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Chaotic dynamical systems can be organized around an underlying strange set, which is
comprised of all the unstable periodic orbits. In this paper, we quantify the complexity of such an

organization; this complexity addresses the difficulty of predicting the structure of the strange set
from low-order data and is independent of the entropy and the algorithmic complexity. We refer to
the new measure as the grammatical complexity. The notion is introduced, discussed, and illustrat-
ed in the context of simple dynamical systems. In addition, the grammatical complexity is general-
ized to include metric properties arising due to the nonuniform distribution of the invariant mea-

sure on the strange set.

I. INTRODUCTION

An important step in understanding chaotic motion
has been the hierarchical resolution of strange attractors
around a skeleton furnished by the multitude of unstable
periodic orbits. These are dense on hyperbolic strange at-
tractors (those whose tangent space can be continuously
decomposed into disjoint stable and unstable manifolds). '

It is conjectured that this is also the case for generic
strange attractors. Moreover, the number of periodic
points (in discrete time) belonging to orbits of length n in-
creases exponentially with n (according to the topological
entropy ), rendering it natural to hierarchically construct
the strange attractor around the set of periodic points of
increasing order. It has been demonstrated in a number
of relevant and interesting cases that this approach
leads to a sensible, convergent scheme for describing
strange attractors and their properties. An important
characteristic of the periodic orbits and their Lyapunov
exponents is their independence of coordinate representa-
tion, rendering them relevant quantities to be extracted
from data. In fact, a numerical procedure for obtaining
the unstable periodic orbits and their Lyapunov ex-
ponents from a chaotic time series has been developed.

A real chaotic trajectory can be considered as a ran-
dom walk in phase space among the unstable cycles; it
approaches a periodic orbit along its stable manifold,
only to be subsequently thrown away from it along its un-
stable manifold onto the stable manifold of another
periodic orbit. The difficulty in characterizing the set of
allowed periodic orbits to arbitrary length and the transi-
tions between them is equivalent to the effort necessary to
reconstruct the chaotic trajectories of the system. The
naive notion of a simple system is one in which low-order
data, i.e., only information on the short periodic orbits, is
sufficient in order to predict the properties of periodic or-
bits of arbitrarily long length. For a nonsimple or corn-
plex system, finite data are insufficient in order to charac-
terize all the properties of arbitrarily long orbits correct-
ly. It is this intuitive notion of complexity that will be
quantified in the following.

When the dynamical system has a good symbolic dy-

namics, the characterization via the strange set of period-
ic orbits is particularly useful. One can generate a
language with every allowed periodic point identified by a
word in this language. One is interested in determining
the rules that specify which words are allowed and which
are missing. If a finite number of rules enables the pre-
diction of all the allowed words of arbitrary length, we
shall say that the dynamical system is grammatically
trivial. On the other hand, if the number of rules needed
to predict which orbits are allowed increases with orbit
length, then we shall call the dynamical system grammat-
ically complex. In this paper, we consider only systems
whose dynamics can be represented by symbolic se-
quences of a finite alphabet. It should be stressed that
there is no relation between the grammatical complexity
and entropylike quantities such as the Kolmogorov com-
plexity. ' Entropylike quantities are employed to mea-
sure the degree of unpredictability or randomness, rather
than to provide an indication of the difficulty with which
the set of all possible motions can be organized and en-
coded. For example, in the family of unimodal maps, the
parameter value corresponding to the case of fully
developed chaos has the maximal Kolmogorov-Sinai en-
tropy of ln2. On the other hand, using the usual binary
dynamics of 0 and 1, one sees that the system is grammat-
ically trivial. The rule for the language is that there are
no rules; all words (strings of 0's and 1's) are allowed,
meaning that the number of periodic points belonging to
orbits of length n increases as 2". As will be shown in
Sec. III, there are parameter values of unimodal maps
with a smaller Kolmogorov-Sinai entropy, whose gram-
mar is nontrivial.

The structure of the paper is as follows. In Sec. II we
introduce and quantify the concept of grammatical com-
plexity by measuring the difficulty in organizing the
periodic orbits on finitely branched complete trees. Oth-
er proposed topological definitions of complexity are ex-
amined and compared. Calculations of the grammatical
complexity is illustrated in Sec. III for several parameter
values of the one-dimensional (1D) quadratic map. A
generalization of the notion of grammatical complexity,
which incorporates the invariant measure on the set in
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addition to its topological characteristics, is presented in
Sec. IV. The hierarchical convergence of these general-
ized complexities is discussed in terms of the correlations
present in a chaotic trajectory between the basic building
blocks (indecomposable concatenations of the alphabet
symbols that are introduced in Sec. II). Finally, in Sec. V
we summarize and address further applications of the
new concepts introduced.

II. GRAMMATICAL COMPLEXITY

2t 22 2k kf k2 ''' kk

FIG. 1. Structure of a complete k branch tree of periodic or-
bits with the k fixed points on the top level of the tree.

Consider a system whose symbolic dynamics is com-
posed of k symbols, with all its periodic orbits organized
on the branches of a complete k-branch tree. A typical
branch splits into k daughters, each being a concatena-
tion of the mother orbit with one of the k basic symbols
(see Fig. 1). All the periodic points of length n are
displayed on the nth level of the tree whose first few lev-
els are shown in Fig. 1. If there are no grammatical rules
prescribing the pruning of periodic orbits in the tree
hierarchy, the grammar of the system is simple; the pres-
ence of all high-order periodic orbits can be deduced sole-
ly from the existence of the k fixed points. On the other
hand, its topological entropy is maximal among all gram-
mars composed of k symbols. For systems with periodic
orbits missing, it may still be possible to arrange the al-
lowed periodic orbits on a finitely branched complete
tree, whose top level no longer consists of the k basic
symbols; instead, it consists of n building blocks

[ b &, b2, . . . , b„ I, each of which is constructed from con-
catenations of the k alphabet symbols. Such a finitely
branched tree may faithfully represent only those cycles
in a chaotic system which are less than some maximum
length.

A system for which the entire set of periodic orbits can
be organized on a complete tree with a finite number of
building blocks on the top level is defined to have zero
grammatical complexity. These building blocks need not
necessarily be single'orbits but rather families of periodic
orbits described by regular expressions' composed of
concatenations of the basic alphabetic symbols along with
the operations + (exclusive or) and e (arbitrary repeti-
tions). Also, we require that a block which is reducible to
a sum of two blocks (using exclusive or) should be con-
sidered as two separate building blocks, so that a single
building block represents an indecomposable unit. In the
same way that the irrationality of a real number is mea-
sured by the difficulty in approximating it by rational
numbers, the grammatical complexity quantifies the
difficulty in approximating the set of allowed periodic or-

bits by these complete trees of regular expressions. The
complete tree approximants to the structure of the set of
periodic orbits at the parameter value of interest provide
an exact description up to a finite period i of orbits.
Beyond length I, higher branched complete trees are
necessary for an exact description. The grammatical
complexity Co is defined as the asymptotic growth rate of
all the number of building blocks n(l) necessary for an
exact specification of all the cycles up to length l,

n (i)Co= »m
l

The lim in the above expression is replaced by lim sup for
the cases where the limit does not exist. Zero complexity
grammars are those described either by a finite number of
building blocks or those that exhibit a slower than linear
growth rate of the number of building blocks. Using the
results of Appendix A, it is clear that the growth rate
cannot be larger than linear and, furthermore, that Co
has an upper bound of 2 for the case of binary dynamics.

We first outline the procedure for constructing the
complete tree approximations for a generic grammar of a
parametrized family of dynamical systems. The strategy
is to seek nearby parameter values possessing complete
tree grammars with a finite number of building blocks.
One possibility, and the one we mainly consider, is that
these approximating grammars arise due to the presence
of a Markov partition of the phase space, defined as one
in which each partition element is mapped exactly onto a
union of other elements, under the action of the dynam-
ics. Narrowing in on a generic parameter value along
Markov partition parameter values usually involves a
succession of increasingly finer partitions; in the same
way as a sequence of rationals approaching an irrational
have increasingly large denominators. At a parameter
value corresponding to a Markov partition of N elements,
a directed graph of N nodes (each denoting a partition
element) can be used to represent the topological struc-
ture of the dynamics. Directed links emanate from each
node to the nodes denoting its preimages. For binary
symbolic dynamics, there are at most two links leaving a
node, each labeled by either 0 or 1, depending on in
which of the two regions of the generating partition the
preimage lies. Such graphs represent regular languages
and are usually referred to as finite automata.

A periodic orbit can be immediately read off a graph as
a path which starts at a given node, traverses directed
links, and finally returns to the initial node after a finite
number of steps. Although the graph is finite, orbits of
arbitrarily long periods may be formed, provided there
are closed loops in the graph. Since the graph represents
the grammar of an invariant set, there are no transient
parts to the graph, i.e., each node is accessible in a finite
number of steps from an arbitrary start node. All the
periodic orbits beginning at a node B can be organized on
a complete tree whose building blocks Ib„b2, . . . , b„ I

are the smallest set of regular expressions consisting sole-
ly of the periodic orbits which begin at B and return to B
only at the end of their traversal path. All the periodic
orbits originating at 8 can then be expressed as the regu-
lar expression
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(bi+b2+ . b„)* .

Using this outline, the conversion of a finite directed
graph to a complete tree of regular expressions of period-
ic orbits can always be accomplished. The number of
building blocks necessary may vary depending on the
starting node chosen, and therefore we now introduce a
weighting of the building blocks.

Depending on the node of a graph chosen for a corn-
plete tree construction, the building blocks themselves
may include the operator "+". Such a block, say
b; =a(P+y)'5, where a,P, y, 5 denote particular con-
catenations of 0's and 1's, includes in its definition a com-
plete binary tree composed of a11 possible combinations of
P and y. This additional branching within the complete
tree of building blocks is taken into account in the gram-
matical complexity by weighting each building block in
definition (1} according to the number of secondary
branchings it possesses (or equivalently the number of"+"operators it includes). If the identical subtree struc-
ture appears in more than one building block, it is not
recounted. As will be made clear in the examples, this
weight guarantees that the grammatical complexity be-
comes independent of the starting node used in the finite
graph approximants.

In the remainder of this section we comment on the re-
lation of the grammatical complexity to some other exist-
ing schemes of analyzing complexity. Grammars that
can be represented by a finite number of building blocks
belong to the class of regular languages. Generic gram-
mars arising in even the simplest of dynamical systems
may not belong to this class, but rather to a higher-level
language in the Chomsky hierarchy. ' Given an exact
specification of the allowed strings of a grammar, deter-
mining the hierarchy class it belongs to, may be computa-
tionally undecidable. ' In addition to the uncomputabili-
ty of these grammatical classes, their order in the Chom-
sky hierarchy does not reQect the degree of diSculty in
forecasting detailed features of the grammar from the
gross ones, which is the main concern when dealing with
dynamical systems. In our approach, a nonregular gram-
mar arising in a dynamical system is considered as a limit
of a sequence of regular languages represented by finite
graphs whose sizes grow to infinity. In addition to the
possibility of explicitly constructing these limiting gram-
mars, the growth rate of the number of building blocks
gives a precise measure of the increase in the number of
rules necessary for a hierarchical specification of the
strange invariant set.

Previously, the framework of regular languages has
been used to define the algorithmic complexity. " It is
given by in% where X is the number of nodes in the
minimum deterministic automaton representing the
grammar. This definition for complexity' ' typically
diverges for generic dynamical systems possessing non-
regular grammars. In addition, we argue that the
relevant criterion for describing the complexity of a
dynamical system is not the number of nodes but rather
the number of building blocks. For example, Fig. 2
shows graphs of two systems with different number of
nodes whose periodic orbits can be arranged on complete

0 0

FIG. 2. Graphs of two regular grammars with different num-
ber of nodes which can be represented on binary trees. The la-
beled arrows denote the preimages of a particular node. For
case (a) the building blocks are 0 and 1, while for case (b) they
are 0 and 10010111.Grammatically they are equally simple.

binary trees. Arbitrarily long periodic orbits can be pre-
dicted in both cases from the knowledge of two building
blocks; for Fig. 2(a) the building blocks 0 and 1 are
sufficient, while for Fig. 2(b) one requires the blocks 0 and
10010111.Although the topological entropy in these two
cases differ (due to the different number of nodes), their
hierarchical encoding is equally simple.

All previous definitions of complexity which are based
on the number of nodes of a finite automaton diverge at
points of period-doubling accumulation. ' ' At these pa-
rameter values, the number of periodic points grows
slower than exponentially with the length of the period,
and thus all the generalized entropies' of the system are
zero; indeed, the number of periodic orbits grows loga-
rithmically with increasing length of orbits. The
hierarchical organization of periodic orbits on a treelike
structure implicitly assumes an exponential growth in the
multitude of trajectories of increasing length exhibited by
the system. In the case of period doubling, such a hierar-
chy is absent, and in fact the system only exhibits a single
trajectory which can be simply specified. ' The unstable
orbits up to length l can be obtained by simply listing all
the lnl orbits themselves. According to the limiting pro-
cedure of Eq. (1}, the grammatical complexity takes on
the value zero, which agrees with our intuitive notion of a
system possessing a unique trajectory which can be sim-

ply reconstructed to arbitrary length.
The most common notion of complexity for symbolic

strings involves a quantification of the computational
effort necessary to reconstruct the string exactly. The
Kolmogorov complexity is given by the size of the
minimal numerical procedure that generates the given
string on a universal Turing machine. It is in general un-
computable and usually reduces to the information entro-
py of the string whenever it can be explicitly calculated.
Related definitions of computational complexity consider
minimal programs running in either bounded space or
time. ' The logical depth, ' determined by the time re-
quired to produce a given string from its minimal pro-
gram, has also been suggested as a measure of complexi-
ty. All the variants of such definitions suffer from the
fact that they are in general uncomputable and are con-
cerned with the exact reconstruction of the detailed
structure of a specific string. These notions of computa-
tional complexity are not well suited for quantifying the
diSculty in modeling dynamical systems; there, one is in-
terested in the entire set of allowed trajectories rather
than the detailed structure of a particular output string.
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The presence of the unstable periodic orbits provides a
treelike skeleton on which the multitude of possible
motions can be hierarchically organized.

III. EXAMPLES

The most studied systems which are well represented
by binary symbolic dynamics are the one-dimensional
unimodal maps, ' specifically the quadratic map

x„+)=1 Qx„2 (2)

on the interval [—1, 1] with 0 & a 2. The symbols 0 and
1 represent phase-space coordinates below the critical
point of the map and above it, respectively. A code g on
the unit interval can be associated with the forward sym-
bolic itinerary IS, j of each point on the interval [—1, 1]
as follows:

g= ger;2 ' ' with o,
= gS mod l. (3)

i=a j=0

If the parameter a is chosen so that a strange invariant
set exists, the maximum value of ri is given by the
itinerary of the first iterate of the critical point, while the
minimum value of ri is given by its next iterate. ' In fact,
the points on the strange invariant set are those with g
values between those of the minimum and maximum,
provided all their iterates also have g values in this range.
Thus, given the forward symbolic itinerary of the critical
point (the kneading sequence) to arbitrary length, it is
possible to determine the set of allowed periodic se-
quences to any given length. As will be demonstrated in
the following examples, a periodic kneading sequence
defines a Markov partition for the invariant set giving
rise to a simple grammar. In the examples below, two pa-
rameter values of the quadratic map (2} are approached,
one in which the kneading sequence is eventually periodic
and the other in which it is aperiodic.

A. Period-3 band merging

Within the chaotic regime of the map (2) there are reg-
ular regions; the largest of these is the period-3 window

which lies approximately in the range 1.75 & a & 1.78. At
the lower end of this window a pair of period-3 orbits is
produced via a tangent bifurcation; the stable one subse-
quently undergoes a series of period-doubling bifurca-
tions whose accumulation point is a =1.78. Beyond the
accumulation point, chaotic behavior is confined to three
disjoint bands which suddenly widen and merge at
a=1.79 (the period-3 band-merging parameter value).
This phenomenon has been referred to as an interior
crisis' since an unstable periodic orbit within the basin of
attraction of the chaotic attractor collides with the at-
tractor, causing a sudden change in the size of the at-
tracting set. The unstable orbit involved in this crisis is
the period-3 orbit created through the tangent bifurca-
tion at a =1.75.

At the crisis parameter value, the fourth iterate of the
critical point falls on the unstable period-3 orbit, so its
kneading sequence is 100(101)". We approach crisis
from above, via parameter values possessing periodic
kneading sequences of the form 100(101)"1C,where C
denotes the critical point and n increases from 0. As
n —+00 the crisis parameter value is approached mono-
tonically. At each n, although the attractor is a super
stable periodic orbit (maximum stability}, there exists a
strange invariant repelling set lying within the interval
[1—a, 1]. The boundaries of a Markov partition for the
repeller and its underlying dense set of periodic orbits are
given by the members of the superstable orbit.

In the following, the complete tree corresponding to
the parameter value possessing a superstable period-8 or-
bit with symbol sequence 1001011C (n =1) is construct-
ed. Each of the seven elements of the Markov partition
shown in Fig. 3(a) has at most two preimages (on oppo-
site sides of the critical point) which are given by

1~7, 2~6, 3-+ 1,6,4~ 1,5,
5-+2, 5, 6-+2,4, 7-+3,4 .

These relations are represented graphically on the seven-
node graph shown in Fig. 3(b). The directed links point-
ing towards the preimages are labeled by 0 or 1, depend-
ing on whether the preimage lies to the left or right of the

1.0—

0.0—

—1.0
—1.0

1 4s 3

D.D

I

5 6 7

1.0

FIT&. 3. (a) Markov partition for the map (2) at a = 1.81000. . . where it possesses a superstable period-8 orbit. The partition ele-
ments are labeled by the number 1-7, while the cycle points are denoted by heavy dots. The corresponding directed graph is shown
in (b) with nodes labeled by the partition elements of (a).
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FIG. 4. General directed graph arising from the map (2) at a parameter value where it has a superstable period 3n +5 orbit (n
large). For convenience, some of the nodes have been eliminated in favor of links labeled with a string of two symbols. The dashed
line represents the missing part of the graph which follows the same pattern as shown.

critical point, respectively. A directed path in the graph
which ends at the starting node singles out a periodic
point lying in the corresponding element of the Markov
partition. For example, the path on the graph of Fig.
3(b), 1~7~3~6~4~1 corresponds to the period-5
point in the leftmost partition element of Fig. 3(a) with
symbol sequence 01101. Note that since the graphs are
drawn with the links directed towards the preimages, the
forward symbol sequence is obtained from reversing the
order of the symbols along its path.

All the periodic points in partition element 4 are con-
tained in the regular expression

[11(001)'0+1(10)'101(001)0+ 11(01)'01'1]', (4)

producing a complete ternary tree arrangement. Not all
periodic orbits of the system are present on the tree, since
some may never visit the specific partition element during
their cycles. For example, the fixed point denoted by the
symbol sequence 1, which is found in partition element 5,
is not present in the above ternary tree. In any case, its
existence is deduced from the presence of its preimages
on the ternary tree, e.g., 101 and 10101*. The fact that
arbitrary repetitions (the e operator) of 1, 01, and 001 are
present in the ternary tree of expression (4) implies that
these are allowed periodic orbits of the system even
though they do not enter partition element 4 at any point
along their cycle. All other periodic orbits of the system
visit partition element 4 at least once during each cycle.
In fact, the number of periodic points of a given orbit
that are included on the tree is given by the number of
times it visits the partition element in question, during its

cycle. Due to this difference in the number of appear-
ances of various periodic orbits on the tree, the topologi-
cal entropy is not immediately available from the above
complete tree construction. A complete tree with possi-
bly less branching is produced if the construction carried
out above is repeated using an alternate starting node. It
can be easily checked that these alternate trees have
internal branchings, resulting in a total number of three
branchings when they are taken into consideration.

At this point, it is necessary to check how the branch-
ing of the tree grows as we approach the crisis parameter
value. The allowed set of unstable periodic orbits at the
parameter value corresponding to a superstable orbit of
symbol sequence 100(101)"1C,is identical to the set of
unstable periodic orbits at crisis if only orbits up to
length 3n +4 are considered. The kneading sequences at
both these parameter values are identical up to this
length, resulting in equivalent sets of allowed g codes
[defined in Eq. (3}] up to this length. If one considers
only orbits of period-7 (n =1) or less, in the ternary tree
in expression (4), one finds identically the orbits present
at crisis.

For arbitrarily large n, the directed graph of Fig. 3(b}
describing the grammar of the repeller generalizes to the
one shown in Fig. 4. Notice that some of the links have a
string of two symbols attached to them rather than just 0
or 1. These longer strings arise due to the elimination of
the first n +1 nodes from the graph, which are exactly
the ones having only a single preimage. Since we are only
concerned with the actual strings accepted by the graph
and not the specific node structure, the form of Fig. 4 is
more convenient for our purposes. Using node 2n +4 as
the starting node, one obtains a complete tree for arbi-
trary n which can be denoted by the regular expression
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[10+10(101)+10(101)+ +10(101)" '+101*11+101'11(101)+101~11(101)~+. . 101'11(1()1)"

+101*1(1(100)'10)*1(101)"'+10((100)'101)'(101}"]' . (5)

Although the above expression describes a tree where
every branch splits into 2n + 1 new branches, the orbits
up to period 3n+4 are exactly those included in the
binary tree denoted by the expression

[10(101)'+101'11(101)']', (6)

which is exactly the tree obtained in the limit n ~ ~ of
expression (5). In other words, a binary tree is sufficient
in order to fully describe the cycles up to an arbitrary
length at the crisis parameter value, thus endowing it
with grammatical complexity CO=0 according to rela-
tion (1}. The consideration of different starting nodes in

Fig. 4 again leads in the limit of large n to a finitely
branched complete tree similar to that of expression (6).

The quadratic map at crisis can be approached along
many other sequences of parameter values, but the claim
is that all these methods will also lead to a zero complexi-
ty grammar. This can be understood from the fact that
the mapping at crisis itself possesses a Markov partition
whose boundaries are given by the critical point and it
iterates (six elements in total). The corresponding graph
is shown Fig. 5 and its most noticeable feature is the ex-
istence of two disjoint invariant sets. Periodic orbits
entering element 2 will subsequently enter only into ele-
ment 5 before returning back into element 2. All other
period orbits visit neither element 2 nor element 5. In
fact, the chaotic attractor for period-3 band merging lies
within the elements 1, 3, 4, and 6 of the markov partition,
while a chaotic repeller exists within the elements 2 and
5. Almost all initial points in elements 2 and 5 eventually
fall on the attractor so that the repelling part of the
graph in Fig. 5 can be considered as a transient of the
motion on the attractor. The grammar is simple for both
strange sets and can be expressed as a binary tree in ei-
ther case; for the repeller it is (1+10)', while for the at-
tractor it is (100+101)*. The binary tree in expression
(6) includes only the orbits on the repeller, since partition
element 2n +4 of Fig. 4 is on the repeller. The limiting

grammar of the three-band attractor at crisis can be ob-
tained by considering node n+2 say, of Fig. 4 as the
starting node for the complete tree construction.

At the band merging parameter value, an unstable
period-3 orbit lies on the boundary point of each of the
three bands. Infinitesimally above this parameter, the
period-3 orbit lies in the region previously occupied by
the repeller, and all the trajectories on what was previ-
ously the repeller become accessible from the region
which was previously occupied by the attractor. In this
way, the attractor and repeller coalesce to produce a sin-

gle larger attractor, whose grammar can be described by
a graph (or a limit of graphs} without transient parts.
Below band merging but near it, there are transients in a
graph describing the grammar, which again correspond
to a strange repeller located between the attractive bands.

All the grammars that were discussed in this section
turned out to be simple. By similar means, it can be
shown that the grammatical complexity is, in general,
zero for any parameter value of a unimodal map having a
periodic or preperiodic kneading sequence. In the follow-
ing a mapping with an aperiodic kneading sequence is ex-
plicitly considered.

B. Aperiodic kneading sequence

The quadratic map (2) at parameter value
a „=1.7103989. . . has an aperiodic kneading sequence
whose code i) defined in (4) takes on the value of the gold-
en mean ~G =0.618. . . . The actual kneading sequence
can be generated using a hierarchical construction rule"
leading to an infinite sequence which is invariant under
the block renaming operator:

a ap, p app,

where a=011 and P=01111. The first few levels of con-
struction of the first iterate of the kneading sequence are

ap p
ap app

apapp app
apapp apappapp .

(8)

FIG. 5. Directed graph describing the grammar of the attrac-
tor (right) and repeller (left) at the period-3 band merging pa-
rameter of mapping (2) at a =1.78. . ..

The most natural approach to the parameter value pos-
sessing the above aperiodic kneading sequence is through
parameter values with superstable orbits of lengths E„,
the Fibonacci numbers. The itinerary of the superstable
approximant of length F„ is given by the (n —3)rd level
of the construction in (8), with the final p being replaced
with the string 011C1. The Markov partition for the
strange repelling set is again given by the points of the su-
perstable orbit. In the limit n ~ Oo the strange repelling
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set changes its stability to emerge as the sole attractor of
the system. Unlike the monotonic approach to the interi-
or crisis discussed above, the approach via- the Fibonacci
approximants is along stable windows in parameter space
which alternate on both sides of a „.

The preimages of the F„—1 Markov partition elements
(numbered in increasing order from left to right) at the
superstable F„parameter value are given by

F —in

F„

if i 6 [1,F„2]
i F„—2 if i&(F„z,F„,]
2F„) i —if i E(F„),F„—1]

As can be observed from these relations, only the last
F„&—1 of the partition elements have two preimages.
For convenience, the first F„2partition elements are not
represented on the transition graph of Fig. 6; instead
some links are labeled with two symbols as was the case
in Fig. 4. The nodes labeled in Fig. 6 have also been
renumbered for convenience by subtracting F„2 from
each.

All the intermediate nodes on the horizontal line of
Fig. 6 have a link emanating from them towards either
the lower node (F„3)or the upper one (F„2). In the
limit of large n, the number of links approaching the
lower node is a factor of coG smaller than those approach-
ing the upper node. The periodic orbits that enter ele-
ment F„2 only once during their cycle can be deter-
mined from the graph of Fig. 6 (see Appendix B for de-
tails). After a single iteration, all the periodic points
found in element F„2enter the same single partition ele-

ment whose right-hand boundary is given by the critical
point. For convenience, we choose to construct the
building blocks of the orbits entering this partition ele-
ment, which are given by

01

Old, ;b, , 5), {Vi (N)
01111 6&6& ~

' ' ' 6& for b,;+,=a or i =X—1
(9)

Olllb, ;b;, b, , for b, , +, =P
0111111'b,;b,;, b, , for b, , +, =P

where X=F„3and 6&62 hz is the symbol sequence
of the second iterate of the critical point at the super
stable F„parameter value. b, , takes on the value a or P
according to the hierarchical construction in (8), while
h~ =011C1.

The number of P blocks appearing in the itinerary
hz of the critical point is F„4—1, as can be de-

duced from the inflation rule (7) used for constructing the
itineraries. It follows that the number of building blocks
k (F„) necessary to describe the periodic orbits up to
period F„at the parameter value a =a „can be obtained
by summing the number of regular expressions appearing
in each line of list (9):

k (F„)= 1+1+(F„3 1)+—F„

+{F„4—1)+(F„q—1)=F„)—1 . (10)

In the limit of n ~ ~, F„,/F„approaches the golden
mean, yielding Co=~6=0.618. Thus the grammar at
a „ is complex; new building blocks are asymptotically al-

FIG. 6. General directed graph of the repeller corresponding to a parameter value of mapping (2) possessing a superstable orbit of
length F„. These are the approximants to the grammar of the attractor at a „=1.71039. Most of the nodes are not labeled and some

are replaced by labeling links with two symbol strings. Again, the dashed line corresponds to a missing section of the graph with the

same general form as that shown.
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FIG. 7. Total number n (I) of building blocks up to length 1

for the map (2) at a =a„are shown as circles. Only the build-
ing blocks appearing in a numerical time series of length 10 are
counted. The slope is given by 0.618+0.001 in good agreement
with Co =mG. The triangles represent the approximants to 1C'1"

obtained by considering only blocks up to length 1 in the same
time series. The slope is given by Cl =0.354+0.002.

ways necessary in order to provide an exact characteriza-
tion of longer-allowed orbits. The necessity for building
blocks of increasing length can be deduced from analyz-
ing a time series at a =a „.Since a single building block

may consist of a family of orbits of increasing length, its
length is considered to be the number of 0 and 1 symbols
present in its representation as a regular expression. Fig-
ure 7 is a plot of the number of building blocks of length
less than I present in a numerically obtained time series at
a =a„of length 10 . It is apparent from the straight-
line fit with slope CO=0. 618+0.002 that all the building
blocks up to length 50 are present in the time series.

We briefly discuss the possibility of approaching a „
via complete trees alternative to the one composed of the
building blocks in (9). First, consider using a particular
node i lying on the horizontal line of the graph shown in
Fig. 6 as a possible starting node for a complete tree con-
struction. Each building block is obtained by first follow-
ing a horizontal path of arbitrary length to the right and
then turning either up or down (only one of these direc-
tions is legal except for the last node on the line ~here ei-
ther one is allowed) and following the unique path to
node number F„2. Then a subtree of all the blocks of (9)
except for those that go through node i appears in the
building block. Following the subtree, the unique shor-
test path connecting node F„2 to node i completes the
building block. The number of building blocks obtained
using the above procedure depends upon where on the
horizontal line of Fig. 6, node i lies. The further it lies to
the left, the more building blocks it has and their number
is given by the number of nodes to its right increased by
two. Each of these building blocks includes an identical
subtree with a number of branches equal to the number
of nodes on the horizontal line to the left of i increased by
one. Taking the branching within the building blocks
into account, by adding the number of "+"operations in

the subtree to the number of building blocks, Eq. (10) is
confirmed for any choice of starting node on the horizon-
tal line of Fig. 6. Similar considerations yield the same
result for node F„3,which is the only other node that
does not lie on the horizontal line of Fig 6.

IV. GENERALIZED COMPLEXITIES

In Secs. II and III we were concerned only with recon-
structing the a11owed orbits of a system, irrespective of
their probability of occurrence in a typical time series. A
long trajectory can be considered as motion through the
set of periodic orbits obtained by uniquely parsing the
trajectory according to the building blocks of the system.
The frequency of occurrence of each building block is
governed by the distribution of the invariant measure on
the strange set. It is conceivable that only a finite num-
ber of building blocks is sufficient for reconstructing all
trajectories of a system occurring with a probability
greater than some threshold, even through the system
may be grammatically complex. In this section, we intro-
duce quantities which indicate how well a complex gram-
mar can be approximated by its simple grammatical ap-
proximants when the distribution of the invariant rnea-
sure on the strange set is taken into account.

Typically, in a chaotic system the probability to ob-
serve a particular symbol sequence decreases exponential-
ly with the length of the sequence. In the special case
where the probability distribution over all symbol se-
quences of a given length is uniform, we naturally expect
any measure-dependent complexity to reduce to the
grammatical complexity. In order to measure the nonun-
iformity in the probability distribution on the building
blocks, the spectrum of generalized complexities is intro-
duced in much the same way as the Renyi dimensions
and entropies in the generalizations of the topological
definitions of dimension and entropy, respectively. The
extension of Co to a function C~ for all real q(q%1) is

given by

hm 'y ~~q
' —1 i(q —1)

w- N
l

where the sum goes over a11 the building blocks with
length up to N (there are CON of these in the limit of
large N) and p, represents the probability of a particular
building block. It can be easily checked that a uniform
probability distribution over all CON building blocks re-
sults in C =Co for all q, as expected. In general, C is a
monotonically decreasing function of q, which is bounded
from above and below. The lower bound C„gives the
asymptotic growth rate of the predominant (highest prob-
ability) building blocks necessary for a reconstruction of
a chaotic trajectory. Due to the presence of at most a
number linear in N building blocks in the sum of expres-
sion (11), the linear scaling of the sum with increasing N
is the relevant quantity to extract. The analogous expres-
sions used for defining the generalized entropies and di-
mensions are obtained by taking the logarithm of a sum
similar to the one in Eq. (11),since in those cases the sum
is over an exponential number of terms in N, where N is
the length of a trajectory. In fact, all the orbits appearing
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1
C~ = lim —exp —gp;lnp,N- N

(13)

As an example of the complexity spectrum, we have
calculated the probabilities of the various building blocks
of the map (2) at parameter value a „by parsing a numer-
ically generated time series of length 10 with the build-
ing blocks in list (9). For each q, the value NC' ' scales
linearly with N enabling a determination of C from the
slope (see Fig. 7). The approximants C' ' are those ob-
tained using solely the blocks with length less than ¹

Our results for very large N ( & 50) do not follow the ex-
pected asymptotics due to the limited size of the time
series that was used. In addition, the parameter value a „
cannot be pinpointed exactly, so that the time series was
generated at a nearby parameter value with building
blocks identical to those of a „at least to length 50.

The resulting spectrum of generalized complexities ob-
tained by considering building blocks up to length 50 is
shown in Fig. 8. Rather than plotting C&, we plot
w(q)—:(q —1)C~ in order to make the connection with the
thermodynamic formalism of dynamical systems '
more apparent. r(q} is analogous to the free energy and
any singularity in this function signifies a phase transi-
tion, indicating the presence of nongeneric scalings in
the probabilities of Eq. (12) with increasing maximum
block length. From the graph of Fig. 8, there seems to be
no such singularity, indicating that each of the block
probabilities p, scales in a similar fashion with increasing
length of the longest building block considered. Generi-
cally, we expect to encounter nonanalytic behavior in the
spectrum of generalized complexities of other systems.

on the Nth level of a tree are included, rather than only
the top level of the tree (the building blocks) as is the case
for the complexities.

The precise definition of the probabilities that enter
into Eq. (11) is now explained. A building block B is in
general a family of periodic orbits [B;J of varying un-

bounded lengths. In order to determine their total proba-
bility, a trajectory following the stationary distribution is
uniquely parsed into substrings corresponding to orbits
contained within the building blocks of the system. The
probability of building block i, p, , is then given by

N
ps = lim (12)

n~ x, —
where c is a normalization constant and nz is the number
of distinct member orbits B; of building block B which
were extracted from the time series. The total number of
pieces in which the parsing of the real trajectory results is
N„while Nz is the number of times orbit B; appears.

l

The frequency in which B; is encountered is raised to the
power of its inverse period Ill~, in order to obtain a

l

probability per single symbol. The probability to observe
a string of length I scales as e ' for some positive a, and
we are only interested in considering the length indepen-
dent weight e of each orbit. The metric complexity C I
is defined by taking the q ~1 limit of relation (11) to ob-
tain

60—
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0—

—60—
—80 —-+

—100—
—100 —50 50 100

FIG. 8. Generalized complexity spectrum C~(q —1) for the
map (2) at a =a„. The probabilities for the various building
blocks were extracted from a numerical time series of length
10' . The convergence of the spectrum with the length of the
run is quick.

where the block entropies E' ' are given by

K~ '= —g P(cr )InP(cr ), (15}

and the sum is over all orbits o of length m. The con-
vergence of the right-hand side of expression (15) to K
has been used to introduce the effective measure complexi
ty' defined as

eEMc= lim (K' ' —mK) .

The block entropies grow monotonically with m, and on
division by m they usually converge to E at a rate pro-
portional to I/m for chaotic systems. ' ' In addition,
the consecutive differences of the truncated entropies in
Eq. (15) decay monotonically to the metric entropy either
exponentially in generic cases, or as a power law for in-
termittent cases. These differences of consecutive block
entropies, hK'"', are essentially conditional entropies,
whose convergence rate somewhat rejects the degree of
stochasticity or randomness in the system. In fact, for
1D maps the exponential convergence rate exhibits a lo-
cal maximum at the parameter value corresponding to
fully developed chaos, while for intermittent cases the

The probability distribution of the invariant measure
on the set of building blocks of a complex grammar
characterized by the generalized complexities would be
sufFicient in reconstructing the motion of a chaotic trajec-
tory, provided correlations were absent among the build-

ing blocks. Typically, the correlation function decays ex-

ponentially for chaotic systems, or by a power law for in-

termittent cases. Correlations present in a time series are
reAected in the convergence rates of the metric entropy
and its Re.nyi generalizations. ' ' ' Consider, for exam-
ple, the definition of the metric entropy as

(14)



41 GRAMMATICAL COMPLEXITY OF STRANGE SETS 6611

convergence rate is slower than exponential.
In order to obtain an entropy-independent quanti-

fication of the correlations in a chaotic times series we
study the convergence of the generalized complexities ob-

tained at successively lower levels of the complete tree
construction. Using only the words appearing on the
mth level of the tree, one obtains the metric complexity
at this level as

1
O'I '= lim —expx-~ N

bl bm -
1

p(&~, & —~)gp(& Ibl, . , b, )l np(b Ib„. . . ,b, )

b

where all the building blocks b; up to length N are includ-
ed in the sums. The joint probability of observing a
string of m consecutive building blocks p (b„.. . , b ) is
normalized with respect to its length as in Eq. (12). The
conditional probabilities p (b ~b „.. . , b

&
) are defined

in the usual way as a quotient of joint probabilities. It
can be easily shown that the above expression for C', ' is
equivalent to consecutive differences of the block com-
plexities:

S' '= exp — g p(b~, . . . , b~)lnp(b„. . . , b )

bl, . . . , b

where the similarity to the block entropies in Eq. (15) is
apparent.

The convergence of the metric complexities will in gen-
eral be faster than that of the metric entropies due to the
fact that some of the correlations are incorporated within
the indecomposable building blocks. Therefore one ex-
pects that generically the metric complexity at level

m, C', ' also converges exponentially in the limit of large
m. Since the building blocks are the construction units
necessary for a hierarchical encoding of a chaotic system,
the convergence rate of many dynamical invariants such
as entropies, dimensions, and Lyapunov exponents may
be improved through their estimation at successive levels
of the complete tree of building blocks.

In practice, it is diScult to calculate the metric com-
plexities C', ' past m =2 or 3 for a complex grammar
directly from a time series, due to the inaccuracies en-
countered in an attempt to extract high-order joint prob-
abilities from a reasonable length time series. For the
case of the 1D map possessing an aperiodic kneading se-
quence whose generalized complexities are shown in Fig.
8, we have managed to calculate C& for the second level
of the tree. Within our accuracy, C',"=C', ', which is ex-
pected due to the exponential decay of correlations in this
case. In order to examine the decay of the correlations
between building blocks more accurately, we study sys-
tems with a finite number of building blocks whose gram-
mar is simple. In any case, the decay of the correlations
between blocks can be analyzed via the convergence of
the conditional entropies calculated down the levels of
the complete tree of building blocks.

As a simple example, consider the first period-2 band
splitting point of the quadratic map (2) at the parameter

value a =1.5436. . .. The topological entropy is 1n(coG')
due to the exclusion of all orbits with two or more con-
secutive 0's. A Markov partition with three elements
(bounded by the critical point and its three iterates) exists
for the attractor. All the periodic orbits present in the
system can be obtained from combinations of the build-
ing blocks 10 and 11. Note that the fixed point labeled 1

lies on the boundary between two Markov partition ele-
ments and therefore appears as 11 in the tree. In Fig. 9,
the convergence of consecutive conditional entropies
hK' ' is shown with respect to the level m of the com-
plete binary tree of building blocks. Thus at level m of
the complete tree, orbits are specified by 2m of the basic
alphabet symbols. Results for levels higher than 6 are
inaccurate, once again due to the limited size (10 steps)
of the time series. As can be seen from Fig. 9, the condi-
tional entropy converges exponentially as e r with the
slope given by y =1.33+0.02. The actual metric entropy
approximants calculated in terms of the basic symbols 0
and 1 converge more slowly with a decay constant equal
to —,'y. Such accelerated convergence of quantities cal-
culated in terms of the building blocks rather than the al-
phabetic symbols is expected in general.

+ 12—
I

F-

~~ 10—
O
I

FIG. 9. Convergence of the conditional entropies calculated
from a time series of length 10' in terms of the two building
blocks of the map (2) at the first band splitting point a = 1.5436.
The logarithm of the difference between the conditional entropy
AK'"' and its limiting value E is plotted vs the level number.
The slope is given by 1.33+0.02 from considering the first six
levels where the converged entropy in terms of the building
blocks is E =0.684 35.
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V. SUMMARY

Most studies on chaotic systems are concerned with ex-
tracting dynamical information such as dimensions and
entropies from a wide range of physical phenomena. The
convergence properties of such calculations are depen-
dent on the complexity of the dynamical system. Low-
order data may provide an adequate encoding of the
properties of a simple system, while it may be virtually
useless in the case of a complex system. By studying sys-
tems endowed with symbolic dynamics, we have
quantified the diSculty in hierarchically encoding the to-
pological characteristics of a dynamical system via the in-
troduction of the grammatical complexity, which was
subsequently generalized to include metric properties.
These were taken into account by an evaluation of the
nonuniformity in the distribution of the invariant mea-
sure over the building blocks, as well as a consideration
of the correlations between these blocks.

The building blocks and the complete tree they gen-
erate provide a useful framework in which invariant
dynamical quantities may be calculated and analyzed.
Until now, the level of a hierarchical organization of the
periodic orbits was given by their length. The fact that
the building blocks are indecomposable basic units from
which a chaotic trajectory can be reconstructed strongly
indicates that the complete tree they generate may be
used as a hierarchical framework that can accelerate the
convergence in the evaluation of dynamical invariants.
Given a time series, there is still no effective general pro-
cedure to extract the set of building blocks directly from
it. Practically, we are usually only interested in organiz-
ing orbits whose probability is greater than some thresh-
old value and whose length is less than some maximum
obervable length. Extracting the building blocks from a
time series, in this limited sense, is possible but may not
always be computationally feasible.

Although in this paper we have only considered exam-
ples derived from 1D maps, the procedure can be gen-
eralized to higher-dimensional systems provided a good
symbolic description exists. For example, in 2D Henon-
like systems, it has been conjectured that two symbols
are sufhcient in order to encode the dynamics faithfully.
A parameter value possessing an infinite grammar (words
of arbitrary length are disallowed) can be approached
along parameter values possessing a finite grammar, such
as the set of parameter values corresponding to the mutu-
al tangent bifurcations of two pairs of periodic orbits; a
couple of these parameter values have been studied in
Refs. 29 and 30. At all such parameter values, the gram-
mar can be represented by a finite directed graph. This
picture holds for reasonably large dissipation values b of
the Henon map; there, an approach to an arbitrary pa-
rameter value can be made along parameter values de-
scribed by these particular finite grammars.

The scope of the notion of complexity presented here is
much wider than solely dynamical systems exhibiting
low-dimensional chaos. For example, it can be directly
applied to a study of the spatial configurations of cellular
automata limit sets. It is known that the possible spatial
strings that can be obtained after n time steps in the evo-

lution of a 1D cellular automaton form a regular gram-
mar. In the limit of n ~ ao the language may no longer
be regular, and may be a member of any of the higher-
level languages in the Chomsky hierarchy. ' In fact, the
limit grammar may not even be in the class of recursively
enumerable languages. ' By studying the regular
language gramrnars approaching a cellular automata lim-
it set, the grammatical complexity introduced here and
its generalizations can be deduced. Their values may
provide additional characteristics for improved
classification schemes of cellular automata rules.
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APPENDIX A

In this appendix, we demonstrate that the grammatical
complexity Co, defined in Eq. (l), is bounded from above
by the value 2 for binary symbolic dynamics. First, a se-
quence of directed graphs approximating a grammar
which gives rise to two building blocks at each length is
constructed. The nth level directed graph approximation
to this limit grammar is shown in Fig. 10. The links can
be labeled arbitrarily by 0's and 1's, provided that any
two links emanating from the same node do not have the
same label. At each successive level in this hierarchical
construction, an additional node is added to the horizon-
tal line of the graph. Considering node A as the start
node, one sees that each node on the horizontal line con-
tributes two building blocks; there are exactly two
choices of preimages for node A (either 8 or C), each
producing a building block whose path goes over to a
given node on the horizontal line and then returns in one
step to node A. The total number of building blocks for
such a graph with n nodes is 2(n —1 ), apparently leading

FIG. 10. General form of a directed graph having 2(n —1)
building blocks in the presence of n nodes, yielding an upper
bound of 2 for the grammatical complexity of binary systems.
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to CO=2. On the other hand, since each node in Fig. 10
has two preimages, the graph accepts all possible strings
of 0's and 1's in the limit of an infinite-size automaton.
Complex grammars can arise only if some links in the
graph of Fig. 10 are removed, demonstrating the con-
clusion that the grammatical complexity is bounded from
above by CO=2.

It will now be shown that any system with Co =2 has a
topological entropy of ln2 and that increasing the gram-
matical complexity any further would lead to a larger
value of the topological entropy, which is of course disal-
lowed for binary symbolic dynamics. Consider a system
with two building blocks at each length which is longer
than some minimum length k. We will take k =2 for
simplicity, although the same result can be obtained for
any finite k. By induction, we show that the number of
periodic points of length n scales like 2" for n &&2. Say
at n =n, the number of periodic points is greater than
a2 ' (this is certainly true for small n, since we can
choose the constant a accordingly). Periodic points of
length n =n, +2 can be obtained by adding either of the
two building blocks of length 2 to each of the orbits of
length n t. In addition one can take each orbit of length
n, and replace its last building block by one of the two
blocks whose length is two bits longer. Note that all of
the points constructed are different since each periodic
point has a unique position on the complete tree of build-

l1l +2
ing blocks. In this way, we produce a2 periodic
points of length n, +2, thus proving that the topological
entropy is at least ln2.

A similar induction can be used to prove that the topo-
logical entropy is at least ln2 also when the minimum
length of twin building blocks is k )2. For cases with
Co )2, i.e., on the average more than two building blocks
at each length, one can similarly show that the topologi-
cal entropy is strictly larger than ln2, which of course
contradicts our assumption of binary dynamics. There-
fore Co is bounded from above by the value 2. This result
generalizes to k-branch symbolic dynamics where Co ~ k.
In order to compare the complexities of systems with
different alphabets, one should normalize the value of Co
by the number of alphabet symbols.

a= AB =011, P= ACB =01111, (B2)

where the last P at the final level of the inflation rule (lev-
el n —3) is replaced by A =01. This sequence leads to
the labeling of the links on the horizontal line of Fig. 6.

The simplest building block entering element F„2 is
the period-2 cycle labeled 10. The other building blocks
entering element F„2are obtained by following the link
leading to the leftmost node of Fig. 6 and subsequently
traversing a segment of the horizontal line to any of the
other nodes on the line. At that point, the path turns ei-
ther downward (if the node is in region A) to node F„
or otherwise (if the node belongs to regions B or C) up-
wards directly to node F„2. The paths that go through
node F„3 return directly to node F„z after circling
node F„3an arbitrary number of times. Note that both

tracting F„2from each of them. Originally, exactly the
first F„z partition elements had only a single preimage.
The symbol codes in parentheses in the above expression
denote the symbol sequence of the preimage. For exam-
ple, the code 01 means that the first preimage of element i
is to the left of the critical point (symbol 0) while its
second preimage is to the right of it (symbol 1).

From the above preimage relations, it is clear that each
partition element has either partition element F„3as its
first preimage or else it has partition element F„2as its
second preimage; all of these preimages are denoted by
nonhorizontal lines in Fig. 6. The remaining preimage
relations can be represented graphically as the 1D map
comprised of three segments A, B, and C shown in Fig.
11. The traversal sequence of the map can be seen to
obey the following rules:

B~A, C~B .

Starting at element F„5,which is the right-hand preim-
age of element F„2, and traversing the graph, one ob-
tains an aperiodic sequence of the three branches which
ends at partition element 2F„3. The sequence itself can
be constructed using the inflation rule of Eq. (7) with

APPENDIX B

In this appendix, we provide the details leading to the
construction of the building blocks in (9) of the quadratic
map at parameter value a „.The preimage relations of
the elements of the F

&
Markov partition elements

given in the text [after expression (9)] can be expressed in
terms of only those elements possessing two preimages as
follows:

F„3(1), F„, i (01) if—i E[1,F„3]
i ~ .F„~(01), 2F„3—i (1) if i E [F„3,2F„3)

F„2 (01), i F„3(11) if i E[2—F„3,F„))

where we have relabe1ed the partition elements by sub-

FIG. 11. Preimages of partition elements of the quadratic
map at a parameter value approximating a =a „and possessing
a Markov partition with F„—1 elements. Only partition ele-
ments lying on the horizontal line of Fig. 6 are shown.
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upwards and downwards paths are allowed at the right-
most node on the horizontal of Fig. 6. The building
blocks are actually obtained by reading the traversal
paths in reverse order since the arrows always point to-
wards preimages. Since the forward iterates of points in

element F„2all fall in a single partition element to the
left of the critical point, one can express the building
blocks in terms of periodic orbits in that particular parti-
tion element. The resulting blocks are exactly those in
expression (9).
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