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One-dimensional kinetic Ising model with competing spin-flip and spin-exchange dynamics:
Ordering in the case of long-range exchanges
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Ordering of a one-dimensional stochastic Ising model evolving by a combination of spin flips and
spin exchanges is investigated. The spin-flip rates satisfy detailed balance for the equilibrium state
of the Ising model at temperature T, while the spin exchanges are random and of arbitrary range.
Analytical methods and Monte Carlo simulations are used to show that, depending on the details of
the spin-flip rate, finite-temperature phase transition may or may not occur in the system. When or-
dering occurs, it is of mean-field type and the scaling function describing the finite-size scaling of the
magnetization fluctuations is found to be indistinguishable from that of an equilibrium Ising model

with infinite-range interaction.

I. INTRODUCTION

Kinetic Ising models such as the one-spin-flip Glauber
model' and the spin-exchange Kawasaki model*® were
designed to study relaxational processes near equilibrium
states. Their simplicity notwithstanding these models
played an important role in understanding the dynamics
of second-order phase transitions* and it appears that
their generalizations®> ¢ may be equally instrumental in
sorting out questions about nonequilibrium phase transi-
tions. Although the last few years saw vigorous activity
in this field,>~?® problems such as the existence of broken
symmetry in steady states, the relevance of upper and
lower critical dimensions, and the characterization of
universality classes have remained largely unsolved.?®

One of the interesting features of nonequilibrium
steady states is that symmetry breaking may occur even
in a one-dimensional (d =1) system with short-range in-
teractions. An example is the kinetic Ising model® in
which spin flips at temperature T compete with nearest-
neighbor spin exchanges at 7= . Using appropriate
spin-flip rates,’ one finds that the system orders fer-
romagnetically in d =1 provided the temperature is low
enough and the ratio of the rate of exchanges to the rate
of flips is taken to infinity.?’ The presence and the mean-
field nature of the phase transition in this case can be par-
tially understood by noting that the random exchanges
mix the spins completely between rare events of spin flips.
As a consequence, the ordering process (spin flip) takes
place in an average, local equilibrium-type environment
which is the condition for the mean-field approaches to
be valid.’® This argument, however, originates from equi-
librium theories and it is not obvious that local equilibri-
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um caused by the random exchanges promote coopera-
tive behavior in a nonequilibrium steady state. Note, for
example, that mixing fails to produce a phase transi-
tion®?® in the above flip-and-exchange model if the spin-
flips obey Glauber or Metropolis dynamics. It is also
clear that the cooperative behavior is not helped if the or-
dering effect of the exchanges is enhanced by making
them satisfy detailed balance at the same temperature as
the spin flips occur. The system then relaxes to the equi-
librium state of the Ising model and, consequently, does
not order ind =1.

In order to examine the effect of mixing, in Sec. II we
introduce a kinetic Ising model in which spin flips at tem-
perature T compete with random spin exchanges of arbi-
trary range. The long-range exchanges are expected to
increase the ordering tendencies by increasing the
effectiveness of creating a mean-field-type environment
for the spin flips. Nevertheless, an exact calculation
shows that long-range order is absent in d=1 if
Glauber’s form of spin-flip rates is used (Sec. III). The
effectiveness of the long-range exchanges becomes ap-
parent, however, if the spin-flip rate employed generates
correlations between the average magnetization and the
higher-order correlation functions. Our Monte Carlo
(MC) simulations demonstrate that a finite-temperature
phase transition occurs in the d =1 system even when the
ratio of exchange-to-flip rate is finite (Sec. IV). The criti-
cal exponents of both the magnetization and the fluctua-
tions of the magnetization are determined and they are
found to have mean-field values. We also find that the
finite-size scaling function of magnetization fluctuations
follows closely the corresponding scaling function of an
Ising model with infinite-range interaction.
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II. FLIP-AND-EXCHANGE MODEL
WITH LONG-RANGE EXCHANGE

Kinetic Ising models with long-range spin exchanges
which satisfy a detailed balance at a given temperature
have been used both as “effective” models in a
renormalization-group approach to the Kawasaki mod-
el®! and as nonlocal acceleration algorithms®? that elimi-
nate or reduce critical slowing down. Here we omit the
requirement of detailed balance, and assume that the spin
exchanges take place between randomly chosen pairs
with a rate which is independent of the state of the sys-
tem. As an ‘“ordering” process we add spin flips which
are assumed to satisfy the detailed balance condition fol-
lowing from nearest-neighbor Ising interactions at tem-
perature 7.

More specifically, we consider a one-dimensional sys-
tem whose state {o}={‘::,0,,0,,,, " "] at time ¢ is
given by stochastic Ising variables o;(z)==1 assigned to
lattice sites i =1,2, ..., N. Periodic boundary conditions
imply o y+,=0,. The time evolution of the system is de-
scribed in terms of the probability distribution P({o},?)
which satisfies the following master equation:

S 5 = 3 tw{0))P(o} 0w {0} )P({o},0]
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Here the first sum describes the spin-flip processes. The
state {o}; differs from {0} by flipping the ith spin and
the flip rate is given by

I—Lai(0i+l+ai-—l) (1+680,140,-y) .
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(2)

Without the second sum in the master equation, Egs. (1)
and (2) define a generalized version of the Glauber model!
which relaxes to the equilibrium state of the Ising model
at temperature T provided 7 =tanh(2J /kT) and J is the
strength of the nearest-neighbor interaction. The param-
eter § is arbitrary apart from the restriction that it must
lie in the interval [-1, 1]. The two choices we consider
below are =0 which defines the exactly solvable!??
Glauber model, and §=tanh®J/kT) which has been
used®'*?7 in connection with phase transitions in none-
quilibrium steady states.

The process of random exchanges of spins is described
by the second sum in Eq. (1) where the state denoted by
{o};; is obtained from {0} by exchanging spins at sites i
and j. The exchanges are independent of the state of the
system and their rate is 1/(2N,). Note that the factor ¥
in the definition of the rate of exchanges is needed to en-
sure that the rate of exchange for a given spin remains
finite in the thermodynamic limit (N — ).

ITII. ABSENCE OF ORDERING IN THE CASE
OF 6=0 (GLAUBER FLIPS)

The absence of ordering for §=0 is shown below by
demonstrating that the average magnetization

M. DROZ, Z. RACZ, AND P. TARTAGLIA 41

(m(t))=—11\7§(Ui)=—11§,-220iP({a},t) 3)

i {o}

relaxes to zero exponentially for any nonzero tempera-
ture. To do this, first, we derive the equation of motion
for (o;) by multiplying both sides of (1) by o; and sum-
ming over all configurations {o}. The result can be writ-
ten in the following form:

aa;)
at

-1 (0,-)—‘7—(<0i+1>+(‘7i~1>)
T 2

—Loy—m). )
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One can see that the contribution from the spin flips
(1/7; term on the right-hand side) is the same as in case
of the Glauber model, while the effect of spin exchanges
(1/7, term) is not an effective diffusion of the magnetiza-
tion, but a uniform relaxation towards the average value.
The latter term does not influence the time evolution of
the total magnetization and so Eq. (4) yields

<mkt>>=—}<m<t>> (5)

with 7=7,/(1—7%) being finite for any nonzero tempera-
ture. This proves that the magnetization in the station-
ary state of the system is zero, i.e., homogeneous ordering
may not occur in the system. Actually, the decay time of
inhomogeneous fluctuations can also be -calculated.
Equation (4) is linear, and so its Fourier transform yields
the relaxation times 7, of perturbations of wave number ¢
(g=2mn/N,n=1,...,N—1) in the following form:

(1—17cosq)+L . (6)
)

As expected, the long-range random exchanges strongly
enhance the relaxation of inhomogeneous perturbations.
It can be seen from (6) that arbitrary long-wavelength
perturbations decay in finite time even at 7=0.

The reason for the lack of ordering in the above model
can be traced back to the special form of the spin-flip rate
for 8=0. In this case, the magnetizations (o, ) satisfy a
closed set of linear differential equations, i.e., they are in-
dependent of the correlations between o;’s. As a conse-
quence, no amount of mixing can induce cooperative be-
havior among them. We believe, this result is related to
the general rule? that finite-temperature ferromagnetic
transition cannot occur in a system in which the average
magnetization at a site (o) is independent of the corre-
lations between the “input” sites {(o0;,,0,.,) (sites
which influence the dynamics at i) but depends only on
their average magnetization (o;,,) and, furthermore,
the number of “input” sites is not more than 2. The ap-
plicability of this rule to our case is not obvious since the
exchange dynamics makes the number of input sites equal
to N. Note, however, that the exchanges conserve the to-
tal magnetization and thus they do not affect the time
evolution of magnetization in a translationally invariant
state. The effective number of input sites is then deter-
mined by the spin-flip process. Since this number is 2,
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one expects that the exclusion of ordering is a conse-
quence of the above rule.

IV. ORDERING IN THE CASE OF 8=tanh*(J /kT)

The rule discussed above about the exclusion of order-
ing does not apply for 6#0. In this case, the average
magnetization {o;) does depend on the correlations be-
tween the input sites as can be seen from the equation of
motion given below for the particular case of
8=tanh*(J /kT):

a(O’,) —_————1—-[<0'i>""U(<Ui+1>+<0'i—-l>)
ot T

+U2<Ui+la'i0i—l>]—;l_((ai)_m) ’
2
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where we introduced v =tanh(J /kT). The equation for
9{0;4,0;0,_,) /0t can also be derived and one finds that
(7) is just the first equation in an infinite hierarchy of
equations for the higher-order correlation functions.
This coupling of the correlations makes ordering a possi-
bility. Note, for example, that if exchanges provided a
mean-field environment and thus a simple decoupling ap-
proximation {o;,,0,0;_,)=m3 could be used then Eq.
(7) would predict a ferromagnetic ordering in the steady
state at v, = .

Since we were unable to solve the infinite set of equa-
tions even for the steady-state correlations, the possibility
of ordering was investigated by Monte Carlo simulations.
Systems containing N =75, 150, 300,...,9600 spins
were studied and we set 7,=7,, i.e., the probabilities of
attempting a spin flip or a spin exchange in a given
Monte Carlo step were equal. In case of spin exchange
two arbitrarily chosen spins were exchanged while in case
of spin flip the spin at a randomly chosen site i was
flipped with probability p=1—vo;(0;,,F0;_;)
+v%0,,,0,_;. The magnetization and the energy of the
system was monitored and the disappearance of drift in
these quantities was considered to be the sign of reaching
the steady state. Preliminary runs on small systems indi-
cated that ferromagnetic ordering occurred at v~=0.6
thus we chose to investigate the system in the parameter
range 0.5 <v <0.65. The relaxation time for the magne-
tization in the largest system of 9600 spins at the temper-
ture closest to the critical point (v =0.6) was found to be
of the order of 50 MC steps/spin, thus reaching the
steady state and gathering enough data for satisfactory
statistics did not pose a problem.

The location of the critical point (v,) and the critical
exponents B and y defined as (m ) ~(v—v,)? for v, <v
and (m?)=(v,—v)”7 for v <v, were determined by
analyzing the magnetization fluctuations
({(M?*)=N*(m?)) in the steady state. We assumed that
the finite-size scaling theory* could be generalized to
nonequilibrium phase transitions and thus {M?2) /N was
written as

(M?)

N zJv')//dv(bj:(ej\]l/dV) , (8)
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where €=|v, —v|/v,, ®_ and @, were the scaling func-
tions for v, —v >0 and v, —v <0, respectively, and v was
the critical index of the correlation length. The parame-
ters v, ¥, and dv were fixed by trying to achieve best col-
lapse of data when (M?)/N'*7/?" was plotted against
eN'/?. Consistency tests of the fit were the conditions
that for large argument the scaling function @, (x)
behaved as P (x)=x""7 and, furthermore,
®_(x)=®_(x) for x —0. Finally, the large-x limit of
the scaling function ® _(x) provided the exponent f3 since
®_(x)=x*for x — .

The scaling plot obtained for v.=0.601, y =1, and
dv=2 is displayed in Fig. 1. One can see that the col-
lapse of data is excellent over three decades of the scaling
variable eN'/4". Noticeable deterioration in the quality
of data collapse occurs if v, is shifted more than 0.3% or
the exponents are changed by more than 3%. The large-
x behavior of ®,(x) is consistent with ®, ~x "7 ~x !
and ®_~x%¥~x. Thus B=1, and all the measured ex-
ponents have mean-field values (note that v=1 and
dv=2 in d =4 where the mean-field theory is valid for
equilibrium ferromagnets).

It is not entirely surprising that long-range mixing of
spins produces a mean field transition. Similar transition
is observed in the short-range exchange model®!* in the
limit when the exchange frequency to flip frequency ratio
goes to infinity. More interesting is the result that, as far
as the critical fluctuations of the magnetization are con-

<M?>
N3/2

0.1 T T T — T T T T

0.01 0.1 1 10
eN1/2

FIG. 1. Finite-size scaling of the magnetization fluctuations
{M?) in the flip-and-exchange model discussed in Sec. IV. The
Monte Carlo data were obtained for systems containing N = 75
(@), 150 (0), 300 (), 600 ( ¥ ), 1200 (+), 2400 (X), 4800 (¥),
and 9600 (A) spins. The deviation from the critical point (€) is
given by |v, —v|/v,. The dashed lines (F.) are the results for
the Ising model with infinite-range interactions
(e=|T—T,|/T.) while the solid lines (&) are scaled versions
of (F) as described by Eq. (11).



6624

cerned, our model is equivalent to an equilibrium Ising
model with infinite-range interaction described by the
Hamiltonian (—J/2N)3,; ;0,0j. This Ising model un-
dergoes a continuous transition at J/kT,=1, and near
the critical point (e=|T—T,|/T, <<1), the fluctuations
of the magnetization obey scaling

(M?)

N

with the scaling function F (x) given by
fowdy ylexp( FV3xpi—y*)

le/zF:t(le/z) (9)

Fi(x)=2V73 (10)

fowdy exp( FV3xpi—y*)

This scaling function is plotted by dashed line on Fig. 1.
The solid line which goes through the Monte Carlo data
and can be considered as the scaling function ®,(x) is
obtained from F (x) by the following rescaling:

D, (x)=A2F, (AV%x) , (11)

where A=0.83. Comparing Egs. (8), (9), and (11), we can
now state more precisely what is the connection between
the nonequilibrium flip-and-exchange model and the
infinite-range Ising model in equilibrium: the critical
fluctuations of the magnetization in the flip-and-exchange
model of N spins are equal to those in the equilibrium Is-
ing model containing AN spins.

It should be noted that we arrived to Eq. (11) by using
“temperature” fields e=|T—T,|/T, and €=|v, —v|/v,,
expressed through the natural variables in the corre-
sponding models. In principle, there is a freedom of scal-

M. DROZ, Z. RACZ, AND P. TARTAGLIA 41

ing these fields into each other |T—T,|/T.=«k|v, —v| /v,
and there would be correspondence between the critical
fluctuations even if a more general form of scaling
@, (x)=A%2F, (kA!"2x) would be needed to fit the Monte
Carlo data. It is just a coincidence that the choice of nat-
ural variables eliminates the need for fitting «.

The parameters A and k as well as the location of the
critical point v, are expected to be nonuniversal. Investi-
gating their dependence on 7, /7, should be instrumental
in understanding the disappearance of finite-temperature
phase transition in the limit of slow exchanges
(1y/7,—0). This problem, however, is beyond the scope
of the present paper.

Finally, we note that the long-range exchanges are ex-
pected to generate long-range interactions in a higher di-
mension as well. For d =2, the question of interplay be-
tween Ising and mean-field ordering tendencies arises.'>!*
A question presently investigated by us is whether the Is-
ing transition survives for finite 7,/7, as in the case of
short-range exchanges'* or the long-range random ex-
changes are effective enough to bring about a mean-field
transition for any nonzero 7,/7,.
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