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We consider the effect of weak additive noise on the homoclinic threshold of a driven dissipative

nonlinear system. A new "generalized" Melnikov function is derived for the system and is seen to

be the Melnikov function for the corresponding noise-free system plus a correction term that de-

pends on the second-order noise characteristics. The correction tern is explicitly calculated for

three model systems [Duffing oscillator, Josephson junction, and rf superconducting quantum in-

terference device (SQUID)]. The effect of a distribution of dc driving terms on the chaotic attractor
of a dissipative system is also examined via numerical simulation of the rf SQUID.

I. INTRODUCTION

In this paper we wish to consider the appearance of
homoclinic instabilities in driven classical nonlinear sys-
tems perturbed by weak external Langevin noise. For
classical dissipative noise-free systems it has been well
known since Poincare' that, under perturbation, the
stable and unstable manifolds emanating from a hyper-
bolic fixed point no longer coincide, and may intersect.
The resulting complicated motion is an indication of the
existence of chaos and, according to an existence theorem
of Srnale and Moser, is homeornorphic to a Markov shift
map. A simple theoretical test function due to Melni-
kov may be used as a test of this homoclinic instabili-
ty. This function, which measures the separation be-
tween the unstable and stable solution manifolds (the sys-
tem parameters that cause the function to vanish corre-
spond to the situation in which these manifolds touch),
has been applied to a number of driven nonlinear oscilla-
tors [e.g., Duffing oscillator, Josephson junction,
and rf superconducting quantum interference device'
(SQUID)] with the aim of determining the set of system
and driving parameters that lead to the onset of the
homoclinic instability.

When one considers the onset of chaos in an actual
(i.e., in the real world) system, the presence of noise in the
external perturbation cannot be ruled out. Recently, a
number of researchers have attempted to quantify the
effect of weak external Langevin-type noise (such noise
manifests itself in the system dynamics as an additive
term in the external perturbation) on the transition to
chaos in driven nonlinear systems. Early work on this
problem was carried out by Crutchfield, Farmer, and
Huberman, ' who considered the effect of noise on period

doubling in a discrete system. The noise was found to in-

troduce a gap in the bifurcation sequence, which implied
a scaling behavior at the chaotic threshold, in the critical
exponents. Similar work was carried out by Svensmark
and Samuelson' on the Josephson junction; they found
that, in the presence of noise and a resonant external per-
turbation, the bifurcation point shifted by an amount
proportional to the square of the perturbation amplitude.
The amplification of a small resonant periodic perturba-
tion in the presence of noise, near the period-doubling
threshold, has also been investigated by Wiesenfeld and
McNamara. ' ' Arecchi, Badii, and Politi' have investi-
gated the effect of noise on the forced Duffing oscillator
in the region of parameter space where different chaotic
attractors coexist, finding that the noise may lead to
jumps between the different basins of attraction, with the
noise-induced transitions obeying simple kinetic equa-
tions. Recent work, along the same lines, has been car-
ried out by Kautz' on the problem of thermally induced
escape from the basin of attraction in a dc-biased Joseph-
son junction, The average escape time has been found to
increase exponentially with inverse temperature, in the
low-temperature limit. Finally, Kapitaniak' has investi-
gated the behavior of the probability density function
(obtained from the Fokker-Planck equation) of a dissipa-
tive nonlinear system driven by random and periodic
forces. He finds that, for a choice of damping and deter-
ministic parameters such that the noise-free system is
chaotic, the stationary probability density function corre-
sponding to the noisy case exhibits multiple maxima.
Further, he defines a maximal Liapounov characteristic
exponent in the presence of noise. This exponent is itself
a random number with a corresponding probability den-
sity function. As the noise strength increases, the mean
value of this exponent approaches zero. The averaged ex-
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ponent is a smoother function of the system (and driving)

parameters than its noise-free analog. This indicates that
the noise may actually introduce a degree of order (or
sinoothing) in the chaotic system; a similar conclusion
was obtained earlier by Matsumoto and Tsuda, who
considered the effect of noise on chaotic behavior in the
Belousov-Zhabotinsky reaction.

In all the work cited in the preceding paragraph, the
emphasis has been on the effect of external noise on either
the period-doubling bifurcations that precede the appear-
ance of chaotic attractors, or on the chaotic attractors
themselves. No mention has been made of the effect of
the noise on the homoclinic threshold as defined by the
Melnikov function. The first calculation of such an effect
was carried out by Schieve and Petrosky. ' They con-
sidered the effect of noise on the homoclinic threshold in
a classical system under the influence of zero-point quan-
tum fluctuations. A new quantum-mechanical Melnikov
function defined by them was found to consist of its clas-
sical counterpart shifted by a constant quantum correc-
tion, which was found to be simply the quantum energy
fluctuation on the stable and unstable manifolds. Hence
the classical homoclinic threshold was suppressed by the
quantum noise; the quantum Melnikov function admitted
of a zero in a different region of parameter space than its
classical counterpart.

In this work, we consider a classical dissipative non-
linear system driven by a deterministic perturbing term,
in the presence of weak external noise. A generalized
Melnikov function for the noisy system is defined in Sec.
II. This function may be written down as the Melnikov
function in the corresponding noise-free problem, shifted
by a constant correction term which takes into account
the effect of the noise. In Sec. III we describe, formally,
the procedure for calculating this correction term and the
calculation is demonstrated, in Sec. IV, for three model
nonlinear systems (Duffing oscillator, Josephson junction,
and rf SQUID). The stochastic differential equation cor-
responding to the dissipative nonlinear problem
(specifically, the rf SQUID) in the presence of random
and periodic driving terms is numerically integrated in
Sec. V. The noise is introduced by allowing the initial
values of the random force to have a Gaussian distribu-
tion with specified variance (this is equivalent to intro-
ducing a random change in the system potential for each
initial value) for each integration of the stochastic
differential equation. In Sec. V we also consider the
probability density function corresponding to the depen-
dent variable in the nonlinear system dynamics. This
function is found to have multiple maxima, and increas-
ing the noise level has a smoothing effect on it. We also
consider the probability density function corresponding
to the generalized Melnikov function of Sec. II. This cal-
culation provides a test of the accuracy of our theoretical
computations (specifically, the noise-induced shift in the
homoclinic threshold) of Secs. II—IV. Corresponding to
our approach, Carlson ' has investigated a shift map in
the presence of thermal noise by means of an analogy to
the eight-vertex model of spins. He has shown that the
sequences corresponding to the hornoclinic points of the
Cantor set are removed by the noise.

II. GENERAL CASE: EFFECT OF WEAK ADDITIVE
NOISE

Let us consider a general nonlinear second-order sys-
tem driven by weak external additive noise. The state
(e.g., displacement) variable x(t ) describing the evolution
of this system is assumed to obey the dynamic equation
(the dots denote differentiation with respect to time),

x+f(x)=F(t),
where F(t ) is the random driving term which we take to
be Gaussian, 5 correlated with finite incan and variance
g 2

5(r) being the Dirac 5 function. f(x ) is a nonlinear func-
tion of the dynamic variable x(t). In the absence of
the random force, the system (1) is conservative and
represents a particle moving in a potential
U(x )

—= f"f(y )dy.

We now introduce, as perturbations, a dissipative term
—kx and a deterministic (often taken to be periodic) driv-
ing term Qg(t, to) on the right-hand side of (1). In the ab-
sence of the random force F(t), the introduction of these
perturbations is known to induce homoclinic behavior in
the system for certain sets of values of the system and
driving parameters. This behavior is characterized by a
bifurcation of the separatrix (i.e., unperturbed) solution
into stable and unstable solution manifolds. The small
separation of these manifolds is given by the Melnikov
function. When this function vanishes, the manifolds
touch and above this threshold one may (for certain
values of the system and driving parameters) observe
chaotic behavior characterized by the appearance of
strange attracting sets in phase space. The Melnikov
function is given (for the noise-free system) by

Here x, (t) represents the separatrix (or unperturbed)
solution, i.e., the solution of (1) in the absence of any dis-
sipative or driving terms.

In the presence of noise, the formalism of the preced-
ing paragraph must be modified. Let us return to the
noise-driven equation (1) and treat this as our "unper-
turbed" system. The solution x(t) of (1) may be ex-
pressed as the separatrix solution plus a (small) noise-
induced deviation

x(t ) =x, (t )+5x(t ),
with a similar expression holding for the velocity x ( & ).
Averaging over the ensemble of the random force yields
for the mean displacement

(x(r))= x( )r+( 5x( )r),

where the angular brackets denote an average over the
ensemble of F(t ) and a similar expression holds true for
the averaged velocity (x(t) ). We now substitute the ex-
pansion (4) into (1), expand to leading order in 5x, and
separate out the terms that depend on the random force
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F( t ). The result is the two equations

x, +f(x, )=0,
5x tv—(t)5x =F(t) .

(6a)

(6b}

Here co ( t ) =——[df(x ) Idx ]„,is, in general, a compli-

cated function of time due to the time dependence of the
separatrix solution x, (t ). Equation (6a) describes the un-

perturbed motion, i.e., the separatrix. Its solution may be
obtained for specific forms of the function f(x, ). Equa-
tion (6b) yields the stochastic component of the solution
to the unperturbed problem (1). In its present form, it
cannot be integrated (except numerically). We shall see,
however, that the corrections to the Melnikov integral re-
quire us to compute the averaged quantities & 5x (t ) ) and
& 5x (t ) ). These quantities may be computed using a
procedure that will be described in Sec. III.

We now introduce a Melnikov function in the presence
of the random force. This function defines the separation
of the stable and unstable manifolds for each realization
of the weak random force term F(t ) and may be written
as

b ~(t, ) = —k f x '(t )dt+ Q f x(t )g(t, t, )dt, (7)

—k f" &5x '(t))dt . (10)

The ensemble-averaged Melnikov function defined in
(10}is a generalization of the usual function (3}defined in
connection with the noise-free problem. It is similar to
the function introduced by Schieve and Petrosky ' to
take into account the effects of small quantum Auctua-
tions on the homoclinic threshold in a classical nonlinear
system. The terms appearing on the right-hand side of
(10}may be computed for specific model systems. In the
following section we describe the calculation in general.
This is followed by a computation of the correction term
for specific systems. Before moving on, however, we wish

Recalling that we have treated the noise system (1) as our
unperturbed system, the analogy between (7) and the usu-
al definition of the Melnikov function (3) is evident. One
readily observes that (7) may be cast in the form

b~(to ) = b, (to )+b, ,(to ),
where 6, is a correction term. The Melnikov function
4F defined in (8) is a random variable, since the correc-
tion 6, involves the stochastic component 5x(t) of the
velocity. One observes that the homoclinic threshold is
shifted for each element of the stochastic ensemble: the
zeros of (8) do not coincide with those of (3). One may
first obtain an expression for its average value by averag-
ing (8} over the ensemble of the random force. In this
case, we obtain the averaged Melnikov function

«,(t, ) & =&(t,)+«, (t. ) &,

where the averaged correction is given [using (4)j by

&&,(t, )) = —2k f x, (t)&5x(t))dt

+Q f" g(t, to)&5x(t))dt

to point out that a significant and formidable question
exists regarding the existence of a Smale-Birkoff theorem
for solutions to the stochastic differential equation (1).
Our work here and in the following sections suggests that
under weak noise there are, following the noisy tangency,
multiple crossings for each realization of the ensemble
and thus a Cantor-set-like structure in this weak sense.

III. COMPUTATION OF &h, {to)&:

THE NOISE CORRECTION TO THE MELNIKOV
FUNCTION

0 1
A(t)=

z( )
(12)

0 0
B 0 j o

In order to obtain the solution of (11},we must first solve
the transport equation [obtained by averaging the sto-
chastic differential equation (6b) over the ensemble of the
random force F(t )]

d &5x(t)) =to (t)&5x(t)) . (13)
dt

In terms of the matrix y(t) defined in (12), the formal
solution of (13) may be written down in the form

&y(t)&= Y(t)&y(to)),

Y(t ) being the Green's function determined by

Y(t)= A(t)Y(t), Y(to)=1.

(14}

(15)

%e shall return to a precise computation of the elements

We now consider the computation of the mean value
&5x(t)) and the second-order correlation function
&5x (t ) ) appearing in (10). To do this, we employ a sto-
chastic description in which the stochastic differential
equation (6b} is replaced by a linear inhomogeneous
Fokker-Planck or diffusion equation for the probability
density function P(5x, 5x, t ~5x(to },5x(to), to) corre-
sponding to the random variables 5x ( t ) and 5x ( t ). The
probability density function, as well as the second-order
correlation function, may be obtained in closed form
from this Fokker-Planck equation once the solutions for
&5x(t)) and &5x(t)) are known. The procedure has
been outlined by van Kampen, whose treatment and no-
tation we follow in the remainder of this section.

We first consider the case when the random force term
F(t ) has zero mean value, i.e., m =0. Then, the stochas-
tic differential equation (6b) leads one to a two-
dimensional Fokker-Planck equation for the probability
density function P(y, t )

BP B a' B'P= —g A," y, P+ QB;, (11)Bt,, "By, ' 2,, '
y, By,.

where we have defined the matrices,

5x(t)
y(t)—:
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of Y(t) later in this section. We define the correlation
matrix X(t) by

X;,
—= &y;y, ) —&y;)&yj) .

It obeys the matrix differential equation

X(t ) = /I X+X A + cr B

(16)

(17)

where A is the transpose of A. The solution of (17) may
be formally written down [in terms of an initial correla-
tion matrix X(to)] as

X(r ) = Y(r )X(io)Y(i)

+0 Yt Yt' '8 t' Yt' 'Yt dt' 18
0

and the probability density function P(y, t ) appearing in
the Fokker-Planck equation (11) takes the form

& 5x(t ) ) =C,f, (r )+Cif2(r ), (22)

where C, 2 are integration constants (to be determined by
the boundary or initial conditions). The function f, (t ) is

given by

f i(r )
—S1/6[oi2(i )]

—i/4Aj[( i So
)2/3] (23)

using a WKB technique [since co (t ) is, in general, a com-
plicated function of time]. The precise form of the solu-
tion will depend on the model system under consideration
(this will be discussed in greater detail in Sec. IV when we

apply our results to three specific model systems). Let us
assume, for the time being, that the function co (t ) admits
of only one turning point (i.e., it changes sign only once)
in the range 0~ t ~ Do. Then, one may write down a gen-
eral solution to (13) in the form

P(y, t) =(4&detX)

Xexp[ —-'(y —&y))X '(Y —&X&)].

where

So(t)—= f oi(t')dt', (24)

Xii(to)= &5x (to)),

Xi2(to) =
& 5x(to)5x(to) ),

X»(ro) =
& 5x(ro)5x(ro) ), (21)

X22(to)=&5x (to)) .

It remains to evaluate the averaged solution & 5x(r ) ) as
well as the matrix Y(t) in terms of the parameters ap-
pearing in our original stochastic di8'erential equation
(6b). We now demonstrate how this is done.

Let us return to the transport equation (13). This equa-
tion is to be solved for the average value & 5x(t ) ), usually

I

Using (16) and (18), we readily obtain

&» '(t)) =&»(i))'
+[Y( r)X( to) Y( r) ]» +o'f K»( r, t ')dr ',

0

(20)

where we have set K(t, t')=Y(t)Y(t') 'BY(t') 'Y(t),
the kernel of the integral appearing on the right-hand
side of (18). In addition to the matrix element K»(t, t'),
the expression (20) includes the initial variances defined
by

oi (t, )
d 2

dt
d

co (t, )
dt

(26)

must be satisfied. Then the unified solution (23) may be
written down in terms of three distinct solutions

and Ai is the Airy function. t, is the turning point of
oi (t ), i.e., co (t, ) =0. The other part f2(t ) of the solution
is found, using standard techniques, to be

f2(r)=fi(r) f (25)
'o f (i')

Once again we emphasize that the precise behavior of
these solutions (e.g., at long times) depends on the system
under consideration, through the function oi (t ) and that
the equations (23)—(25) are true under the assumption
that the function co (t) has just one turning point in the
interval 0& r & ~. In such cases, the solution f, (r ) gen-
erally represents the solution that converges in the t ~ 00

limit, whereas f2(t) diverges in this limit. In fact, one
may break up the general solution (23) into distinct solu-
tions for t &t, and t)t, . These solutions are to be
"patched" together in the connection region t =t, . For
this procedure to hold, i.e., for (23) to represent a unified
solution for all t )0, the condition

4/3

2/3 Zf,(t)=2i/n, Ai[( —', So) / ]=[co (t)] '/ exp —f oi(t')dt', t ) r,
CO C

( 3S )1/6
=2~/n.

, Ai[ —( —,'So) ]=[ co (r)] ' sin f—[ co (t)]'/ dt, 0—&t &t,
' 1/2 2/3 '

1/6=2v'n.
2do) (t, )ldt

(27)

The constants C, 2 are now determined. Assuming
that both &5x(t)) and &5x(t)) are initially nonzero, we
readily find

which leads to the expressions

&5x(r, ) )

fi(ro)

f2(ro) 0 f2(ro)=f
&

'(ro) (28a) C, =&»(ro))f, (ro) —&»(ro))f, (ro) .
(28b)
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Throughout this work we shall assume that
&5x(to)) =0= &5x(to)); it then follows that &5x(t))
=0= &5x(t)) for all subsequent times t (for the m =0
case being currently considered). In this case, the aver-
aged Melnikov correction term &A, (to)) involves only
the second-order velocity correlation function & 5x ( t ) ),
in agreement with earlier calculations ' on the e8'ects
of zero-point quantum Auctuations on classical chaotic
systems. The above special initial conditions assume
physically that, at time t = to, the mean displacement in
the noisy unperturbed system follows the separatrix
motion of the corresponding noise-free system. This con-
dition ensures that the mean displacement follows the
noise-free separatrix motion for all subsequent times as
well.

The solution (22) [with f, z(t) given by (23) and (25}]
represents the solution of the initial value problem. In
keeping with our fundamental assumption of weak noise,
however, the problem must be solved as a boundary value
problem with the requirement that both &5x(t)) and
&5x(t)) be finite as t~~. In fact, we expect these
quantities to follow qualitatively similar behavior to the
corresponding separatrix quantities x, (t) and x, (t),
which implies that &5x(tI))~0 at some final time

tf ~ ~ . Imposing these boundary conditions on the solu-
tion (22) and noting that f&(tI )/f2(tI ) «1 in the large

t& limit, one obtains, after some calculation, the solution
of the boundary problem. This solution is diagonal,

&5x(t, ) &

&5x(t)) = f, (t),
i to

tains finally the relatively simple expression

&b &= —2k f f ()df ', (0)
(32)

P(x(0),x(0)}=N 'exp( 2E/o —), (33)

where N is a normalization constant and E the total ener-

gy given by E=—,'x (0)+ U(x(0)). One readily obtains
the initial velocity correlation function from (33)

&x (0)) =N ' f x (0)P(x(0),x(0))dx(0)dx(0) .

for the correction term. The above result has been ob-
tained from the initial variance term in (31) with to set
equal to zero for convenience.

Before proceeding further, we pause to comment
briefly on the assumption of weak Langevin noise.
Throughout this work, the noise has been assumed to be
sufficiently weak that the resulting motion (in the pres-
ence of the noise, but in the absence of the dissipative and
deterministic forcing terms) is not appreciably different
from the separatrix motion in the noise-free case. This
permits one to carry out the expansion leading to (6a) and
(6b) to first order and also ensures that the system does
not make excursions to neighboring wells of the potential
under the influence of the noise alone (this would be the
case for very strong noise). Under these conditions, one
may also assume that at initial times, the random vari-
ables x(0) and x(0) [these variables refer to the solution
of (1), i.e., the right-hand side of (4)] obey a joint proba-
bility density which may be assumed to be Gibbsian:

&5x(t, }) .
&5x(t)) = . f, (t),f i(to)

and involves the implicit constraint

(29)

Since x, (0}:—0 one readily obtains from (4) and (34)

&5x'(0)) =&x'(0)&=
2

(34)

(35)

& 5x(to) )f)(to)= & 5x(to) )f&(to ) (30)

implying that, given an arbitrary initial displacement
& 5x (to ) ), the boundary condition requires that the initial
velocity perturbation be determined by the above con-
straint. Note that the constraint (30) is equivalent to set-
ting the constant C2 defined in (28b}, equal to zero.

In terms of the solution (29) we readily obtain for the
elements of the matrix K(t, t')

K„(t,t') =0=K,2(t, t') =K2, (t, t'),

f ((t)
K»(t, t') = . ,f 1(t')

(31)

The expression (31} together with the initial condition
&5x(to)) =0= &5x(to)) [note that this condition is a
special case of the constraint (30)] permits one to evaluate
the mean correction term &h, (to)) defined in (10}. The
correction term is seen [from (20)] to depend solely on
second-order fiuctuations. In addition, one readily ob-
serves from (31) that, after carrying out the t' integration
in (18), the resulting term is an odd function of t. Hence
this term does not contribute to the integral appearing in
the third term on the right-hand side of (10) and one ob-

—= A+Bcr
k

where we have defined

(36)

(37}

The above result enables us to express the initial variance
&5x (0)) directly in terms of the noise variance. One
may now set an approximate upper bound on the noise
strength by requiring that the variance &5x 2(0)) of the
initial velocity perturbation be much smaller than the
depth of the potential well. This ensures that the noise
variance o is also much smaller than the well depth and
allows us to quantify the assumption of "weak Langevin
noise. "

Returning to our discussion (32) for the Melnikov
correction term, we see that, on average, the homoclinic
threshold has been shifted from its parameter-space loca-
tion in the corresponding noise-free case by an amount
proportional to the variance of the noise. Indeed, setting
& br ) =0 in (9) one readily obtains the new ratio Q/k of
the perturbation amplitudes corresponding to the homo-
clinic threshold. The result may be written in the form
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and

C

x, tg t, todt

', (t )dt,
2f i(0)

(38a)

(38b)

where we have used (32) and (35). The quantity A

defined in (37) represents the threshold ratio of Q/k in

the noise-free system; it is obtained by setting the right-
hand side of (3) equal to zero. The second term on the
right-hand side of (36) represents the correction induced

by the Langevin noise. Note that this term is always pos-
itive; the noise always elevates the homoclinic threshold.

We now consider brieAy the case when the random
driving term has a finite mean value m which now ap-
pears on the right-hand side of the transport equation
(13). Using the initial conditions (5x(0) ) =0= (5x(0) )
as before, one may write down the solution of the trans-

I

port equation in the form

(5x(t }) =mf (t ),
(5x(t)) =mf(t),

(39)

in terms of an undetermined function f(t ). One readily
observes that, within the framework of our perturbation
theory of Sec. II [the mean value m must be small and
positive so that (5x(t)) «x, (t) and (5x(t)) «x, (t)],
the dominant contribution to the correction term (10)
arises from the first two terms on the right-hand side of
(10). One may verify that the absolute magnitude of the
first term on the right-hand side of (10) is greater than or
equal to that of the second term [for unit Q and k and for
the case when g(t, to) is an alternating periodic signal of
the form to be considered in this work]. Hence the
homoclinic threshold will always be elevated (or, at
worst, stay the same) when the noise is assumed to have a
finite mean value. In fact, one readily obtains for the
threshold ratio Q/k corresponding to this case:

f x 2(t)dt+2m f x, (t)f(t)dt
k QO 00 f x, (t)g(t, to)dt+m f f(t)g(t, to)dt

L

1+2m f x, (t)f(t)dt f x, (t)dt —m f f(t)g(t, to)dt f x, (t}g(t,to)dt (40)

The preceding remarks imply that one always has
(Q/k) ~(Q/k)0 so that the presence of a finite mean
value in the random term can never, of its own accord,
induce homoclinic behavior.

In the following section, the theory presented so far is
elucidated numerically in the case of three well-known
model systems. We confine ourselves to the m =0 case,
the important point being that the Langevin noise
suppresses the observation of homoclinic chaos, in quali-
tative agreement with the work of Carlson.

IV. EXAMPLES

In this section, we consider three well-known nonlinear
problems: the Duffing oscillator, Josephson junction, and
rf SQUID. In all three cases, we assume that the system
is perturbed by a dissipative term —ki and a determinis-
tic term g(t, to), which we take to be periodic. In the
presence of weak Langevin noise, the correction term
(6, ) is obtained using the WKB solutions (27) and (29),
as well as by direct numerical integration of the transport
equation (13). The agreement between the correction
terms obtained using these two procedures is seen to be
extremely good. Since the calculations are qualitatively
similar for all three models, we first present the salient
features of each model before computing the Melnikov
function in each case in the presence of weak Langevin
noise having zero mean and variance o. .

A. Duf8ng oscillator

I

tor). The dynamic equations on the separatrix are

v =px —ax 3
(41)

The above system is seen to be homologous to a particle
moving in a potential given by

2 ~4
U(.)=-p + "

.
2 4

(42)

x, (t)=i/2secht . (43)

We now introduce weak Langevin noise. Using the pro-
cedure of Sec. II we readily set up the transport equation
(13) for the mean value (5x(t ) ) with co (t ) given by

co (t)=1—6sech t . (44)

This function is symmetric about t=0 and has a single
turning point (for positive t ) at t, =sech '(1/&6).

B. Josephson junction

The separatrix response of a Josephson junction may
be written in the form

This potential (we assume p=1.O=a throughout this
section) admits of a saddle point at (x, v)=(0, 0) and el-

liptic points at (+1,0). The particular unperturbed (or
separatrix) solution is found by solving (41)

We consider the DuSng oscillator with negative
stiffness (sometimes referred to as the anti-Duffing oscilla- v = —psinx,

(45)
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where k and p may be expressed in terms of the junction
parameters and x is typically the phase of the super-
current in the junction [it should be noted that (45) also
describes the dynamics of a common pendulum in the ab-
sence of the small oscillation assumption]. Equation (45)
may be derived from a potential

66.4

50.6

U(x)= —Pcosx . (46) 34.8

One readily observes that this potential is periodic and
has saddle points at x =nor (n odd) with elliptic points at
x =2nm. . The separatrix solution may be found by solv-
ing (45)

19.0
Z2

x, (t)=4tan '(e ~')+rr . (47)
3.2

Introducing noise as in the preceding example, we find
for this case

co (t)= 2P ~—cosx, (t)sech(~Pt) . (48)
-12.6

-14.0 -9.0 -4.0 1.0
I

6.0 11.0

This function shows the same qualitative features as (44)
and is not plotted. One readil obtains its turning point
(for positive time) at t, =(1/ P)ln(tan —,'n ).

FIG. 1. Potential U(z) [Eq. (50)] for the rf SQUID corre-
sponding to (P,coo}:—(2.0, 1.0).

C. rf SQUID

In its simplest form, the rf SQUID consists of a single
Josephson junction shorted by a superconducting loop.
An external magnetic field produces a geometrical mag-
netic flux across the loop together with a circulating su-
percurrent in the loop. Hence the Aux actually sensed by
the SQUID is not the same as the original magnetic flux
(the SQUID actually amplifies this flux because of the ad-
ditional supercurrent induced in the loop by the Joseph-
son tunneling current). The net flux is inductively cou-
pled to a rf-driven detector cirvuit. Setting x(t ) equal to
the flux sensed by the SQUID (in units of the universal
flux quantum}, the separatrix dynamics of the SQUID are
given by

tained as'

z, (t ) =z, —a tanh'gt, (51)

where a=zz —z, and g=(0. 1482nPcoo)'~ . Introducing
noise as before, we readily obtain

a) (t) =2m' sinz, (t )
—1, (52)

Again, ro (t) is symmetric about t=0 and has a single
turning point (for t )0) at

' 1/2
[z2 —n +sin '( I /2n. P) ]

'tanh
a

0 = —toox —P sin2n. x, (49) D. Results

where, one again, the parameters P and coo may be ex-
pressed in terms of the SQUID parameters. Homoclinic
chaos in the rf SQUID has been treated in detail in Ref.
12. As with the formalism of Ref. 12, we transform to a
new variable z =2nx rr/2 in . terms o—f which one may
consider the system (49) from the standpoint of a particle
moving in a potential,

2 2
~o m.

2U(z) = z+ — +2mPco sinz .
2 2 0 (50)

The potential is multistable above the critical value of the
nonlinearity P and is plotted in Fig. 1 for (P, coo)
=(2.0, 1.0). In the remainder of this section, we shall
confine our attention to the separatrix z, z2 in Fig. 1.
This renders the rf SQUID qualitatively similar to the
Duffing oscillator problem discussed above (note that had
we considered the separatrix z&z3 in Fig. 1, the problem
would have resembled the Josephson junction). For the
case of moderate P this separatrix solution has been ob-

We now assume that each of the above model systems
is perturbed by a dissipative term —ki and a determinis-
tic driving term which we take to be periodic:
g(t, to)=Q cos[Q(t+to)]. Then, for the DuIIing oscilla-
tor, the Melnikov function for the noise-free case is

4k mQ
bn(to) = — +&2nQQ(sinQt )sechD 0 0 (53)

The zero of this function (taken in units of sinQto) yields
the homoclinic threshold in the absence of noise, but in
the presence of the dissipative and deterministic driving
terms. It is plotted in Fig. 2. The curve represents the
second term (53} (in units of sinQto). It is peaked at a
critical frequency AD, =2.399/m. The straight line
represents the absolute value of the first term. The values
(Q, k )

—= (1.25, 2.81 } are used in these plots. This
represents the threshold case; the straight line is tangen-
tial to the curve. We now assume that weak Langevin
noise of variance o =0.2 (corresponding to an initial ve-
locity variance (5x (0) ) =0.1) is present in the system.
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This leads to an elevation in the homoclinic threshold
characterized by a displacement of the straight line in
Fig. 2. One may also compute the displaced straight line
through a direct numerical integration of the transport
equation (11). The relative difference between the correc-
tions is approximately 2.2% for this case.

The corresponding figure for the Josephson junction is
readily obtained. The Melnikov function in the absence
of noise is

AJ(t&&)= —8k&P+2mQ(cosQto)sech, (54)
2vP

which we plot in Fig. 3 for ( Q, k ) = (2, 1.57) correspond-

FIG. 2. Melnikov function for the Duffing oscillator. Solid
curve represents the second term in (51) (in units of sinQt&) for
Q=2.0; solid line represents the first term in (53) for k =2.81
(threshold case). Dotted line represents the e8'ect, on the
straight line, of including noise of variance 0'=0.2; it includes
the correction (5, ) calculated using the WKB approximation
(29).

ing to the homoclinic threshold (we set P= 1 throughout).
As in the preceding case, the curve represents the second
term in (54) (in units of cosQtc) and the straight line
represents the first term. The curve is peaked at QJ, =0
because of the difference in parity of the separatrix veloceo

ity x, (t) between this example and the Duffing oscillator.
Once again, the introduction of noise with variance
cr =0.2 leads to an elevation of the homoclinic thresh-
old. The displaced line is plotted in the figure; its loca-
tion differs from the position computed via numerical in-
tegration of the transport equation (11) by approximately
l%%uo in this case.

Finally, we present, in Fig. 4, the Melnikov function
for the rf SQUID; for the noise-free case, this has been
computed in Ref. 12:

16 4nQQ sinQto
bs(tc)= — a gk+

A zsinh[m0/( A ~a)'~~]
(55)

where Az =0.5928rrPcoc This. function, which is peaked
at a frequency' Qs, =(1.915/m)QAza, is plotted in

Fig. 4 for (P, Q, k ) =(1.0,4, 2.24); as in the preceding ex-
amples, the straight line represents the first term in (55)
and the curve represents the second term (in units of
sinQto). Introducing the noise term, with noise variance
o =0.2 as before, results in a displacement of the
straight line and a shift in the homoclinic threshold; the
relative error between the displaced positions of the
straight line computed using direct numerical integration
of the transport equation, and the WKB solution is about
1.1% for this case.

We complete the analysis by computing the threshold
value of Q/k for each of these examples. This is accom-
plished using the general equations (37) and (38). It is in-
structive to evaluate this quantity at the critical frequen-
cies QD„QJ„and Qz, at which the curves in Figs. 4—6
are peaked. Using the numerical parameters introduced
in this section for each of our model systems we may cal-
culate (at the critical frequency) the parameters ( A, B )

appearing in Eq. (36) for the new threshold value of Q/k.

I ~ ~ ~ o ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ oo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ oooooo ~ ~ ~ ooo ~ ~ ~ ~ ooeoo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ oooo ~ o ~ ~ oe
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11.2
10.6.

8.4 . 79.

5.6- 5.3.

2.8 2.6.

0.0
0.05 0.84 1.63 2.42 3.21 4.00

0.0
0.0

e
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FIG. 3. Melnikov function for the Josephson junction, Eq.
(54); same as Fig. 2 with (Q, k, u') =—(2.0, l.57,0.2).

FIG. 4. Melnikov function for the rf SQUID, Eq. (55); same
as Fig. 2 with (P, Q, k, cr )

—=(1.0,4.0,2.24, 0.2).
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V. NUMERICAL COMPUTATION
OF PROBABILITY DENSITY FUNCTIONS

In this section we consider numerical solutions of the
stochastic differential equation for nonlinear dissipative
systems driven by random and deterministic (periodic)
forces. The stochastic differential equation for such a
system may be written in the general form

x =kx+f(x ) =g sinQt+F(t ), (56)

threshold (characterized by the ratio Q/k) requires a
larger noise variance as the depth of the well is increased.
One expects a similar effect to occur in the other exam-
ples (Duffing oscillator and Josephson junction) con-
sidered above, as well.

FIG. 5. Probability density function corresponding to
the stochastic Melnikov function 5F defined in Eq. (7), for the
rf SQUID. (P, co02, Q, Q/k, o2)—:(2.0, 1.0,2.0768, 4.734,0.8).
Value of Q/k corresponds to the homoclinic threshold in the
absence of noise. Data points represent the result of sampling
the Melnikov function with 50 bins. Dotted curve is the Gauss-
ian having the same mean and variance as the sampled data.
Solid curve is obtained by assuming "perfect" Gaussian noise
(see text).

4.59

2.08 I

—044-

—2.95" l

—5 47"

—7.98—9.36 —6.76 —4.16 —1.56 1.03 3.63

FIG. 6. Poincare plot of z vs z for the rf SQUID with

(P, coo, II,k, Q}—:(2.0, 1.0, 2.0768, 1.1133,10.02) in the absence of
noise (cr =0).

We find that ( A, B ) =—(0.71,0. 13), (1.27,0.31), and
(1.78,0.06) for the Duffing oscillator, Josephson junction,
and rf SQUID respectively. The relatively small value of
8 for the rf SQUID is a consequence of our carrying out
the analysis in the side well (i.e., along the separatrix
z, z2) in Fig. 2 rather than in the much deeper center
well. This small value of B manifests itself in the relative-
ly small shift in the homoclinic threshold observed for
this case (Fig. 4). In the context of the rf SQUID it is in-
teresting to note that the quantity B decreases with in-
creasing P: to produce a given shift in the homoclinic

where the parameters k, Q, and 0 as well as the model-
dependent nonlinearity function f(x) and the random
force F(t) have been defined in the preceding sections.
The solution x ( t ) of (56) is a random variable.
Throughout this section, we will consider the effect of a
random initial value, i.e., the force F(t ) is assumed to be
a random variable which assumes a new realization at
t =0 only. Thereafter, it is assumed to remain constant
while the equation (56) is integrated. The integration is
repeated for several different realizations of the initial
value. It is apparent that each new realization of F(t =0)
leads to a new potential corresponding to the undriven
conservative problem. By requiring the initial value x(0)
to correspond to the point z2 on the potential (see, e.g. ,
Fig. 1) for each integration of (56) we can carry out
numerous integrations of this differential equation with
each integration corresponding to a different realization
of the initial value x(0). Ultimately, the results obtained
may be averaged over this ensemble of initial conditions.
For the low noise variances of interest in this work, this
method yields results that are expected to be fairly close
to the results that might be expected if the noise term
F(t) was allowed to vary with time throughout the in-
tegration of (56).

A comparison of the central theoretical results of this
paper to numerical simulation can be made by going back
to our basic definition (7) of the stochastic Melnikov
function AF and noting that, for a given model system
and a specified set of system and driving parameters, one
may compute the quantity on the left-hand side of (7) for
different realizations of the random force F(t) (taken to
have a specified mean and variance). The resulting set of
values of b,F (we recall that, for each realization of the
random term, 6F represents the separation of the stable
and unstable solution manifolds of the perturbed system)
follows a distribution that may be characterized by a
probability density function P(i3.~). The theory present-
ed in this work predicts that this distribution yields a
mean value (b,F(to)) defined in Eq. (9). The result of a
simulation of this probability density function appears in
Fig. 5 for the rf SQUID discussed in Sec. IV. We consid-
er, once again, the P=2 case in the side well (i.e., the
separatrix ziz2 of Fig. 1). it is assumed that the system is
initially at its noise-free homoclinic threshold [6(to)=0
in (9)] corresponding to values
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(Q/k, Q) =(4.734, 2.0768} .

The random noise term is taken to have zero mean and
variance o. =0.8 at time t =0, as mentioned earlier. This
initial value remains unchanged throughout the subse-
quent integration of (56). For each such realization of the
random force, the solution x(t } of the stochastic
differential equation (56) and the corresponding realiza-
tion hz of the stochastic Melnikov function are comput-
ed. This is repeated for 75 000 realizations of the random
noise term and a distribution function numerically fitted
to the results. The computations have been performed on
an Apollo DN3500 workstation. For this case, the
theory of this paper [Eqs. (9), (10), and (32)] predicts a
mean value (b+ ) = —0. 110 [since the random force has
zero mean, we recall that this value depends only on the
third term on the right-hand side of (10}]. In Fig. 5, we
show the results of our simulation of the Melnikov func-
tion. The probability density function P(hz) is plotted as
a function of hF. The data points represent the probabi1-
ity density function obtained by sorting the 75000 reali-
zations of b,~ into 50 bins. This probability density func-
tion yields a mean value ( h~ ) = —0. 125, which is in ex-
cellent agreement with the above-mentioned theoretical
prediction for this case. The dotted curve in Fig. 5
represents the Gaussian computed with the same mean
and variance as our simulated values of h~. It should be
noted that this mean value has been computed for the to-
tal change in h~. Theoretically, the value of only the first
term in Eq. (7) should change in the presence of noise
having zero mean value as is the case under considera-
tion. The accurate numerical calculation of the second
term in (7) is more difficult than the calculation of the
first term; such a numerical calculation yields a very
small change in the second term of (7}. If one assumes
that the second term in (7) does not change (in accor-
dance with the theory), then the probability density func-
tion yields a mean value (b,z) = —0. 155. The third
(solid) curve in Fig. 5 is obtained as follows: 1000 realiza-
tions of hF are calculated for a set of 1000 evenly spaced
forces about the zero mean. Each resultin'g b~ is as-
signed the corresponding probability of the force under a
Gaussian distribution (i.e., perfect Gaussian noise, with
given variance cr is assumed). P(h~) is then obtained by
renormalization based on the spacing of the Az. It is
seen that the results obtained are in excellent agreement
(the mean value of b,~ is the same to the third decimal
place) with the data points. The obvious advantage of us-
ing this procedure is that a substantially smaller amount
of computer time is necessary to achieve accurate results
due to the small number (1000) of realizations of F re-
quired.

The noise-induced shifts in the Melnikov function are
more easily examined in light of Eq. (36). The coefficient
B in (36) determines how the homoclinic threshold condi-
tion changes in the presence of noise. For the parameters
under consideration, Eq. (38a) yields a value of B=0.025,
using the theory of Sec. III. The numerical simulation
(using the method employed to obtain the dotted line in
Fig. 4) has been performed for o 2=0, 0.4, 0.6, and 0.8.
Each of the resulting threshold values Q/k for the four

values of 0 falls on the same line [represented by Eq.
(36)] to within 0.1%. The value of the slope is B=0.025
and 0.032 for the cases where, respectively, the total cal-
culated shift, and the shift due to the change in the first
term of (7) only, are considered. It is seen that these
values agree quite well with the theoretical prediction.

We now return to Eq. (56) and note that, in general,
one may construct a two-dimensional Fokker-Planck
equation for the complete probability density function
P(x, x, t~xo, xo, to) corresponding to the random variable

x(t). The reduced equilibrium distribution function cor-
responding to the displacement variable x may be formal-

ly expressed in the form (up to a normalization constant)

(57)

in terms of a generalized potential function 4(x). In
general, one cannot analytically compute the function
4(x} except in certain approximate cases. It has
been suggested that when the parameters (k, Q, Q) in

(56) are set so that the system is below its homoclinic
threshold then the potential function 4 is a well-behaved
differentiable function and has all the properties of a ther-
modynamic potential. However, when the system (56) is
above its homoclinic threshold, the separatrix is no
longer continuous and one obtains (as pointed out in Sec.
I) an infinity of intersections of the stable and unstable
solution manifolds. In this case, it has been suggested' '

that the potential function 4 may be nondifferentiable
hence one is lead to infer that the occurrence of zeros in
the Melnikov function implies that the potential 4 will be
nondifferentiable. Further, Jauslin has shown ' that any
nonsingular perturbation of the form h(x)sinQ(t+to}
will cause the Melnikov function to have simple zeros.

The long-time probability density function defined in
(57) is now computed, numerically, for the rf SQUID. A
random number generator is used to produce 40000 real-
izations of the random noise F(t =0) having zero mean
and specified (nonzero} variance o . For each of these
realizations, the solution (z,i ) of the differential equation
(56) is obtained at a fixed time t, z being the transformed
variable used in our computations on the rf SQUID in
Sec. IV. For each solution run (corresponding to a par-
ticular realization of the random force) we start the parti-
cle at the point z2 in Fig. 1 with zero initial velocity. It
should be noted that the points z, and zz in Fig. 1 must
be recomputed for each realization of the random forcing
term. We consider the system for the parameter set
(P, coo, k, Q, 0)=—(2.0, 1.0, 1.1133,10.02, 2.0768) corre-
sponding to the occurrence of a chaotic attractor (these
values will remain the same throughout the remainder of
this work). Figure 6 shows this chaotic attractor for the
noise-free case (cr =0). In Fig. 7 we plot the velocity z
versus the displacement z for the same case (Q = 10.02)
with a finite noise term (e =10 ). Each point (i,z)
corresponds to a solution of the stochastic differential
equation (56), i.e., a state of the system, for a given reali-
zation of the random force. The 40000 solutions on this
figure are all computed at t =90.7625 (corresponding to
30 Poincare periods). The effect of increasing the noise
(o =0.004) is clearly evident in Fig. 8; the same number
of points (40000) are used in this figure, but the increased
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FIG. 7. z vs z obtained by solving (56} for the rf SQUID at
t=90.7625 with (P, coo, Q, k, g} taking on the same values as
Fig. 6. The points correspond to 40000 realizations of the ran-
dom force F(t ) with zero mean and variance 0. = 10

phase space as the noise variance is increased. It must be
pointed out that the maps in Figs. 7 and 8, while resem-
bling the deterministic attractor of Fig. 6, do not display
the self-replication property that is a hallmark of chaotic
attractors; this is evident in Figs. 9(a} and 9(b) in which
we show a magnified segment of the deterministic chaotic
attractor of Fig. 6 and the corresponding segment from
its noisy analog of Fig. 7 (o = 10 }. The self-
replication property of the deterministic attractor has
been destroyed by the noise. In the limit of even smaller
noise variances, one would expect that the phase-space
mapping resembles the noise-free chaotic attractor more
closely. However, the self-replication property would
still be absent in this limit, albeit on a much smaller scale
than in Figs. 9(a) and 9(b).

The probability density functions corresponding to the
displacement z are plotted in Fig. 10 for the cases 0 =0
and 0.04. These probability density functions are
equivalent to those that would be obtained from a long-
time solution of the Fokker-Planck equation correspond-
ing to the nonlinear system (56). In each case, the proba-

noise results in a greater region of phase space being ac-
cessible to the system. We note that the deterministic at-
tractor of Fig. 6 could have been obtained in a manner
analogous to Figs. 7 and 8 if we had changed the initial
condition slightly for each of the 40000 solutions of the
noise-free dynamic equation and computed each solution
at the above time t =90.7625. In the presence of noise,
the potential changes for each realization of the random
force and, since we always start the system at the right
endpoint zz (Fig. 1), we are effectively changing the initial
condition for each of the 40000 solutions. Each realiza-
tion of the noise (i.e., each realization of the potential)
leads to a different region of phase space, i.e., a different
attractor that is accessible to the system. Accordingly,
the net result in Figs. 7 and 8 is a map that is the image
of the original (noise-free) attractor. This also explains
why the system appears to traverse a greater area of
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FIG. 8. Same as Fig. 7 with a =0.04.

3.77 FIG. 9. (a) Magnified section of the chaotic attractor of Fig.
5; the self-replication property is evident. (b) Magnified section
of the phase space plot of Fig. 7. There is no self-replication in
the presence of even a small amount of noise.
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FIG. 10. Probability density function P(z) (solid curve) cor-
responding to the displacement variable z(t ) of Fig. 6. The dot-
ted curve shows the probability density function P(z, t
=90.7625) corresponding to the variable z of Fig. 8.

FIG. 12. Velocity probability density functions; same as in

Fig. 11. The range of velocities i corresponds to the displace-
ment range of Fig. 11.
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FIG. 11. Displacement probability density functions
magnified over a very small range of the displacement. Solid
curve represents P(z) corresponding to the attractor of Fig. 6,
dotted curve represents P(z, t =90.7625) corresponding to the
noisy case of Fig. 7, and data points represent the case of Fig. 8.
The smoothing effect of the noise is evident.

bility density function is seen to display multiple maxima,
reminiscent of the nondifferentiable potentials suggested
by Kapitaniak' and Graham and Tel. The probability
density function is a measure of the frequency with which
each elemental area of phase space is traversed by the
system. In the presence of noise, the peaks in the proba-
bility function maxima are seen to have a greater width
but a smaller height than those corresponding to the
noise-free case; the noise tends to "smooth" the probabil-
ity density function coarse graining the deterministic
"randomness" of the attractor itself. This effect is a
direct consequence of the greater region of phase space
that is made available to the system in the presence of
noise (we recall that the same number of points, 40000,
appear in Figs. 6—8). A similar effect is evident if we con-
sider the probability density functions corresponding to

the velocity variable. Finally, we show (in Fig. 11) a
small section of the displacement probability density
function P(z) for the cases o =0, 10 5, and 0.04. The
smoothing effect of the noise is evident in this figure as
well as in Fig. 12 in which we plot the velocity probabili-
ty density function for the range of velocities correspond-
ing to the displacements (horizontal scale) of Fig. 11.

VI. DISCUSSION

In this work, we have presented a theory that predicts
that the presence of weak Langevin noise in a dissipative
nonlinear system suppresses, in the mean, homoclinic be-
havior that might normally be observed in the noise-free
system. This result is in agreement with the work of
Carlson and Schieve and Petrosky ' on the effect
of quantum fluctuations on the homoclinic threshold in
driven dissipative classical systems. We have introduced
a generalization of the Melnikov function in the presence
of the external noise. This function is stochastic, but by
averaging it over the ensemble of the noise, one obtains
an averaged Melnikov function that corresponds to its
noise-free analog shifted by a constant correction term.

The significance of this generalized Melnikov function
is worth some further discussion. It is well known
that, in a noise-free nonlinear dynamic system the zeros
of the Melnikov function are associated with homoclinic
tangencies and chaos via horseshoes; the Melnikov
method for this case is applicable to small perturbations
of the separatrix motion. In Sees. II and III above, we
have assumed that the Langevin noise is weak enough
that the deviations from the separatrix motion for each
separate realization of the random force term F(t) in (1)
are very small, i.e., the second term in (4) is quite small
compared to the term x, (t), which represent the separa-
trix solution for the noise-free case. It is further assumed
that the averaged motion coincides with the separatrix of
the noise-free problem, i.e., (5x(t)) =0 in (5) [this fol-
lows directly from our assumption of a zero mean initial
condition: (5x(to)) =0=(5x(to))]. Clearly, the gen-
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eralized Melnikov function, being an averaged quantity,
represents a deviation from hornoclinicity in the mean.
The distribution of this Melnikov function (Fig. 5) ob-
tained via numerical simulation is peaked at some mean
value (b,F). If this distribution were Gaussian, this
mean value would correspond to the most probable value
of hF which, from Eq. (9), is the noise-free Melnikov
function shifted by a small correction term. Figure 5 in-
dicates that the deviation from a Gaussian distribution is
small. In fact, for noise variances smaller than the value
0.8 used in this figure, the distribution P(hF) approxi-
mates a Gaussian more closely. Hence, for the low-noise
variances required by our perturbation-theoretic argu-
ments of Sec. II, it is reasonable to expect that the proba-
bility of observing a homoclinic tangency in the mean is a
maximum for the parameters which determine the zeros
of the Melnikov function in the noise-free problem. In
fact, in this limiting case of a very low noise, one may (as-
suming the distribution of hF shown in Fig. 5 to be ap-
proximately Gaussian) write down an analytical expres-
sion for the probability density function that character-
izes hF.

P(EF)=(2ntr~) ' exp

o i; being the variance of hF and (b,F ) being the mean
value which is defined in Eq. (9) and may be determined
directly from numerical simulations as described in Sec.
V. For a given realization of the noise, the probability
that AF vanishes may be deduced directly from the above
expression. This allows one to compute the probability
that a given realization of the noise will result in a homo-
clinic tangency. In the limit of vanishing noise, the dis-
tribution P(hF ) will be very sharply peaked (approaching
a 5 function) at its noise-free value b(to) For finite .small
noise, each realization of the noise leads, in general, to a
separation of the stable and unstable manifolds given by
the stochastic quantity of Eq. (8); this separation is offset
from its noise-free value. The comments of this para-
graph, and the results embodied in Eqs. (8) and (9) might
be directly verified by plotting the stable and unstable
solution manifolds for a given model system (see, e.g. ,
Refs. 4, 5, and 12) for numerous realizations of the ran-
dom noise. Such a simulation would be costly, but possi-
bly feasible.

The correction term (6, ) of Eq. (9) has been estimat-
ed (within the limits of accuracy of the WKB approxima-
tion) using the procedure described in Sec. III. In this
context we must point out that better accuracy may be
obtained by retaining higher-order terms in the %'KB ex-
pansion [the solutions (22) and (29) represent only the
first-order solutions, the so-called "physical optics ap-
proximation"]. However, although the agreement be-
tween the solutions obtained using this approximation
and those obtained via a direct numerical solution of the
transport equation (13) may not be perfect, we find that
the correction to the Melnikov function calculated using
the integral of the square of the solution is almost the
same using the two procedures. Our analysis has taken
into account the case in which the Langevin noise has

zero mean value as well as the case in which this mean
value is finite. In the former case, the mean displacement
( x ( t ) ) as well as the associated mean velocity (,x ( t ) ) of
the noisy unperturbed system follow the separatrix
motion of the corresponding noise-free system, through
our choice of zero initial values in the solution of the
transport equation (13). This ensures that the Melnikov
correction term depends solely on the second-order statis-
tics [in this case the initial variance (5x (0))] of the
random variable (5x(t)). However, if we choose a
nonzero initial condition, then the expression (10) con-
tains contributions from all the terms on the right-hand
side even if the noise term has zero mean value. The case
in which the noise has a finite mean value has also been
considered. In this case, the first two terms on the right-
hand side of (10) contribute to the correction term (re-
gardless of whether we assume a vanishing initial condi-
tion or not). It is seen that the presence of a finite mean
value does not lower the homoclinic threshold. In this
context it is worth pointing out that weak multiplicative
fluctuations in the nonlinearity parameter of a driven dis-
sipative systein may, on average, lower the homoclinic
threshold.

By expressing the initial variance (5x (0) ) in terms of
the variance of the noise, we have been able to quantify
the assumption of weak Langevin noise [our value
0 =0.2 of the external noise variance used in the numer-
ical calculations corresponds to an initial velocity vari-
ance (5x (0) ) =0.1, which agrees with our definition of
weak noise introduced in Sec. III]. The implementation
of this assumption within the framework of the perturba-
tion theory that underlies the Melnikov function, leads
one to believe that the calculation of the noise-induced
shift in the Melnikov function is very accurate (the
correspondence with a real system is likely to improve if
one assumes even weaker noise, i.e., if both m and o are
reduced even further). This idea is further strengthened
by the results of our numerical computations of the prob-
ability density function P(b,F) in Sec. V; these computa-
tions yield values of the mean (b,F ) that agree very well
with those computed using the theory of Sec. III despite
the fact that the computations of this section were car-
ried out using a random initial value and then assuming
the noise to be constant throughout the remainder of
each integration of the stochastic differential equation
(56). Increasing the noise variance elevates the homoclin-
ic threshold. Since noise is present in most real experi-
ments, one must conclude that some results of experi-
ments carried out on deterministic nonlinear systems
might well be chaotic were it not for the smoothing effect
of the system noise. The numerical work of Sec. V, sum-
marized in Figs. 6—12 displays this smoothing effect [we
reiterate that these results were obtained using a random
dc driving in the stochastic differential equation (56)] on
the multimaximum probability density functions that
characterize the chaotic regime.
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