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Excited states of the deformable jellium
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The excited states and the one-particle energy spectra are evaluated for the electron gas in the de-
formable jellium model. A screened Coulombic interaction is used. The Hartree-Fock approxima-
tion is carried out with linear combinations of periodic functions as the trial wave functions. The
behavior of the energy spectra with the density of the system is discussed. The existence of overlap-
ping bands is established. This result suggests that finite conductivity at low densities can be ob-
tained within the Hartree-Fock approximation.

I. INTRODUCTION

The calculation of excited states in a quantum system
is a problem of fundamental interest. Many properties of
the quantum system depend on an adequate understand-
ing of the system's energy spectrum and thus on the ener-

gy of the excited states.
The basic conceptual tool of the many-body problem is

to use a set of single-particle states, the orbitals. The
Hartree-Fock (HF) method gives a general procedure
that defines the best orbitals. Therefore it can be taken as
the starting point for many approximation schemes. '

The self-consistent HF method has been systematically
used for such purposes in atoms and molecules and nu-
clei. The self-consistent approach for excited states re-
quires a careful treatment for systems with large (infinite)
number of degrees of freedom, such as is the case of the
solids.

In the HF method the orbitals for the ground state are
the solutions of the HF equations. The determination of
the unoccupied states is less obvious; this point is em-
phasized in Refs. 2 and 4. The problem stems from the
question of the potential to be used for the excited states.
In the HF spirit, a natural choice is to determine these
orbitals with a self-consistent potential for the excited
state, with the additional constraint that they should be
orthogonal to the occupied ground-state orbitals. In-
stead, the usual procedure —which we will use —is to
take the excited orbitals as solutions of the HF equations
for the same ground-state potential and different eigen-
values. Because the HF operator is Hermitian the ortho-
gonality of the occupied and unoccupied states is
guaranteed.

A well-studied and useful many-fermion system is the
electron gas ' for which ground-state energies have been
obtained in the jellium model with several methods;
among them are the integral approximant, " with Monte
Carlo variational calculations for a large number of parti-
cles' and with stochastic simulations of the Schrodinger
equation. ' The essential approximation of the jellium
model is to assume an inert uniform background.

A different model is the deformable jelliurn' '" in
which the background. is allowed to deform in order to

locally neutralize the electron-gas charge density. This
fact guarantees a lower energy per particle and therefore
a more stable system. ' ' Using trial functions with
different crystallographic symmetries, the HF method
has been successful in the evaluation of the ground-state
function and the energy per particle in the deformable jel-
lium. One remarkable achievement of the deformable jel-
lium has been the description of the electron-gas transi-
tion from the homogeneous phase at metal-like densities,
with Wigner-Seitz parameter 1&r, &10, into localized
states at lower densities, r, =25. This leads at very low
densities to Wigner crystallization. ' ' More recently,
the convergence of this algebraic HF procedure for the
ground state has been studied using an improved expan-
sion in terms of cosine functions. ' However, the detailed
reasons of the transition to the localized state have
remained obscure; after all, localization implies a mixing
of the orbitals with states of very large kinetic energy.

Our purpose in this work is the evaluation of the one-
particle energy spectra E(k) for the ground and the first
excited states for an interacting ferrnion gas in the de-
formable jellium model. Because we are mainly interest-
ed in the mechanism that causes the transition to the cor-
rugated state we will only allow for the most simple of all
corrugations: those along a single direction. Certainly,
charge-density waves (CDW's) of the Overhauser type are
described.

II. MODEL

For the particle-particle interaction a screened
Coulombic (Yukawa) interaction V(r, )=exp( pr, )Ir",~—"
is used in order to cut the long range of the Coulomb po-
tential. When the screening parameter p is equal to zero,
the Coulomb interaction is recovered. This screening
could, in principle, take into account the zero frequency,
static, correlations.

For the state functions in the Slater determinant we
use the usual plane-wave functions multiplied by modu-
lating functions. The modulating frequency is not arbi-
trary, but it is constrained by the orthonormality condi-
tion of the orbitals. The generic form of the orbitals is
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V is the volume in which periodic boundary conditions
are imposed. The vector qo=qoe is along the corruga-

tion direction. The orthonormalization conditions re-
quire qo

)2kF (Ref. 18) and the C „are simply related to
the C„by the usual factors. As usual, we assume that
these coefficients are independent of k. We have imposed
the orthonormality condition of the spin-orbitals as well
as double occupancy of each orbital. The expansion in

terms of exponentials is more general than the one of
cosines, but for the lower energy bands they turn out to
be equivalent. ' It was shown in Ref. 16 that the dimen-

sion of the HF operator matrix is considerably reduced
with the equivalent cosine expansion.

The coefficients in the expansions of the ground and
the excited states are self-consistently determined for
each r, and, independently, for the physically different
systems characterized by a given value of p. If a nonho-

mogeneous orbital is selected by the self-consistent pro-
cedure a symmetry breaking will be generated. ' Other-
wise, if the ground state is a plane-wave (PW) solution
then the excited states will be modulated by a cosine
function. Two general types of solutions are expected.
First, the ground state is a PW, which turns out to be the
case for the region of the metal densities, r, (10. Then,
the excited states are the terms corresponding to
n = 1, n =2, and so on in Eq. (1). Second, beginning with
a certain value of the interparticle distance, which de-

pends on the value of the screening parameter in the po-
tential, the HF self-consistent solutions can be of the type
of the CDW. In this case the solutions present a periodic
density along he qo direction. The excited states are the
solutions corresponding to the next eigenvalues of the HF
operator.

An important feature of the deformable jellium model
is that the terms of the background energy are identically
canceled with the direct term that stems from the
fermion-fermion interaction. Then the only contribution
to the potential energy comes from the exchange term.

The equation for the one-particle energy spectrum, ob-
tained with the HF approximation for a fermion system
in the deformable jellium, is given by
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4
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where atomic units a.u. are used in this equation and throughout this work. In the last equation the Wigner-Seitz pa-
rameter r, is the interparticle distance in Bohr radii, @=k+2eq (n4 n, ),—and

qo

1 —0 +4@F(Q,p)= ln
2Q
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This expression. reduces to the well-known result

TABLE I. First four coefficients C„ in the orbital expansion of Eq. (1) for the unscreened, @=0,sys-

tem. Three values of the density parameter are considered: r, =29,30,40. For densities below the tran-

sition point, r, 28.8, the expansion reduces to the trivial combinations of one and zeros.

Coefficient Ground state First excited state Second excited state

Co
Cl
C~

C3

0.993
0.120
0.003
0.000

r, =29
0.120

—0.993
—0.001

0.000

0.001
0.014

—0.999
—0.002

Co
Cl
C2
C3

0.983
0.183
0.007
0.000

r, =30
0.183

—0.983
—0.021

0.000

0.003
0.022

—0.999
—0.004

Co
Cl
C2
C3

0.906
0.421
0.043
0.003

r, =40
0.423

—0.905
—0.049
—0.003

0.018
0.062

—0.998
—0.011
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served. This is a result of the anisotropic conduct men-
tioned after Eq. (4). This behavior is most likely due to
the hypothesis of a spherical k Fermi surface which does
not represent adequately the symmetry of the n 40 orbit-
als. We will neglect this effect in this work and following
Ref. 23 will take here a representative value; in this work
the spectra at 6(=90' will be taken. More relevant for our
purposes is the observation that the first two bands show
an overlap at this r, . This overlap begins for densities
with r, =10.

The spectra of the three first bands are plotted in Figs.
5-8, the figures correspond to four values of r, : 5, 10, 20,
and 40, respectively. In each figure, the spectra of three
different systems is depicted; the systems are character-
ized by a different screening parameter p,' the values

selected for this parameter are iu=0, 0.01,0.1. In all the
figures a value 0=90' has been taken.

The spectra in Fig. 5 show three well-separated bands
in the metal density region: r, =5. For lower densities at
r, =10 in Fig. 6, the two first bands begin to overlap for
the unscreened potential of p=0. The crossover occurs
for the solid curves in a small region near k =kF in the
first band and the low k region in the second band. The
system with p=0.01, coded in dashed curves in the
figures, shows a smaller overlap at this density. For this

r„ the @=0. 1 still has a gap between all the bands, as can
be observed in Fig. 6.

Before the transition to the CDW's, at r, =20, Fig. 7
shows a larger crossover of the two first bands. Figure 8
shows the important overlap in the CDW region at
r, =40; at these densities even the third band is beginning
to overlap with the second one. Not shown by the figures
is the enhancing effect that the CDW's have on the band
overlapping.

Within the spherical approximation that is used in this
work, the density of states depends sole1y on the radial
component of k. As can be seen from Figs.4—8, the form
of the one-particle energy spectra and consequently the
form of the density of states do not show an important
variation in changing from one band to the next. The
most interesting behavior of the density of states is near
the Fermi sphere, where the unscreened potential induces
the well-known logarithmic singularity; it is clear from
Eq. (6) that this singularity is removed for a nonzero iu.

IV. CONCLUSIONS

The main motivation of this work was the study of the
mechanism that allows the CDW to become the ground
state of the deformable jellium model of the electron gas.
We conclude that the transition from PW to CDW is pre-
ceded by an overlapping of the energy bands. This over-

lapping continues to grow until the admixture of orbitals
required for the CDW's is energetically favorable. There-
fore a reasonable mechanism for the generation of the
CD%'s has been found.

The most interesting feature in our results is precisely
the overlap in the energy bands. The overlap itself is,
within the deformable jellium model, a consequence of
the attractive exchange interaction; which, after the can-
cellation of the direct term with the background energy,
is the only interaction left in the deformable jellium mod-
el. The most important consequence of the band mixing
is clearly to change the nature of the Hartree-Fock
ground state. In order to minimize the total energy the
system will first fill the orbitals of small k in the second
band. If, as it is done in band theory, the nature and the
energy of the single-particle orbitals is not severely
affected by the new occupation, then many states are
available for conduction at densities lower than r, = 10.
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