbit-dependent) eigen-
frequency of the nonlinear oscillator. Furthermore, they
used the torsion frequency to give a new definition for a
(generalized) winding number for driven dissipative non-
linear oscillators that does not require the existence of an
invariant torus. It coincides with the usual definition as
long as an invariant torus exists. The generalized ~inding
number m is defined by

~n(x) ~n(x)~Z.
CO 277

(12)

III. RUELLE'S ROTATION NUMBER (FREQUENCY)

In this section we present the definition of Ruelle's ro-
tation number formulated for a chain of driven oscilla-
tors. By means of the polar decomposition of the lineari-
zation,

D„p'~„, , =Q(r)P(r),

one obtains a positive matrix

(14)

where co=2m/T is the driving frequency. The winding
number to(x) describes the averaged rotation angle of a
nearby trajectory during one period T of the excitation in
units of 2m. For periodic oscillations with period mT
[i.e., P (x)=x], the torsion number n is defined by

n (x)=ma(x)= Q(x) mT
(13)

277

i.e., it gives the averaged rotation angle during one period
mT of the oscillation in units of 2m. Parlitz and Lauter-
born showed that the torsion number is a suitable quanti-
ty to classify saddle-node and period-doubling bifurcation
curves (surfaces) in the parameter space of one-
dimensional driven dissipative oscillators. Furthermore,
they related the bifurcation superstructure of single
driven oscillators to their resonances. ' '

For coupled oscillators the phenomenon of resonance
also has much impact on their bifurcation structure (see,
e.g. , Ref. 16}. Therefore the study of the local twist of the
flow is also of interest for the high-dimensional case. For
N oscillators the Poincare plane X(to) is 2N dimensional.
The description of rotation is therefore much more com-
plicated. Thus the above-described concept of torsion
frequency cannot straightforwardly be extended to the
case of coupled oscillators. For periodic orbits there
seems to exist a natural extension by looking at the eigen-
spaces of D„P to define a set of N torsion frequen-
cies. ' ' This approach would generalize the ideas in
Refs. 19 and 7 and others where the torsion frequency of
a single oscillator was introduced by looking at the twists
of the invariant manifolds of a periodic orbit.

In the following we will investigate Ruelle's rotation
number for high-dimensional symplectic systems. It may
be considered a certain generalization of the torsion fre-
quency concept, although there are some differences in
the approach. (The torsion-frequency approach does not
start from syrnplecticity, but is an operational approach
which coincides —in the limit t~ ~ —with Ruelle s ap-
proach. )
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P(t) =(D„4'I'z(, )D„P'Iz(,, )
}'" Q(p)= J(M(dx)Q(x) . (21)

where V(t} and W(t) are real n Xn matrices. If one
defines, with these matrices, the complex matrix

U(Q(t)) —= V(t)+i W(t), (16)

then U(Q) is an n Xn unitary matrix, U(Q)F U(n}.
Vice versa, it holds that for every unitary matrix

U EU(n) the related real 2n X2n matrix Q ( U), defined
by

Re( U) —Im( U)

Im( U) Re( U) (17}

is orthogonal and symplectic, i.e., Q ( U) ESp(2n, II )
tlO(2n). Furthermore, it holds that

Q(U)U2)=Q(Ul)Q(U2) VU), U2EU(n),
(18)

U(Q)Q2)=U(Q, )U(Q2} )()'Q„Q2ESp(2n, R)AO(2n) .

Equations (16)—(18) express that the symplectic and or-
thogonal matrices Sp(2n, R) A O(2n) are a 2n-dimensional
real representation of the unitary group U(n).

By means of this connection, the angle e associated
with the linearization D„P Iz(, ) arises. Taking the deter-

0
minant of the uniquely related matrix U(Q(t) ), one gets

detU(Q(t))—:exp[ie(D„(t)'Iz(, ))] . (19)

The angle 8(D„Q'Iz(, )) is uniquely defined up to a multi-

ple of 2m. If one keeps track of these multiples (starting
at time t =0 with 0), then the rotation number Q(x} is
defined by

e(D„y'I„, , )

Q(x) —= lim

Ruelle has proven that this quantity exists in the same
sense as the Lyapunov spectrum exists, i.e., Q(x) exists
for (M-almost all x and, if p is ergodic, Q(x) is p-almost
everywhere equal to

and an orthogonal matrix Q(t). The generalized sym-
plecticity relation (7) implies that Q(t) and P(t) are, in
addition, symplectic and symplectic times a scalar, re-
spectively. The orthogonal matrix Q(t) now enables one
to associate an angle 8(D,P Iz(, )) with the linearization

0

D„P'Iz(, ). The angle comes in because the symplectic
0

and orthogonal real 2n X2n matrices are strongly related
to the unitary group U(n) T.his connection is given in
the following. Because of symplecticity the orthogonal
matrix Q(t) has the form

V(t) —W(t)
W(t} V(t)

IV. NUMERICAL CALCULATION
OF THE ROTATION FREQUENCY

In this section we first introduce the chain of oscilla-
tors for which all numerical calculations were performed.
It is a ring of N =4 mass points with nearest-neighbor
coupling where the interaction potential 4 (realized by a
spring) is given by a single-well Duffing potential, in our
case 4(x)=x /2+x /4. The chain is excited at one
mass point by a periodic external force proportional to
the space coordinate y (t) of the limit cycle of the van der
Pol oscillator,

y'+(y —1)y+co()y =0 . (22)

This driving is used with a view toward biological appli-
cations where an active oscillator may be connected to
passive ones. This driving also shows that the investiga-
tions do not depend on simple sinusoidal excitation.

Thus the Hamiltonian H, which, with Eq. (3), gives the
equations of motion, has the form

Thus, for symplectic systems, it is another ergodic quan-
tity which can be associated with an attractor. It has
been called the rotation number by Ruelle. In order to
distinguish this quantity, which has the dimension of a
frequency, from other numbers (winding number, torsion
number), we prefer to call it "rotation frequency "In. the
Appendix we prove that the rotation frequency equals the
torsion frequency for single driven oscillators.

The definition of the rotation frequency is strongly re-
lated to the topology of the symplectic group Sp(2n, R).
One can show that the group Sp(2n, II) is, topologically
speaking, the product of S' and a simply connected
space. This is done by use of the polar decomposition
and an analysis of the Lie algebra of symplectic matrices.
From an abstract point of view, the rotation frequency
gives the averaged frequency of the curve defined by
y(t) =D,P'Ix(, ) going around the hole. An excellent pre-

sentation of these arguments can be found in the Appen-
dix of Ref. 20. Furthermore, the connection between the
rotation number and Maslov indices which arise in the
semiclassical quantization condition of Brillouin, Keller,
and Einstein can be found in Ref. 20 and 21. This topo-
logical background is the reason that the mathematically
correct definition of the rotation frequency has to be for-
mulated by a function on the universal covering group of
Sp(2n, R), as Ruelle does in Ref. 2. For the purposes of a
concrete calculation of the rotation frequency, however,
it is enough to remind the reader that one has to keep
track of multiples of 2lr when counting the angle 8.

N p2 N
. . CN Pl . . PN)=H(tqp}= y '+ 2 ~'(q; ~; i)+fy(t)ql . -

i=1 i =1
(23)
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qER is the tuple of the displacements of the N oscilla-
tors and pER is the momentum vector of the oscilla-
tors. The periodic boundary conditions can be expressed
as qo=qz, qz+, =q, . The Hamiltonian considered is
periodic in time with the period T = T(coo) of the van der
Pol oscillator, i.e., H(t+T, q, p)=H(t, q, p). The pa-
rameters we will vary are f, which measures the strength
of the excitation, and mo, which is approximately equal to
the frequency co =2m!T of the driving for coo & 0.5.

We now want to describe the numerical procedure we
used to calculate the rotation frequency. In order to fol-
low the angle 8(D„p'lx(, )), the trajectory p'(to, x) has to

be discretized, e.g. , in n steps with discretization time ~,
i.e., t =n~. Let tk be the time and xk the point of the
nonautonomous systems after k steps, i.e., tk=to+kw
and xk =no/"'(to, x) [m being the projection on the
second argument, i.e., n(t, x)=x]. With this notation the
positive matrices Pk and orthogonal matrices Qk are re-
cursively defined by

D„„0'Ix(,„)Pk Pk+) Qk+) (24)

starting the polar decomposition with Pa=1. This recur-
sion relation is resolved to

D.4"'l x((, ) =P.Q. ' ' ' Q2Q) ~ (25)

P(nr)=P„,
Q(nr)=Q„. g, g, .

(26)

Therefore the total rotation is decomposed into succes-
sive small rotations. If n is chosen large enough and the
discretization time ~ small enough, then the absolute
value of the rotation angle 8(Q;) will be less than 2m. Be-
cause of the representation relation (18) and the definition
of the angle 6, (19), the angle after time n ~ will be given

Dx4' l&(w) Dxi O' I L(tl) Dxn g~ lE(&~ g)

T E(te) =
~ E(t&) T, E(t1) = T E(t-) = Tr E(t„)

T, E(ti) = T„E(tR) T &E(tz ~):T E(tn)
r

This follows from (24), but can most easily be seen in Fig.
2, from which the idea behind (24) becomes clear. To get
the iteration scheme (25), we use a slightly different type
of the polar decomposition [than that stated in (14)], the
"PQ decomposition, " i.e., A =PQ and P =(AA'")'
but this is justified because it is easy to see that the polar
decomposition and the PQ decomposition lead to the
same orthogonal matrix Q, and thus to the same angle 8
that we want to compute. In the following we refer to
the PQ decomposition as polar decomposition too.

Because of the uniqueness of the polar decomposition
of D„P"'lx(, )=P(n~)Q(n~), it holds that

n

e(D„y'lz„, , )=e(g(n~))= y e(g, ) .
i=1

(27)

le(g, )l &m V i =1, . . . , n (28)

holds with T =n r and Q ( T) =Q„Q, .
For the calculation of 8(D„P lz(, )) of the remaining

0
m periods, the discretization time ~ was then kept fixed.

Before we present examples of numerically calculated
rotation frequencies, we discuss the principal numerical
difficulties which go along with the procedure described.
The calculation of 8(D„P'lz(, )) contains an explicit

0

determination of P(t) [see Eqs. (25) and (26)], but the ei-
genvalues of P(t) increase (or decrease) asymptotically

k, (x)t
like e ', where k, (x) are the Lyapunov exponents.
Therefore the well-known difficulties of numerical insta-
bility are recovered that would also arise when calculat-
ing the Lyapunov exponents without using a Gram-
Schmidt reorthonormalization or the equivalent iterated
QR decomposition. '

One is tempted to circumvent these difficulties by using
a (numerically stable) iteration scheme analogous to the
iterated QR decomposition, i.e.,

If n is chosen too small, then relation (27) will only be
fulfilled up to a multiple of 2~. The best criterion to
know that the discretization time is small enough to real-
ly keep track of all the rotations is that the right-hand
side (rhs) of (27) has to become independent of n for in-
creasing n.

When performing our first calculations of
8(D„(t'l&(, )), we noticed that with decreasing discretiza-

0
ie(Q, )

tion time v the points e ' on the complex unit circle
belonging to the angles 8(Q, ) were all lying below the
real axis. Therefore, when counting 6(Q;) positive, i.e.,
8(Q;)E[0,2n), the 6(Q;) would increase with decreas-
ing discretization time ~. In contrast, the absolute value
of the angle 8(Q, ) counted negative, i.e., 6( Q; )

E( —2m. ,0], would decrease with decreasing step size r,
as it must. Therefore the sum in (27) only became con-
stant for increasing n when counting the angle 6(Q;) neg-
ative.

Let us remark that this is known for single oscillators.
There the torsion frequency is necessarily always nega-
tive. This is an artifact of the chosen coordinate system
in the Poincare plane. Choosing the coordinate system
(p, q) instead of (q, p), we would obtain a positive rotation
frequency, as one can convince oneself of for the single
oscillator if one takes the meaning of p i.e., (p =q) into
consideration.

This and the numerical tests suggest that also in the
case of coupled oscillators the rotation angles will always
be negative (in the coordinate frame chosen). Therefore
we count the calculated angle negative, i.e., 8(Q, ) & 0.

As a criterion for the discretization time v being small
enough, we increased for the first period T of excitation
the number of steps n till

FIG. 2. Iteration scheme (24) used to compute Ruelle's rota-
tion frequency. D.0"'l x(, )

=Q.P. (29)
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D„p"'~x(, )=Q„R„. R, =Q(nr)R(nr) (30)

does not help either because, for general dimensions, the
matrices R; are not symplectic. Thus the orthogonal ma-
trix Q„ is not symplectic and therefore not connected in
the described way to an angle 8(Q„}. To conclude, at
the moment there seems to exist a principal problem in
calculating 8(D,(I}'~x(, )) for arbitrarily long times t using

0

a discrete procedure. Therefore the rotation frequency
Q(x) cannot be computed with arbitrary accuracy. For
nonperiodic orbits the results are not satisfying, but for
periodic orbits one can estimate the limit Q(x} from
8(D„Q'~x(, )) weH enough to investigate ~Q~ with depen-

0

dence on the driving frequency ru.

The numerical calculation of D, (t»'~x(, ) by integrating
k k

the variational equations is described in full detail in Ref.
8. In Fig. 3(a) we show for N =4 oscillators the absolute
value of

The drawback of this (numerically stable) decomposition
is that it does not lead to a polar decomposition because
the product of two positive matrices is, in general, not a
positive matrix again. So, in contrast to the upper tri-
angular matrices R, the positive matrices do not form a
group.

Using an iterated QR decomposition (which leads to a
real QR decomposition),

b,(t) = g h, (r) .

To control the precision of the computation, we required

h(mT) &10 (33)

to hold. The check of the inequality (33) does not require
much more numerical e6'ort because the eigenvalues of
P (t) appear as singular values during the calculation.

In Fig. 3(b) we show the same computation as shown in
Fig. 3(a), but this time requiring (33) to hold to continue
the computation. The violation of (33) happened here
after m =73 periods of excitation. We estimated the lim-
it Q(x) by averaging over windows of 10 periods and
choosing the average value with the smallest standard de-
viation. The plots shown in Fig. 3 suggest that the finite
time rotation frequency ~Q(x, mT)~ is still decreasing.
Therefore the estimated value of ~Q(x)~ tends to be too
high.

For a small excitation amplitude (f =0.05 },we present
in Fig. 4 the rotation frequency and the winding number
~Q~/ro with dependence on the bifurcation parameter n)o.
To obtain an overview of the dynamical behavior of the
chain, an energy bifurcation diagram has simultaneously
been calculated. The method of energy bifurcation dia-
grams was developed by Geist and Lauterborn. ' Instead

(31)

plotted against the periods m of excitation. For the
chosen parameter values (f =0.05, d =0.2, coo=2. 1), the
Poincare mapping has a fixed point. At the beginning,
Q(x, mT) approaches the limit quite well, but at nt =110
the calculation obviously goes wrong. The numerical
difficulties become evident. The eigenvalues of P(ntT)
difFer too much. Therefore the polar decomposition
(which was carried out by a singular value decomposition
routine of the package of computer codes LINPACK) can-
not be done accurately. To stop the computation before
this event and to estimate the limit Q(x), we used our
knowledge about the matrix

P ( t ) = (D, (I '~ x(, ) D, (I)'~ x(, ) )
'

S.O—

70-
Ev

4.0

5.1-

f = 0.05

50

d = 0.2

I

100

n

4)p = 2.1

I

l50 200

Due to the symplecticity relation (7) of D, (t)'~(x(, ), P(t)
0

fulfills the same relation with scalar e "'. Therefore the
eigenvalues of P ( t) can be grouped into pairs
((M;, e '/p;), i = I, . . . , ¹ Thus, let p)(t) ~
~ @AN(t) be the eigenvalues of P(t) ordered according to
size. Then the following relation holds:

e
—dt

P'2N —(+1( ) ~ t 1~ ~ ~ ~N (32)
p; t

The deviation from (32} was used to stop the calculation
when the SVD routine starts to work unsatisfactorily.
We define

—dfe6;(t}= PzN —(+)(t)—— , i =1, . . . , N
(tt; r

5.0-

4.9-

4.S
0.0 20.0 40.0

n

FIG. 3. (a) For X =4 Du%ng oscillators and some fixed point
x of the Poincare mapping, the absolute value of the finite rota-
tion frequency ~Q(x, n T)

~
is plotted against the period of excita-

tion n. At the beginning Q(x, nT) approaches a limit quite well,
but at n =110 the calculation obviously breaks down. (b) The
same calculation as in (a), but this time requiring criterion (33)
to hold in order to stop the computation before the SVD routine
starts to work unsatisfactorily.
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FIG. 5. For high excitation (f =10) the winding number
ur (x) [panel (b)] with corresponding energy bifurcation diagram
(a) is shown vs the bifurcation parameter coo. Around the PD
bifurcations there seems to be no plateau in the winding num-
ber, while at the SN biforcation and the Hopf bifurcation a pla-
teau seems to occur.

2.5—

0.0
0.5 1.0 1.5

Cdp
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1

3.0

FIG. 4. Dependence on the bifurcation parameter coo (which
is approximately proportional to the oscillation frequency
co=2m. /T of the van der Pol oscillator used to drive the chain)
for N =4 Duffing oscillators and low excitation (f =0.05) of (a)
the energy bifurcation diagram [the Poincare plane X(to) was
defined at the time to when the van der Pol oscillator went
through zero with positive velocity), (b) Ruelle s rotation fre-
quency tQ(x)t, (c) the associated winding number w(x)

of a coordinate of the successive points P (to, x),
m = 1, . . . , n, in the Poincare plane, their energy
H(P (tc, x)) is plotted against the bifurcation parameter
coo. The main advantage of this procedure is that oc-
currences of resonances can easily be detected. The max-
ima occurring in the energy can be explained by the nor-
mal modes of the harmonic limit. ' As can be seen in
Fig. 4, the rotation frequency tQt shows maxima for the
same coo values. Consequently, the winding number w
flattens around the corresponding coo values.

At this point the question arises as to how to interpret
the notion of the rotation frequency for the multidimen-
sional case (X ) 1). For single oscillators the strong rela-
tion between resonances, bifurcations, and the winding
number is well investigated. In particular, it is known
that the winding number shows plateaus around saddle-
node and period-doubling bifurcations. Therefore it is of

V. EIGENVALUES AND THE WINDING NUMBERS
OF PERIODIC POINTS

First, we repeat the relation between the winding num-
ber and the eigenvalues of a periodic point x for the sin-
gle oscillator (N =1). If the two eigenvalues of D„P are
not real, p, 2= re —'~'*', then p(x) is related to the torsion
frequency by

p(x) = [m Tt Q(x) t
]mod2n.

= [mw (x)2tr]mod2m . (34)

interest to investigate the behavior of the winding num-
ber of the high-dimensional case around bifurcations.
A priori one cannot decide whether plateaus in the wind-
ing number should occur or not, because the deeper
reason is not yet understood.

In Fig. 5 we show the energy bifurcation diagram and
the winding number w for N =4 oscillators for an excita-
tion (f =10) where already many bifurcations have taken
place. Besides period-doubling (PD) bifurcations at
roc=2. 550, 2. 554, . . . and a saddle-node (SN) bifurcation
at coo=2. 70, a Hopf bifurcation can be seen at coo=2. 762.
At the Hopf and SN bifurcations there seems to be a pla-
teau in the winding number, while for the PD bifurca-
tions this is not the case. Because of the difficulties of the
computation of the rotation frequency, we cannot be sure
at this stage of the investigation whether plateaus occur
and, if they do, why.

In the next section we will give a relation between the
eigenvalues and the winding number of a periodic point x
that will answer the questions raised above.
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detU(Q(t))=exp[ie(D„P'~&~, ~)] .

ie, {t)
Let e ', i =1, . . . , N, be the eigenvalues of U(Q(t)).
Then, according to (35), we obtain

N

g 8;(t) mod2n =e(D„P'~x~, ~)mod2m . (36)

Therefore, a relation (if any) analogous to (34) between
i8,the rotation frequency ~Q~ and the eigenvalues p, =r, e

i =1, . . . , 2N, of D„P of an m-periodic point I must
have the following form:

If p1 2 are real, then the eigenvalues are both positive or
both negative and y has to be replaced by 0 or tr in (34),
respectively. Equation (34) explains the plateaus in the
winding number m if for a saddle-node or period-doubling
bifurcation one eigenvalue approaches the unit circle on
the positive or negative axis, respectively (because g, be-
ing 0 or ~, stays constant for an interval of the bifurca-
tion parameter).

In order to get a similar relation for the case of N oscil-
lators, we analyze the definition of the rotation frequency.
The angle e(D„Q'~x~, ~) used in the definition of the rota-

0

tion frequency was defined by

p ~/p P ~/P (40)

so.o-
f = 7.0 d =0.2

unless pP =A, , i.e., ~ p ~

=&A., when they occur in
complex-conjugate pairs (p, p=A, /p) on the circle of ra-
dius &A, , while real eigenvalues come in pairs p, A, /p&R.
Therefore the eigenvalues lie symmetric to the real axis
and the circle with radius &A, . We will call the latter cir-
cle the symplectic circle, in order to refer to it more easi-
ly. For ordinary symplectic matrices (A, = 1), this circle
coincides with the unit circle which describes, in addi-
tion, the linear stability of the system. For the systems
considered, A, & 1 holds and the double role of the unit
circle is removed.

For the eigenvalues lying on the symplectic circle, one
can apply the concept of the Krein signatures. Krein
developed his theory investigating the stability of sym-
plectic maps. The main point is that eigenvalues lying on
the symplectic circle can only leave the circle after a col-
lision on the symplectic circle. ' ' However, not any col-
lision causes the eigenvalues to leave the circle. Krein
showed that one can assign signs (the so-called Krein sig-
natures) to the eigenvalues on the symplectic circle. One

N

mod2m =(mT~Q~ )mod2m .
i=1

(37)
40.0—

The problem which has to be solved to check (37) is to
pick N angles yl, out of the 2N phases of the 2N eigen-

l

values of D„P . Because the definition of the rotation
frequency is essentially based on the symplecticity of the
system, the selection of the N angles y; must be guided by
the symplectic properties of D„P . Again, we use the
formation of pairs of the eigenvalues. Due to

D P J(D P )'"=~ with g=e

30.0-

20.0-

10.0
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55

Cd 0

the eigenvalues of D„P can be ordered in N pairs
(p, , A, /p, ), i = 1, . . . , N. If one looks at the phases of one
pair, p=re'~ and A, /p=(A, /r)e '~, one notices that each
pair determines one angle q. So there is a natural reduc-
tion from 2N angles to N angles. But there is still a prob-
lem remaining.

Instead of y, one can also associate 2' —y with the
pair (p, A, /p), as can be seen from

0.5

0.0-

-0.5-

p
—rely re 1 {2@—g)

7

-I.O
-I.O -0.5 0.5 L.O

A, /p=A, /re '~=A/re', (39)

For N = 1 this ambiguity in the choice of y is easily fixed,
but it needs more trial-and-error checking for general X
because N angles are involved in the sum occurring in
(37). Therefore we must have a rule for the selection of y
or 2m- —y. Again, we will use the symplectic properties of

pm

First, we have to discuss the configuration of the eigen-
values of symplectic (times a scalar) real matrices in more
detail. Since A =D„P is real, it follows that complex
eigenvalues occur in quadruplets,

FIG. 6. (a) Energy bifurcation diagram for X=4 Duffing os-
cillators at f =7. (b) The eigenvalues of D,P~ for a two-
periodic point x is given for 21 parameter values coo in the range
2.35~coo~2.43. (Due to the translational invariance of the
equations of motion, there is always one eigenvalue of D„P—dmT{coo)
equal to 1, and therefore another one equals e .) The—d2T(coo)/2
symplectic circles with radius e for the coo values 2.35
and 2.43 are drawn. They are hardly distinguishable. At
coo= 2.3945 a Krein collision can be seen. The Krein signatures
before the collision are marked. The Krein collision here is a
precursor of the Hopf bifurcation that occurs at coo=2.436 [see
(a)]
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main result is then that the collision of eigenvalues of the
same sign does not do any harm. The eigenvalues can
only leave the symplectic circle if two eigenvalues (and, at
the same time, the complex-conjugate pair) of different
Krein signatures collide.

In Fig. 6 the eigenvalues of D„P for a two-periodic
point x is given in the range 2. 35 Q)p 2 43 ~ At
cop=2. 3945 a Krein collision can be seen. Figure 6 strik-
ingly shows how the symplectic properties of D„P deter-
mine the behavior of the eigenvalues.

It turns out now that the Krein signature will give us a
criterion for selecting the angle y or 2m —y of a pair
(p, =&i.e'~, A, /p=P =&A, e' 'r') on the symplectic cir-
cle. Note that here the problem of associating an angle
with the pair (p, A, /p, ) coincides with the ambiguity of
notation concerning which eigenvalue to call p and which
to call p.

In the following we recall the definition of the Krein
signature and state the connection between the Krein sig-
nature and the chosen angle y. First, we restrict our-
selves to the case of a simple (multiplicity 1) eigenvalue

@CCRC E (~p~ =&A, ). Let g=u+ivCC be the complex
eigenvector belonging to @=re'& and Q„CE the in-
variant two-dimensional subspace of E (spanned by
Iu, vj) associated with p. Then, one can formulate the
definition of the Krein signature as follows.

Definition 2. The pair of eigenvalues (p, p=k, /p)
EC& E (with multiplicity 1) is said to have positive (neg-
ative) Krein signature, if

[Aw, w]&0 ( &0) for wE'M„CE (41)

The symbol [, ] denotes the nondegenerate antisymmetric
bilinear form, called the skew-scalar product which takes
the standard form in the chosen coordinate system

[u, v]—= (u, Jv), u, vGE (42)

[Aw, w]=r(c, +c', )(sing)[u, v] . (43)

This is straightforwardly calculated, but from (43) one
sees readily that the Krein signature oz(p) of p is given
by

az(p)=sgnI(sing)[u, v]] . (44)

If we had made the calculation based on p, then y would
have to be replaced by 2n pand [u, v] by [u—, —v]. The
factors would change sign, but the product would keep
its sign as it must be. Therefore we can always use the
following convention.

Convention. That eigenvalue of the pair
(p, , Alp)CCX E on the symplectic circle is called p, for
which the corresponding eigenvector /AC fulfills

where (, ) is the Euclidean scalar product in E
That the definition of Krein signature in (41) makes

sense and does not depend on the chosen vector wC Q„
can be justified abstractly, but for our purposes the fol-
lowing calculation is better suited.

Lemma 2. Let @=re'r, p=l, /p, CC&E, u, vE'M„be
as above. Let w=c

~
u+czv be an arbitrary vector in Q„;

then it holds that

[Re(g), Im( j)]= [u, v] & 0 . (45)

The phase y of p=re'~ is the angle associated with the
pair (p, A, /p).

Using the convention made above, it is sing which
determines the Krein signature, i.e., (p, A, /p) is positive if
sing )0 and negative if sing & 0 holds, respectively.
Therefore a pair of eigenvalues changes sign when cross-
ing the real axis.

We now discuss the case of a pair of eigenvalues
(p, , A, /p) E CX E on the symplectic circle with multiplicity
k. Again, we denote with Q„ the corresponding 2k-
dimensional invariant subspace.

Definition 3. The pair (p, p=k, /p)BC& E has definite
positive Krein signature if

[Aw, w]&0 Vw&S„, w%0

holds, and definite negative Krein signature if

[A w, w] &0 VwC'9„, w%0

(46a)

(46b)

(sing)[Re(g;), Im(g;)], i =1, . . . , k (47)

has, for all i, the same sign, which is given by the
(definite) Krein signature. Again, we can make the con-
vention that the notation of p is chosen such that

[Re(g;), Im(g;)]&0, i =1, . . . , k . (48)

The angle kg is then associated with the pair
(p= re'r, p =A,

/JLt ).
Next, we describe the consequences of our convention

for the angle associated with a quadruplet, which is gen-
erated by a Krein collision. Because of Krein's theorem
the eigenvalues p, and p2 before the collision must have
different signatures. So let p, be the eigenvalue with posi-
tive Krein signature and pz that with negative Krein sig-
nature. Then, y, E(0,m) and p2E(m. , 2n). Let q& be the
angle of p, at the collision point. qz will then be equal to
2m —y when the eigenvalues coalesce. Therefore the sum
of y, and y2 will be 2m. When the eigenvalues have left
the symplectic circle to form a quadruplet, they are cou-
pled together and can no longer change angles indepen-
dently. Therefore the sum of the associated angles will
remain 2m. For eigenvalues of multiplicity greater than
1, similar considerations hold; only 2~i has to be replaced

holds.
Not all eigenvalues on the symplectic circle (of multi-

plicity & 1) have definite Krein signature. For example,
if two eigenvalues of different signature collide and
merge, the resulting pair of eigenvalues will have mixed
signature (for definition, see Ref. 24).

We now recall Krein's theorem in a version from Ref.
24.

Krein's theorem Let (p,.p=A, /p)ECHE have definite
Krein signature. Then A has diagonal Jordan form on
the invariant space R„and the eigenvalues cannot leave
the symplectic circle under small perturbations.

As a result of Krein's theorem, for an eigenvalue p (of
multiplicity k) with definite Krein signature there are 2k
complex eigenvectors g, , g, , i = 1, . . . , k, with A g, =pg, ,
and the product
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by k2n. This, however, is not of importance in order to
state a relation between the phases of the eigenvalues and
the rotation frequency, because, in any case, we come to
the conclusion that a quadruplet generated by a Krein
collision does not give any contribution to the sum in (37)
when counted mod2m.

Finally, we describe the angle associated with a real
pair (p, A. /p) C R. We remark that

ed by the double sign. For these parameter values the
calculated values of 8x and 8n are 8+=2.36 and
6&=2.39 for coo=1.5, and e& =2.18 and 6&=2.19 for
F0=2. 1. Reminding the reader of the difficulties in the
numerical determination of the rotation frequency, the
numerical results for the parameter values shown are in
good agreement with (50).

q&m od2~=(2n —y)mod2n. for y=0 or rp=rr (49)

holds. Therefore we do not have to find a criterion for
real eigenvalues to select an angle. A real pair of eigen-
values with multiplicity k will be counted with 0 if p &0
and with km. if p (0 in the sum occurring in our relation
(37).

Let us summarize the determination of the phases q; of
the map D„P . The eigenvalues are first ordered to pairs
(}tt, A, /p). The related angles for the sum in (37) are then
determined through use of the following rules.

0.5

;(

g
00-

f =0.05 d =0.2

(1) A pair (p, A, /p) on the symplectic circle with
definite Krein signature and multiplicity k counts with
ky [where y has to be determined by Krein signature
(45)].

(2) A quadruplet generated by a Krein collision counts
with k2~.

(3) A real pair (p, A, /Itt) counts with 0 if p) 0 and with
k~ if p &0, respectively.

Making this selection of the angles y;(x) of D„P, we
conjecture that

-LO

(b)

8
0.0

1.0 0.0
Rig,

=2.

0.5 10

g p;(x) mod2m =[mw(x)2m]mod2tr

= [m T~ Q(x)
~
]mod2vr (50)

+5+i

-LO
-1.0 04 LO

holds. We do not claim that rules (1}—(3) contain all pos-
sible configurations of eigenvalues. For example, the case
of a pair of eigenvalues on the symplectic circle with
mixed signature is not considered. If D„P has diagonal
Jordan form on Q„, then the extension of convention (48)
is straightforward. In our numerical studies of the chain
of oscillators, more general cases of mixed signature did
not occur. Therefore we think that, at the moment, for
practical purposes, the rules given will be sufficient to get
a first insight in the relation between the rotation fre-
quency and the eigenvalues of a periodic point. In the
next section we will show numerical tests which support
relation (50).

g
00.

4.5

-LO
-LO W.S

T

0.$

2.1

LO

VI. NUMERICAL RESULTS

First, we want to check relation (50} for fixed parame-
ter values. To avoid clumsy notation we call the lhs of
(50) Bx (K denotes Krein) and the rhs 8z. In Figs. 7(a}
and 7(c) the eigenvalues of D„P ~x~, ~=D„P and the cor-
responding symplectic circle of radius e

—dT/2 =e d /

are shown for a small excitation (f =0.05) and for two coo
values (coo= 1.5 and 2.1) (also see Fig. 1). One eigenvalue
has multiplicity 2. Its definite Krein signature is indicat-

FIG. 7. In (a) and (c) the eigenvalues of D„P of a period-1
point x and the corresponding symplectic circles of radius—dT(coo)/2
e are shown for a small excitation (f =0.05) and two
coo values (a) coo= 1.5 and (c) coo=2. 1. One eigenvalue has mul-
tiplicity 2. Its definite Krein signature is indicated by the dou-
ble sign. (b) The eigenvalues of D„P for 40 coo values in the
range 1.5 coo 2. 1. The pair of eigenvalues with positive
Krein signature for ma=1. 5 moves on the symplectic circle—dT(coO) l2
(with varying radius e ) and crosses the real axis at
coo=2.05, where it changes its Krein signature. Doing this it
leaves the symplectic circle and becomes real for a short coo in-
terval.
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FIG. 8. Winding number (b) with dependence on coo and cor-
responding energy bifurcation diagram (a). To understand the
behavior of the winding number for coo between 2.35 and 2.43,
compare the corresponding eigenvalues of D„P in Fig. 6(b).
The plateau of the winding number starts right after the Krein
collision at coo=2. 3945 when all eigenvalues have left the sym-
plectic circle. This is in agreement with the given relation (50),
including the rules to select the angles y, .

Next, we investigate how these eigenvalues of D„P (and
with them their Krein signatures) develop when raising
the parameter ~0 from 1.5 to 2.1. In Fig. 7(b) the eigen-
values of D„P are plotted in the range 1.5 cop 2. 1. As
can be seen, the pair of eigenvalues with positive Krein
signature corresponding to cup=1 ~ 5 crosses the real axis
for an cop value slightly less than 2.1, where it changes its
Krein signature. Doing this, it leaves the symplectic
circle and becomes real for a short cop interval
(coII=2.04—2.06). The same is true for coo=1.47, where
the other pair (with multiplicity 2 and negative Krein sig-
nature corresponding to coo=1.5) leaves the symplectic
circle and stays on the positive real axis for a short ~p in-
terval (coo=1.47 —1.49). This explains the maximum in

~Q~ which happens if one pair of eigenvalues leaves the
symplectic circle for a short cop interval. For, varying on
the real axis, the pair does not give any contribution to
the sum in (50}. T=2ml~, however, decreases for in-
creasing coo, and therefore ~Q~ must increase in order to
satisfy (50). One can interpret this phenomenon as fol-
lows. Leaving the symplectic circle is a prerequisite for
an instability or a bifurcation to occur. For the small ex-
citation (f =0.05) the system is still stable, but the
saddle-node bifurcations for higher excitations are al-
ready influencing the system. It is also important that
the eigenvalues leaving the symplectic circle at Np 1 ~ 47
and 2.04 are different pairs. In Ref. 16 the connection be-
tween the normal modes of the chain and the resonances

is stressed. That different pairs of eigenvalues are respon-
sible for different resonances therefore supports the con-
jecture that the eigenvalues of D„P are related to the nor-
mal modes, as stated in Ref. 17.

To check (50}we compared ex and en for a variety of
different parameter values. All the numerical tests per-
formed lead to an agreement of ez and ez within 0.3.
For almost all values, e& was slightly greater than ez,
but this should be expected, because

~
f4

~
seems to be cal-

culated too high (see, e.g. , Fig. 3). However, the most
striking hint for the validity of (50) is that it helps to ex-
plain the behavior of the winding number w (x) at bifur-
cations by looking at the corresponding eigenvalues of

pm

First, we consider the Hopf bifurcation shown in Fig.
6. At cop=2. 3945, a Krein collision occurs and a pair of
eigenvalues splits off the symplectic circle. From the
rules given to count the angles, it follows that in the
range 2.3945(cop(2. 44 the sum of phases remains a
multiple of 2m. Therefore we expect, according to rela-
tion (50) (with m =2), in this range a winding number w

that is constant at an integer or half-integer value. The
numerical calculations of the winding number (see Fig. 8)
confirm this. As can be seen, it is exactly after the Krein
collision that the winding number becomes constant.
The deviation from an integer value (here w =5) is due to
the numerical error made because the calculation has to
be stopped before the final value of 0 is reached (see Fig.
3).

Now we discuss the behavior of the winding number
near the bifurcations in Fig. 5. In Fig. 9(a) the eigenval-
ues of D„P are plotted in the range 2. 572 cop 2.590 at
the PD bifurcation. As can be seen, there is one pair of
eigenvalues left on the symplectic circle. During the vari-
ation of cop this pair changes its angle y. This explains,
together with Eq. (50), that the winding number does not
show a plateau at the PD bifurcation (coo= 2. 572). At the
SN bifurcation [Fig. 9(b)] [see Fig. 5(a)], in contrast, all
eigenvalues have left the symplectic circle and e+ is zero.
Again, Eq. (50) then predicts a plateau for the winding
number around this SN bifurcation. Comparing the cal-
culated winding number w =5.01 at this bifurcation and
Eq. (50), it is only w =5 that is compatible with (50).
Again, the difference of 0.01 must be explained by the nu-
merical error we made. This numerical error is much
larger than the fluctuations in a plateau. Therefore it is
somewhat surprising that one can even detect a plateau in
the plots of the winding number. The explanation is that
the calculated winding number has a systematic tendency
to be too high.

The Hopf bifurcation [see Figs. 5(a) and 9(c)] is not
caused by the Krein collision, which can be seen in Fig.
9(b). The quadruplet of Fig. 9(b) goes back to the sym-
plectic circle for increasing ~p. The Hopf bifurcation at
cop=2. 76 comes from a Krein collision with the pair of
eigenvalues which made the saddle-node bifurcation and
one pair of the former quadruplet in Fig. 9(b). One pair
of the quadruplet stays on the symplectic circle. Because
its angle does not change very much during the variation
of cop, it is almost a plateau which can be seen in Fig. 5 at
the Hopf bifurcation, but the pair of eigenvalues causes
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1.0-

0.5 "

the winding number to have the value w =5.13. If all ei-
genvalues had left the symplectic circle, then w would
have to be 5.0 or 5.25 in order not to contradict Eq. (50).

Summarizing, the numerical calculations confirm our
conjecture (50), but also show the numerical problems
that are still unsolved if one tries to calculate Ruelle's ro-
tation frequency for high-dimensional systems. A true
confirmation of (50) can, of course, only be given by an
analytical proof.

-0.5- VII. SUMMARY AND CONCLUSIONS
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FICz. 9. Investigation of the behavior of the winding number
in Fig. 5(c) (f = 10) near the bifurcations by looking at the cor-
responding eigenvalues of D„P . (a) The eigenvalues of D„P in
the range 2.572&coo 2. 59 at the PD bifurcation (coo=2. 572).
(b) Eigenvalues of D„P for coo=2. 66—2.70 at the SN bifurca-
tion. (c) Eigenvalues of D„P for coo=2. 75 —2.76 at the Hopf bi-
furcation (coo =2.76).

A ring of coupled DuSng oscillators with periodic
driving is investigated. Due to a linear viscous damping
term, this system belongs to a class of dissipative dynami-
cal systems which preserve essential features of Hamil-
tonian dynamics. In particular, the generalized symplec-
ticity relation (7) of the linearized liow holds and imposes
constraints on the motion.

For Hamiltonian systems the unit circle in the complex
plane plays a double role. On one hand, it determines the
stability of periodic solutions; on the other, it is a center
of symmetry for the eigenvalues because of the symplecti-
city of the linearization. For dissipative Hamiltonian sys-
tems this "degeneracy" is resolved. Besides the unit cir-
cle, which still describes the stability and local bifurca-
tions, there is the symplectic circle of radius e
which plays a crucial role. An analysis of the eigenvalues
of D„P without considering how these eigenvalues are
lying with respect to the symplectic circle will be incom-
plete. The theory of the Krein signatures' ' can be ap-
plied to these systems.

As a further implication of (7), Ruelle's rotation fre-
quency (number) is defined for the ring of oscillators con-
sidered. It could be shown that for single oscillators
Ruelle's rotation frequency (number) 0 coincides with
the torsion frequency of single oscillators. We calculated
the winding number w =

l
0

l
/co as a function of the exter-

nal driving frequency, focusing our attention on the be-
havior of the winding number around bifurcations. For
periodic points we could relate the sum of N angles deter-
mined by the 2N eigenvalues of D„P to the winding
number (50}. The selection of the angles in (50) is not
haphazard, but is founded on the symplecticity of D„P
in two ways. First, it uses the formation of symplectic
pairs (p, A, /p) to reduce the number of relevant angles.
Secondly, it takes the symplectic orientation of the com-
plex eigenvectors into account, which is connected with
the Krein signatures to derive a uniform convention for
the angle of the pair of eigenvalues (p, A, /p). A major
consequence of this convention is that the sum of the
phases of a quadruplet generated by a Krein collision is a
multiple of 2m.. On the whole, it follows that the winding
number shows a plateau when all eigenvalues have left
the symplectic circle. On the other hand, when a pair is
still on the symplectic circle and varies while another pair
of eigenvalues gives rise to a bifurcation (i.e., crosses the
unit circle}, the winding number will not show a plateau.
This is independent of the type of bifurcation considered.
In particular, for high-dimensional systems with inter-
mediate excitation amplitude there will generally be pairs
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left on the symplectic circle, and thus a plateau cannot be
expected. If one wants to use a notion of winding num-
bers which necessarily become constant around bifurca-
tions, one has to introduce a set of winding numbers, but
much work has still to be done before a profound
mathematical basis for these concepts can be provided.
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APPENDIX: EQUIVALENCE OF RUELLE'S
ROTATION FREQUENCY (NUMBER)

AND THE TORSION FREQUENCY
FOR SINGLE OSCILLATORS

In this appendix we give the proof for the equivalence
of the torsion frequency defined through the QR decom-
position [(9)—(11)] and Ruelle's definition in two dimen-
sions. The peculiarity of two dimensions is the fact that
each 2X2 matrix A with positive determinant, i.e.,
detA &0, is symplectic times a scalar. In particular,
every orthogonal matrix Q with detQ =1, i.e., Q E SO(2),
is symplectic, i.e.,

SO(2)=SO(2)(lSp(2, II) .

and the former definition (11)on the QR decomposition,

D„p'iz(, )=QR(t)R(t) .

For closed curves y(t) =D,P'~x(, ) one could now justify

abstractly using topological arguments that the two
definitions of a torsion or rotation frequency coincide,
but because y(t)=D„Q')(x(, ) is not a closed curve, we

have to investigate the differences between the two
definitions in more detail.

By means of the QR decomposition and the polar
decomposition, two different orthogonal matrices Q„(t)
and Qp(t) are related to the linearization D„P'~((x(, ), as

0

are, therefore, two difFerent angles that we denote ex
and 6&, respectively, i.e.,

e,(D„y'I„, , )
—=e(Q, (t)),

eg(D.P'lx„, , ) =8(Qzt(t)) .
(A2)

and

Q(x) =Qp(x) = lim
t —+ oo

(A3}

Q„(x)= lim
t —+ oo

eti (D.P'I x(,, ) )

(A4}

Now we show that in the infinite time limit the possible
differences for finite time vanish, i.e., that Qs (x)=Qp(x)
holds. Using the polar decomposition of R (t), we obtain

For clarity we denote the corresponding rotation (tor-
sion) frequencies that arise when keeping track of the
multiples of 2nas Qp. (x) and Qii (x },i.e.,

ep(D P'lz( ))

Therefore the definition of Ruelle's rotation frequency
applies to all driven single oscillators even if they do not
satisfy the equations of motion considered [Eq. (3)].

The relation between SO(2) and U(1) turns out to be
the well-known representation of a matrix, Q ESO(2),

and

R (t) =Q„(t)P„(t),

D„P'lz(, , )
=Qp(t)P(t)

(A5)

cosB —sin 6
sine cose (A 1)

The definition of U(Q) [Eq. (16)] according to symplecti-
city gives

U(Q)=cose+i sine=e' EU(1) .

Thus the angle 6 associated with a special orthogonal
matrix QESO(2) according to (Al) is exactly the angle
associated with QESO(2)(lSp(2, R) because of its rela-
tion to the unitary group U(1). At this point the
differences between the two definitions of a torsion or ro-
tation frequency reduce to the fact that Ruelle's
definition is based on the polar decomposition,

D„()}'iz(, )=Qp(t)P(t),

=Qti(t)Q„(t)Pit(t) . (A6)

Because of the uniqueness of the polar decomposition it
holds that

PR(t}=P(t},

Qp(t)=Q&(t)Q„(t) .
(A7)

Q„(t)=R(t)P(t) '. (A8}

We now show that the angle 8(Q„(t)) is bounded. Let
r,, (t) and P, (t) be the entries of R (t) and P(t) ', respec-
tively. Using that R (t) is an upper triangular matrix
(here rzi =0), we obtain from Eq. (A8)

Thus Qp(t) and Qz(t) differ only by the orthogonal ma-
trix Q„(t), which is given by [combine (A6) and (A7)]

r„(t)p»(t)+r)z(t)pz)(t) r (t})P)(t})+zr (t))pz(t)zz
Q~(t)=

rzz(t)Pz) (t) rzz(t)pzz(t)
(A9)
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Therefore we obtain the expression for the angle
8{Q„(t}),

le(g„{I}]
e = r22( t )Pzz( t ) + I rzz( t)F21 ( t )

Pz)(t)= rzz(t)pzz(t) 1+i
pzz(t}

=c(t)[1+i}((t)],
with

(A10)

&(t)—:P, ((t)/Pzz(t),

r22( )p22( ) FR and c (t)%0
(Al 1)

l(,(t) is well defined because pzz(t) is always different from
zero. This can easily be seen. The assumption pzz(t)=0
leads to detP(t) '= —p)2(t)pz)(t)= —[p,z(t)] (0 and
this contradicts the positivity of P(t). Furthermore, note
that the curve y(t)—=exp[i8(Q„(t))] never crosses the
negative real axis. This is so because l(,(t) =0 implies that
pz, (t) =0, but then pzz(t) )0 [because of the positivity of
P (t) '] holds and, with rzz(t) )0, c (t) =rzz(t)pzz(t) )0
also follows. Therefore we obtain for A. ( t) =0 that
c(t)=y(t)=exp[i8{Q„(t))])0 holds and this means, of

lim
8{Q„{t})=0.

Therefore we finally get the desired result,

Qt, (x)= lim
t~ oo

= lim
i~co

8p{D.{f'l z(,, ) )

8R{D 0 ~X( ))

=QR(x) . (A12)

course, y(t}=1. Because the angle 8(Q„(t)) depends
continuously on t, it follows that the curve y(t) can never
go around the origin and, consequently, 8{Qz (t) } is con-
strained to the interval (

—
m, m ).

This boundedness leads to the desired equality of
QR(x) and Qt, (x). With (A7) we have

8,(D.y'l„,, )=8,(D.y'lz, , )+8{Q (t)) .

However, the differences between the finite rotation (tor-
sion) frequencies Qt, (x, t) and Q„(x,t) vanishes for t to
infinity because of the boundedness of 8„{Q(t)),which
leads to
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