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A method to determine the resolvent of a quantum system coupled to a harmonic-oscillator bath
is derived by extending the continued-fraction theory of a Gaussian-Markovian bath that has been
presented by Tanimura and Kubo [J. Phys. Soc. Jpn. 5$, 101 {1989)].The results are expressed in

terms of continued fractions and apply to an oscillator bath with a general spectral density, corre-
sponding to colored noise, at various temperatures. Exact values of the resolvent can be calculated
for arbitrary strength of the system-bath interaction by making use of the convergence properties of
the continued fractions. For the weak-interaction case these results agree with the quantum master
equation. The physical meaning of the results is also discussed by a diagrammatic method. As an

application, the result of the Gaussian-Markovian system is extended to the case of the low-

temperature bath. Correlated (unfactorized) initial conditions are also discussed.

I. INTRODUCTION

There has been renewed interest in the problem of dis-
sipative systems following the work by Caldeira and Leg-
gett. ' The dissipation arises from the interaction between
the system, which we call the test system, and the bath.
When the bath variables are eliminated from the equation
of motion of the whole system, the test system is assumed
to follow dissipative dynamics.

One of the oldest approaches of this problem is based
on the quantum master equation, in which a weak
system-bath interaction and a Gaussian —white-noise bath
are assumed (see, for example, Ref. 2}. The weak-
interaction assumption keeps the bath in the equilibrium
state and greatly simplifies the problem. A Gaussian na-
ture is endorsed in the case when the bath is regarded as
a set of harmonic oscillators or when the interaction is a
cumulative effect of a large number of weak interactions
where some sort of a central-limit theorem can be ap-
plied. Many realistic cases are well described by the
Gaussian approximation. The white-noise assumption,
producing a 5-time-correlated noise, works well when the
relevant time scale is very short compared with the
dynamical time scale (time coarse grained}. In quantum
optics and spin-relaxation theory, the white-noise as-
sumption has been successfully used to describe damping
phenomena. However, with the recent progress in the
high-speed optoelectronics, the dynamical time scales are
becoming very short, thus prohibiting time coarse grain-
ing and motivating our interest in colored noise. '

To treat this kind of problem, time-convolution type of
equations are used. The assumption of a weak
systexn-bath interaction is necessary to write this equa-
tion in a closed form, but this assumption strongly re-
stricts the number of possible applications. Another new
approach is based on the path-integral formalism and ap-
plies to colored noise, ' ' however, its evaluation is not
easy.

Recently, Tanimura and Kubo have derived the equa-

tion of motion for the test system coupled to the
Gaussian-Markovian bath from the dynamical point of
view. ' ' The result was expressed in the form of simul-
taneous differential equations for the density matrices
and the corresponding resolvent was written in the con-
tinued fraction form. The Markovian property assumes
exponential relaxation of the response of the bath when it
acts on the test system and corresponds to the high-
temperature Debye relaxation bath. Note that, as was
shown by Doob, the Markovian property is produced not
only by the short correlated noise (the white noise) but
also by the exponentially correlated noise (see Ref. 2).
The advantage of this treatment is that this can treat
both the colored noise and the strong system-bath in-
teraction by using the convergent nature of the continued
fraction. In the white-noise limit, this equation agrees
with the quantum master equation. In Ref. 16, we have
extended our theory to the two-time correlation functions
and observed that the strong system-bath interaction
causes special features of the two-time correlation func-
tions, As applications of this theory, we have investigat-
ed optical processes. ' '

The assumption of the Markovian process is not
universal but is a reasonably good model for the realistic
systems. However, there are many systems that cannot
be described by a Markovian process, for example, the
case of a low bath temperature. The purpose of this pa-
per is to provide a method to determine the resolvent of
the system coupled to a bath for a general spectral distri-
bution and arbitrary temperature. The resolvent cannot
be expressed in a compact form, however, we can expand
it in a form of continued fraction. From a study of the
Gaussian-Markovian case, these expansion terms are ex-
pected to converge not only for the weak-interaction case
but also for the strong-interaction case. Then by calcu-
lating the resolvent until its value converges, we may ob-
tain the exact value of the resolvent for a nonperturbative
interaction.

This paper is organized as follows. In Sec. II we briefly

41 6676 1990 The American Physical Society



41 NONPERTURBATIVE EXPANSION METHOD FOR A QUANTUM. . . 6677

2
2 2+ mtox

j . J
(2.1)

summarize the work previously done on Gaussian-
Markovian systems, for later convenience. The correlat-
ed (unfactorized) initial condition is also discussed. In
Sec. III, we present an expansion method of the resolvent
for a general noise bath. By applying the method of Sec.
III, we extend the formulation of the Gaussian-
Markovian system where the bath temperature is as-
sumed to be high, to the case of the low temperature in

Sec. IV. In Sec. V, we mention the problems of positivi-
ty.

II. GAUSSIAN-MARKOVIAN SYSTEM
AND CORRELATED INITIAL CONDITIONS

A. Equation of motion for a Guassian-Markovian bath

Let us consider a test system A coupled to a harmonic
oscillator bath 8. The total Hamiltonian is given by

H =H„(a,a )+ V(a, a ) g cjx~.
J

where H„(a,a ) is the Hamiltonian of A itself and
V(a, a ) is a coupling operator of the system A described
by a creation and an annihilation operator a and a~. For
a many-particle system, a and a can be regarded as a set
of operators Iaj,a ]. The parameters of the bath B are
de6ned in the usual way. The initial state of the total sys-
tem is chosen to factorize in the form

p~+s(t ) IN;
—&&0;lpga p(t—)pa (2.2)

where p(t; ) is the initial density operator of A denoted by
coherent states ~P; ) and & P'; ~, and p a is the equilibrium
density operator of B itself. Note that here we use the
factorized initial condition, but we will discuss the corre-
lated (unfactorized} case at the end of this section. Con-
sider the total density operator at time t expressed in the
path integral form. The system A is described by using a
coherent state P and its conjugate P'. By performing the
integration of the bath, we obtain the density element of
A in the form' '

p(pf ff, t)= fD[Q(r)]fD [Q'(~))exp —S„(Q;t t, ) F(QQ';t t; )exp ——Sz(Q', t t;) (2.3)

where (t)f and tI)f are the final states of the system, and Q(t} represents a set of coherent state variables (p'(t), p(t)).
The functional $„(Q;t,t;) is an action of H„and D[Q(~)] represents the functional integral of Q(r). The inffuence
functional F ( Q, Q '; t, t; ) has the form:

F ( Q, Q'; t, t; ) =exp

'2
M k —1

lim g g e V"(Q, Q', ke)
k=2 j=1

tf —E.

X[L2(ke je)V "—(Q, Q';j e) iL, (ke—je)V —(Q, Q';j )]ee=
'2

=exp —— f dr' f dw V "(Q,Q', r')[L2(r' —w)V" (Q, Q', r) —iL&(r' —r)V (Q, Q';r)]
t l

(2.4)

where

iL ((t}=i f de J (to )sin(tot), (2.5)

V"(Q, Q'; )=V(Q( ))—V(Q'( ))

V (Q, Q', v)= V(Q(~))+ V(Q'(~))
(2.8)

and

Lz(t) =f de J(to)coth( ,'I3fico)cos(tot)— (2.6)

with the spectral density for the bath oscillators

C2

J(co)=fico+ [5(co—co. )+5(co+to.)],
~ 4m. co- J J 7

J J
(2 7)

and the inverse temperature of the bath P= I/kz T. The
functional V"(Q, Q', r) and V (Q, Q';r} are the expres-
sions of the commutator and the anticommutator opera-
tor of V(Q(~)) in the path-integral representation and
are de6ned as and

iL, (t)=i " e " (t &0)
2

(2.10)

Consider the following spectral function

J(to)= (2.9)
2K y'+ '

This is essentially the Ohmic dissipation' with the
Lorentzian cutoff' (Drude dissipation'}. The constant g
represents the coupling strength between A and 8 and, to
compare the stochastic Gaussian-Markovian theory, we
put at=A b, Ply in Refs. 14-18. Then the functions Eqs.
(2.5) and (2.6) can be calculated as



6678 YOSHITAKA TANIMURA 41

L (t)= cot e
fi Rfi

2 2 2

e
4 ~ —(2n kt) /P6

k =, (Pfiy) —(2n.k)

(2.11)

If the initial temperature of the bath is high, the series
terms of Eq. (2.11) can be neglected. From the numerical

AgyL, (0)= lim L, (t)=t~0+ 2
(2.12)

Then the inhuence functional is now written in the form

consideration, this may be a good approximation for
Play & 1, which corresponds to T & 10 K for a noise corre-
lation time t, =1/y' —1 ps. We will discuss the case of a
low-temperature bath in Sec. IV. The function L, (t) has
a singular point at t =0, however, from Eq. (2.4}, it seems
natural to compute it as

2

F(Q, Q', t, t;)=exp
'2

f dr'f dre r' 'V"(Q, Q', r')
t

X cot V"(Q, Q'; r)
—iV (Q, Q', r)fiy

(2.13)

Consider the following elements:

p. (kf&kf&t} fL) [Q(r)]fD[Q (r)l

X i — dre ~" ' cot V"(Q, Q', r) iV —(Q, Q', r)Ry

t

'n

X —S„(Q;t,t, ) F(Q, Q', t, t, )exp ——S„(Q',t, t, )A (2.14)

and the corresponding operator p„(t) defined by

p„(t)=f deaf f deaf lpf ~pg(pf&/fit)t Nfl . (2.15)

and we introduced the quantal Liouvilli. an defined by

(2.19)

where

——Gp„,(t), (n &0)

Then the first member po(t) agrees with p(t). The time
differentiation of this operator becomes

Po(t)= — Xqpo(t) ——V Pi(t), —
(2.16)

p„(t)= — —X„+n y p„(t) V "p„+—,(t)—

From the definition of p„(t), the initial condition of Eq.
(2.16) can be written as

po(t;)=p(t, ), p„(t;)=0 for n &0. (2.20)

This corresponds to the factorized initial condition Eq.
(2.2}. We may evaluate Eq. (2.16) by neglecting the
hierarchy operator p„+,(t), which does not play a role
for large number n.

By using the Laplace transform

8— % cot 13 y Vx Vo
2

"
2

(2.17)
p„[s]=f dt exp[ —s (t t, )]p„(t), —

t

(2.21)

Here, X and 0 imply the commutator and the anticom-
rnutator operation, namely,

Vx~ V~ ~V
(2.18)

V p= Vp+pV,

po[s] =Zo[s]p(t, ),
where we introduce

(2.22)

we can also obtain the resolvent of the above equation in
the continued fraction form as

Zk [s]=
s+ky+ —X„+ V"

g2
k+1

s+(k+1)y+ —Xq+ V" e
s+(k+2)y+ —5 +A

(2.23)
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for later convenience. The fractional expression of the
above represents an inverse of an operator. We can
evaluate these, for example, by using a matrix expression
of X„, V", and 8 (see Ref. 18}. The calculation of the
above continued fraction is expected to converge even
though the system-bath interaction is very strong or the
correlation time of the noise is very long. Then, we may
nonperturbatively evaluate the resolvent by using this
formulation.

B. Correlated initial conditions

We have used the factorized initial condition to obtain
Eq. (2.16) but the result can apply in the case of correlat-
ed (unfactorized) initial conditions. To illustrate this
point, consider an additional force F to the Hamiltonian
Eq. (2.1), where operator F works only on the system A.
Suppose that the total system is in the equilibrium state
of the Hamiltonian 0'=H+F at time t (t; and the
force F turnoff at time t =t;. The time evolution of the
system A after t & t; is written as

p(t)=Tr~ exp ——H "(r —t, ). p'„'+~l
(2.24}

where

p'„'+s= lim exp — (H—+F}"(t, t —} [p(t }ps],
t. —+ —oo

(2.25)

and we have assumed that the system goes to the unique
equilibrium state p '„'+s regardless of the choice of the in-
itial condition when t ~—~. In the above equations
the density operator p '„'+s can be regarded as the initial
condition p„+s(t; ), but we cannot express this in the fac-
torized form as Eq. (2.20), because the system-bath in-
teraction mixes the A and 8 states. Here we are consid-
ering the correlated initial condition, however, the equa-
tion of motion for t & t; has the same form as Eq. (2.16).
This can be shown by introducing the hierarchical ele-
ments at t & t; in the form

Pn(kf &lf &&}=fD [Q (&}lJD [Q'(&}l

X i —d~e ~" ' cot V "(Q,Q', ~) —iV (Q, Q', ~)Ay

~ J

n

Xexp —[S„(Q;t,t, }+S„'(Q;t,, t,')] F(Q, Q', t, t, )

L

X exp ——[S„'(Q';r, , r,')+S„(Q',t, t, )] (2.26)

where S„' is the action of A including the force F. The
initial condition is specified by the set of hierarchic
operators p„(t; ), which have nonzero elements as is easily
seen from the above de6nition. By using the Laplace
transform of p „'(t) denoted by p '„[s], the states
p„(t, ) =p '„' can be evaluated in the form'

p'„'= lim sp„[s]s~o

Pl= lim sn! —— g (Z„„+,[s]8) Zo[s]p(t, '),
k=1

(2.27)

where Zk [s] is given by Eq. (2.23). Above results suggest
that correlated initial conditions can be taken into ac-
count by choosing nonzero elements of p„(t, ). The corre-.
lated initial condition is a recent and not yet well ad-

dressed topic (see, for example, Ref. 19). The advantages
of this simultaneous equation or the continued fractional
approach is that we can treat not only the correlated
noise but also the strong system-bath interaction. The
example here we presented is a particular one, however
the author believes that the appropriate set of p„(t; ) al-
lows us to study any correlated initial condition. The
correlated initial condition also plays important role for
the problem of the time correlation function. ' The im-
portance of this condition has been investigated in the
context of quantum optics and numerical results have
been presented in Refs. 17 and 18.

III. NONPERTURBATIVE EXPANSION METHOD
OF RESOLVENT FOR GENERAL SPECTRUM

For the general distribution J(co), we cannot express
the resolvent in the compact continued fraction form. In
this case, as will be shown below, we can express the
resolvent in the expansion form with terms in a continued
fraction. The influence functional Eq. (2.4) is written in
the Fourier form as
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F(Q, Q';t, t, )=exp ( —i) f dr' f dr f dcoe ' ' 'V" (Q, Q', r')6(co;Q, Q', r)
l l

where

(3.1)

8(co;Q, Q';r)=
2 J(co) coth V"(Q,Q';r)+ V (Q, Q';r)1 fico (3.2}

Corresponding to Eq. (2.14), we introduce the set of density elements by
m

p(4, ,4f;t;~„~„.. . , ~.)=f—D[Q(r)]fD[Q (.)] g i-f drexp[ i~k(t r—}]8(~k;Q,Q', r)
k=& l

X exp —S„(Q;t,t, ) F(Q, Q', t, t;)exp ——S„(Q',t, t; )

and corresponding operators p(t;co„co2, . . . , co ). Then the time derivation ofp(t) can be expressed as

(3.3)

p(t)= ——X zp(t) i f—dco1 V"p(t;co/) . (3.4}

The time derivation ofp(t;co, }yields the operator equation

p(t;co, ) = — X„—+ico, p(t;co, ) i f—
dco2V "p(t;co„co2)—i8(co, }p(t}, (3.5)

where we put

6(co)= J(co) coth V"+ Vofin)

$2 2
(3.6)

We repeat the same process to get

l 00

p(t;ml&&2». . . N«««)
—— —XA+l g mi p(t«col&co2». . . co«&«)

—
1 dm«««+IV p(t;Nl&m2». . . co«««+1}

j=1
m —1

)p&t;co/, co2, . . . , co 1)—/ y 8(cok)p&t;co1, 2, , cok /, cok+1, . . . , co ) . (3 7)
k=1

Here, we set m ) 1 and coo=0. Let us denote the Laplace transform of p(t; co,kco, /. . . ) by p[s; cok co,/. . . ]. The above
equations are expressed in the matrix form as

P[s]=R [s)P(t; )+R [s]g 6(cok )Pk [s],
k

where P[s] is a row vector with elements p(t;co, ,co2, . . . , co ),

(3.8)

s+ —5„ i f dco, V" 0 0 0 0 ~ ~

l
i6(co, ) s +—X„+ico, i fdco2V" 0 ~ ~ ~

R [s]= 0

0

i 6(co2)

0

s + + g +L (co1+co2) i f dco3V

i6(co3)

0

(3.9)

0, Pk[s]=
0

PfS &1&~2» & ~k —1&~k+ 1]

P[S &$1&$2»' Bk —l&Sk+ 1&@k+2]

(3.10)
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where zeros are repeated k + 1 times in Pk [s). We denote the elements of R [s] by R.k. Then pfs] can be expressed as

pfs]=R„p(t;)+R„8(co,)p[s; 2]+R148(col)pfs;co2, 3]+R1~8( 1)pfs; 2, co3, 4]+

+R 148(co2)pfs;co„co3]+R»8(co2)p[s; col, co3 co4]+ (3.11)

The Laplace transform pfs;coj, cok, co&, . . . ] can be also expressed by using a set of differential equations. For example,

p fs; co2] is evaluated from
»

1 OO

p(t;co2) —1 ——XA+co2 p(t;co, ) 1
—dco, V p(t;co2, co;) 18(—co2)p(t),

1 oa

P~t&~2&~2') 1 +A+~2+~2' P(t&~2&2') 1 d~2" P~t&~2&~2'&~2")
00

i 8—(co2 )p(t;co2) —i8(co2)p(t;co2 ), (3.12)

etc. To simplify the notation, we denote pfs;coj, cok, col, . . . ] by pfs;v„v2, . . . , v ], where m represents the argument
number. By using similar form as in Eq. (3.8), these elements are expressed as

P [s]=R [s)+ 8(vk )Pk [s] .
k

Here P [s] is the row vector with the jth element defined by pf s;v, , v2, . . . , v +,] and

(3.13)

s+ —RA+i(vl+ +v ) i v +)V"

18(v.„) s+ —X +Ai (v, + +vm+, ) 1 dvm+2V
E ~ . . . ~ X

R [s)= i8(v (3.14)

For m ~ k, the row vector Pk [s] is written as

Pk [s]=
pfS &Vl» '

& Vk —1]

P[s;vl, . . .
& Vk I, vk+1]

pfs;vl, . . . , vk l, vk+1, vk+2]

for m ~k, (3.15)

where in Pk [s], the zeros are repeated k —m times. For m )k, Pk [s] is defined by its jth element

pfs&V1». . . Vk 1&Vk+1, &Vm+j —1)
Then, for example, the terms pfs, v, ] and pfs, v„v2] can be expressed as

pfs, v, )=R', , 8(v, )pfs]+R', 8(v, )pfs, v ]+
P[ 1 2]=R11«vl)p[s V2]+R»8(V2)pfs vi)+. . . (3.16)

The terms pfs, v2], etc. can be evaluated in a similar way. By using the elements of R [s] and R [s) (see Appendix A),
the resolvent can be expressed in the expansion form as

p[s] =(G, [s]+G2[s]+G3[s]+ . . )p(t; ),
where

(3.17)
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G [s]=Z[s],
G [s]=Z [s]f1co, V "Z [s +i co, ]f dc@ V "Z [s +i (co, + co ) ]8(co, )Z [s +i cu ]6(co )Z [s],
G [s]=Z[s]f de, V"Z[s+icu, ]f dco V "Z[s+i (co, +co )]6(co,)Z[s+ico ]

X fdco3V" Z [s +i (co2+co&)]6(co2)Z [s + ice&]6(m3)Z [s]

+Z[s]fde, V Z[s+ico, ]f dco2V Z[s+i(co, +co~)]

X f dao& V"Z [s +i (coi+co2+co&)]8(co, )Z [s +i (co2+3)]

X [8(co )Z[ s+ico ]8(co )Z[ s] +8(co )Z[ s+ico ]8(co )Z[s]I

+Z[s]f de, V"Z[ s+ico, ]f d coiV" Z[s +i(co i+co 2)]

X dc03V Z s +l co]+cop+c03 8 602 Z s + l co]+c03

(3.18}

(3.19)

X [6(~,)Z [s+i~, ]6(~,)Z [s]+6(~,}Z[s +i~,]6(~,)Z [s] I . (3.20)

Here Z [s] is defined by

Z[s]=
s+ —Xq+ fdviV"

s+tvi+ Xg+ f dv2V
s+t(v&+vz)+ —Xz+ f dv3V"

$ + ~ ~ ~
8(v3)

8(v2)
8(vi)

(3.21)

Note that we may also obtain similar results for the case of the deformation potential interaction. (See Appendix B.)
If we assume that the spectral width of J(co) is very large, which corresponds to a short correlated noise, or the cou-

pling strength of the system-bath interaction is very weak, the higher-order terms of Eq. (3.17) can be neglected. Then
we have

s]= 1

s+ —Xq+ fdviV
ls+tvi+ —X„

6(v, )

(3.22)

This equation is equivalent to the generalized master equation.
To discuss the meaning of Eq. (3.17), consider the expansion of the influence functional Eq. (3.1). To the first order in

the expansion, the density elements of the system can be written as

p'(Pf, Pf', t)= f D[Q(r)]fD[Q'(r)] f dr' f 'dr f due '"' 'V" (Q, Q', r')8(co;Q, Q';r)
l l

Xexp —Sz(Q;t, t, ) exp ——S„(Q',t, t; ) (3.23)

By performing a Laplace transform, we express the resolvent of this element in the form

p'[s]=Z„[s]f dco, V Z„[s+icu, ]8(co, )Z„[s)p(t, ),
where

(3.24}

Z„[s]= 1

s+ —X„
(3.25)

This process corresponds to the one-phonon emission and the absorption processes. The corresponding diagrams are
shown in Fig. 1.

Next we consider the second order in F(Q, Q; t, t, ). The Laplace transform of a second term is written as



41 NONPERTURBATIVE EXPANSION METHOD FOR A QUANTUM. . . 6683

p [s]=Z„[s]f dco, V"Z„[s+ico&]8(co&)z&[s]f dco2V "Zz [s+ico2]B(co2)Z& [s]p(t; )

+Z„[ ]fd, V "Z„[s+i,]fd, V"Z„[s+i( )+co,)]8(co2)Z„[s+i,]6(co))z„[s]p(t;)

+Z„[s]f dco, V "Z„[s+i co&]f dcozV "Z„[s+i (co~+co2)]6(co&)z„[s+ico2]8(co2)z„[s]p(t; ) . (3.26)

In the above equation we have rearranged the time ordering of the integration to perform the Laplace transform. Cor-
responding diagrams are shown in Fig. 2. In this figure the first, the second, and the third terms of Eq. (3.26) corre-
spond to Figs. 2(a), 2(b), and 2(c), respectively. Note that for the Gaussian-Markovian case, each term of Eq. (3.26)
gives the same contribution and merge into a single term, therefore the equation becomes very simple.

Now we consider the resolvent Eq. (3.17). The first term Z [s] incorporates all the noncrossing diagrams. (See Fig.
3.) This is shown by expanding Z [s] into the form

Z[s]=z&[s]+Zz[s]fdco&V"Zz[s+i c&o]8(co~)Z&[s]

+Z„[s]f dco, v Z„[s+ico,]6(co,)z„[s]f dco2V"Z„[s+icoz]6(co2)z„[s]

+Zz[s]fdco&V"Zz[s+ico, ]f dco, V "Z„[s+i(co, +co2)]8(co2)Z„[s+ico,)B(co,)Z„[s]+ (3.27)

%e denote these processes by the thick line as in Fig. 3.
As seen from the third term of Eq. (3.23) and corre-

sponding diagram in Fig. 2(c), the term of Eq. (3.19) cor-
responds to the crossing diagram in Fig. 4. Similarly, the
terms of Eq. (3.20) correspond to the diagrams in Fig. 5.
Each term corresponds to a topologically different dia-
gram. To derive the higher-order terms of Eq. (3.17), the
diagram method is helpful.

As was shown in the Gaussian-Markovian case, ' the
calculation of these continued fractions is expected to
converge even though the system-bath interaction is very
strong or the correlation time of noise is very long. Then,
if we were to perform this calculation until the value of
the terms converged, we then would obtain the correct
value of the resolvent. For a simple system, numerical
calculations of the resolvent can be performed by using
the matrix expression for the operators. A simple exam-
ple is illustrated in Appendix C.

The Laplace transform expression such as Eqs.

(3.17)—(3.21) is useful to evaluate the power spectrum or
the equilibrium value of the system. However, to evalu-
ate the time evolution of system, solving the simultaneous
differential equations such as Eqs. (3.4), (3.5), (3.7), (3.12),
etc. can sometimes be performed more easily. In this
case, since operators p(t;v„v2, . . . , v~) does not play a
role for large number N even though the interaction is
very strong, a set of differential equations are in closed
form and we can solve these numerically.

We also notice that the correlated initial condition dis-
cussed in Sec. II can be applied to this general noise case.
However, we do not address this issue here, since the ex-
tension is straightforward.

IV. LO%-TEMPERATURE CORRECTIONS
FOR GAUSSIAN-MARKOVIAN SYSTEMS

In Sec. II, we neglected the series terms of Eq. (2.11) by
assuming a high temperature bath Pfiy ~ 1 to produce the
Markovian properties. However, by applying the method
of Sec. III, we may discuss the case of a low-temperature
bath. Let us take into account the series terms of Eq.
(2.11) up to the mth terms. A similar consideration of
Sec. III leads us to define the hierarchical elements as

FIG. 1. The Feynman diagrams for the resolvent Eq. (3.24).
In the upper part of the 6gure, the solid lines represent the wave
functions of the system A, whereas the wavy lines the system 8.
The characters R and L, respectively, represent the time evolu-
tion of the right and the left parts of the density operator p(t).
These diagrams are simply expressed by the half circle and the
line as shown in the lower part of the 6gure.

(0) (b) {c)

FIG. 2. The diagram representation of Eq. (3.26).
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p(gf, gf, t;n„n„. . . , n„)—= fD[Q(r)] JD[0'(r)]

X g ——I drexp[ i—y (t —r)]8 (Q, Q', r)
r,

Xexp —S„(Q;t,t;) F(Q, Q', t, t;)exp ——S„(Q',t, t;)A (4.1)

where yo=y, y =2j n /PA (j & 0), and

with

80(Q, Q';r)=C[]V"(Q, Q';r)+ V (Q, Q';r), 8-(Q, Q';r)=Cq V"(Q, Q';r) (j &0) (4.2)

Stray 4j
2 (Pfiy )'—(2n j)'

The hierarchal equation for the density operator p(t; no, n „.. . , n ) is then

m

p(t;no, n„. . . , n )= — LA+ g—n, y, p(t;no, n„. . . , n )

j=0

(4.3)

m

V"p(t;no, . . . , n, +1,
m

. , n }——g nJB~p(t;no, . . . , nk
—1, . . . , n ),

&,=O' ' (4.4}

where 8, are the corresponding operators of the func-
tional Eq. (4.2).

The number m is chosen to approximate the function
iL2(t), and will be small even for the case of the low tem-
perature. If we set m =1, this will be a good approxima-
tion for Pfiy ~ 5, which corresponds to T & 2 K, for the
noise correlation time t, = 1/y —1 ps. In this case, the
equation of motion (4.4) can be written as

Poo(t) &XAPoo(t) V IP]0(t)+Po[(t)]

P]0(t) ~XA+yo Plo(t)

—
&

V"[p (t) +p„(t)]—
&

Bop (t), (4.5)

P. (t}=— &A+y[—P"o (t}

—
&

V "[p„(t)+p (t)] &B,p (t), —

I

etc. , where we put p„„(t)=p(t;no, n, }. The above
0 I

equation may be numerically solved just as Eq. (2.16}.
We can also evaluate the resolvent by using a method
similar to that of Sec. III, but we do not show it here.

V. SOME REMARKS

Finally, we should mention the requirement of dynam-
ic positivity, conservation of the probability. Consider a
time-evolution operator for a reduced density element p
denoted by T, . Then the time evolution of system can be
written as T, : p~p, . Because we are considering a
physical process, there are some requirements on the
operator T, . One such important restriction is positivi-
ty that if p ~ 0 then T,p, ~ 0 for all t ~ 0. '

For a white-noise case, this requirement is well studied.
It has been shown that for an oft'-diagonal interaction
(a+a ) g, c, (b +b, ), (where we put x, =b +bt), the
quantum master equation, which can be obtained from
Eq. (3.22) by taking the long-time limit for the dissipative
part

p[s]= lim
1

s+ —XA+ Jdv[V"
6+ 1 v]+

8(,}

(5.1)

A + AA + &n + n &~ + ~

FIG. 3. The diagram representation of Eq. (3.27). We denote
these diagrams by the thick line as in Fig. 4. FIG. 4. The diagram representation of Eq. (3.19).
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(b)

diagonal interaction ata g c (b +bt), which has been
well used in the stochastic approach, positivity may be
satisfied. Our approach can treat the interaction in the
resonant form as shown in Appendix B, but its validity is
an open question since short correlated noise is essential
in applying the averaging method, and there are no
suScient reasons to neglect off-resonant terms. The
problem of positivity for the off diagonal, or more general
interactions, is left for future study.

(c)

FIG. 5. The diagram representation of Eq. {3.20). (a), (b),
and (c) represent the first, second, and third terms on the right-
hand side of Eq. (3.20), respectively.

does not satisfy the property of positivity. ' Typically,
one modifies an interaction in the resonant form as
ab~~+a~b~ to keep positivity. The neglect of the off-
resonant terms ab +a b can be systematically per-
formed by using the averaging method for the generalized
master equation which corresponds to Eq. (3.22} before
taking the long-time (white-noise) limit.

In our case, it is impossible to apply the discussion of
the white-noise limit, since our system is described by a
set of density elements Ip„ I, and the interaction between
the system and the bath is correlated and strong. For a

Consider the following equations:

p(t; ) = Apfs]+ fdvBpfs, v],
p(t;, v) =C{v)p[s]+D(v)pf s, v], (A1)

where A, D(v), p(t, ), etc., represent the operators or the
matrices. The above equations can be expressed in the
matrix form as

p(t;)

p(t;, v)

fdvB

.C(v) D(v) . p[s, v]
(A2)

Equation (Al) is easily solved as the form
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APPENDIX A: EVALUATION OF INVERSE OPERATOR

pfs]=Z[s]pgt; ) —Z[s]fdvB D(v} 'pfs, v],

pfs, v]= D(v} 'C(v)Z[s—]p(t, )+ID(v) '+D(v) 'C(v)Z[s] fdvB D(v) ')pfs, v],
where

Z[s]= A+ fdvB D(v) 'C(v)

Then the inverse matrix of Eq. (A2) can be written as

(A3)

(A4)

pfs]
p[s, v]

Z[s] Z[s]fd vB—D {v )

D(v) 'C(v)Z—[s) D(v) '+D(v) 'C(v)Z[s] f dvB D(v) ' pfs v]
(A5}

APPENDIX B: DEFORMATION POTENTIAL INTERACTION

In this paper we focused on the problem described by the Hamiltonian Eq. (2.1). However, our results easily extend
to the case of the deformation potential interaction described by

H =H q + g (a . V'b +a,' V b) + g fm, b, b, , . (B1)
J J

where V- and a are, respectively, the operator of the system A and the coupling constant with the phonon mode j.
The other parameters and operators for the bath are defined in the usual way. The operators V. and V.' are, for exam-
ple, expressed by the creation and the annihilation operators with the electron frequency v, namely, c„and c as the
form

V(co )= gc~„+„, V'(coj. )= gc c
J J

V V

where we used the expression V(cot) and V'(roj } instead of V~. and VJ*, then V*(ro)= V( —co).

(B2)

Using above equation successively, we may evaluate the inverse operators of Eqs. (3.9) and (3.14) in the continued-
fraction form.
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The influence functional for this interaction is similarly expressed as Eq. (3.1). However, in this case, the functional

V(Q(t)) is not only the function of Q (t) but also the function of the phonon mode j, that is, V(cd, Q (t)). With the ex-

ception of this point, the method of obtaining the resolvent is similar to that of Sec. III. The Anal results are the same
as Eqs. (3.17)—(3.21}except that the operator V becomes the function of co., namely, V(co. ). Then, for example, the cor-

responding equation of Eq. (3.21) is expressed as

Z[s]=
s+ —X„+f dv, V"(v, )

where

s+iv]+ —X„+f dv, V"(v, ) . e'(v~)s+] v, +v2)+

I

and

V=ata .

e'(v, )

(B3)

(C4)

e'(co) = J (m) coth [ V'(m }]"+ [ V'(co)]1

2

The operators 2„,V, and V satisfy the following re-

lations:

APPENDIX C: SIMPLE EXAMPLE

(B4) &„l
» » =&„l00 » = V"

l
1 1 » = V" 100» =0 ,

S„llo»=a~„llo&&, X„lol&&=—e „101&&,

V'llo»=llo», V l01»=lol»,

(C5)

Let us consider a two-level system described by an ex-
cited state ll& and a ground state l0&. The density
operator is expressed in the form

p(t) =P, (t)l 1 1 »+P, (r)loo»+P, (t)l 10»+P,(r)lo»&,

(Cl)

etc. Then Eq. (3.17) can be written as

P[s]=G[s]P(t,), (C6)

where P[s] is the column vector with the elements P [s]
(j =1, . . . , 4) and the matrix G[s] is given by

where we have introduced the notation

l]j » = l] & (jl . (C2)

We assume the Hamiltonian of the system and the in-
teraction operator of the system is in the form

1/s 0 0 0
0 1/s 0 0

0 0 F+[s] 0

0 0 0 F [s]

(C7)

Hg =%Nba a (C3) where

K [s]=S-[s]+Ss[s]1 dus, S [ +is]fsud uss[ Ss+ s( (+us)]sus(Kus, )S [s+iuss]K (sus)S [s]+

The elements S*[s]are defined by

S+—[s]=

(CS)

(C9)

Here

$+lcog + f dv]
s +fv)klNg + v2

1
s +] (v]+v&)ktcoz + d v3 + e ~ ~

E (v3)

K*(vz)
(v, )

I(:*(v)= J(v) coth +11 tv
2

(C10)
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