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One technique of estimating the local intrinsic dimensionality of attractors is to apply the
nearest-neighbor (NN) approach to local regions of attractor data in the phase-space domain. In
noise-free, infinite signal-to-noise ratio data, the NN method is shown to produce results in reason-
able agreement with the correlation dimensions for some known examples. All NN results are com-
pared to the correlation dimension, as computed by the standard Grassberger-Procaccia algorithm.
However, it is shown here that even a small amount of corrupting noise will severely degrade the
performance of NN-type dimension estimators. NN methods are therefore of limited use for these
calculations if data are noisy.

I. INTRODUCTION

Recent advances in theoretical physics have generated
a new theory of deterministic chaos in which many sig-
nals may now be interpreted as being deterministic (rath-
er than stochastic) in origin. Perhaps the most important
feature of these chaotic signals is that they commonly re-
quire a small number of parameters to model them.
Therefore, these chaotic signals are said to be low-
dimensional. This is in marked contrast to the stochastic
signal, which is by definition high-dimensional. In this
paper we discuss a measure of attractor dimensionality
called the local intrinsic dimension (LID). The LID is an
upper bound on the correlation dimension (d2) as com-
puted using the Grassberger-Procaccia algorithm' (GPA)
and this in turn is a lower bound on both the information
dimension (d, ) and the capacity or Hausdorff dimension
(do). The LID is a measure of the number of significant
local orthogonal directions along which the data points
are distributed. We describe a method of estimating the
LID using a nearest-neighbor approach by Pettis and co-
workers. This method is then applied to chaotic at-
tractor data such as the Lorenz, Henon, DuSng, and
Rossler systems in the phase space. For a recent review
of dimension estimation methods see Ref. 6.

II. THEORY

The zero-mean time-varying data samples (x;), as-
sumed to consist of a true deterministic signal and white

Gaussian noise, are first embedded in a high-dimension
(r ) space by forming vectors:

Xi =(X i,X2, . . .,X„)

XZ=(X3&X3& ~ ~ &X&+'[)

&&
(Xn Xn+&I ''»Xn+r —

1 ) & (2.1)

where typically r =10 or 20 and it =20000. Using more
data points (e.g., n =60000) does not significantly alter
the local intrinsic dimension results.

Here an accurate phase-space portrait of the attractor
is reconstructed from the time data using the method of
delays, such that a given reconstructed phase-space
point is equated with r successive points of the time
series, each separated by the interpoint sampling time t, .
Choice of r should satisfy the embedding criterion set
forth by Whitney, and rigorously justified by Takens,
namely, r )2d+1, where d is the topological dimension
of the manifold. Here we set up the embedding dimen-
sion on the basis of the true signal's anticipated charac-
teristics, since that is our main focus. This has yielded
reasonable results, at least down to the moderate values
of signal-to-noise ratios (SNR s) under consideration. If
the corresponding time data window, which is defined as
t =(r l)t„ is too larg—e, the components of the embed-
ding vectors may be decorrelated, appearing as random
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noise with high dimension. On the other hand, if t, or
the window is too small, then the points will all lie near
the main diagonal in phase space. In choosing an op-
timum time data window, or equivalently, an optimum r,
we follow the work of Albano et al. in which an ap-
propriate t is taken to be 2 to 3 times the correlation
time. We determine the correlation time from the first
zero of the autocorrelation function R, where R is defined
as the expectation of the product of any two data samples
separated in time by m samples:

R(m)=E[x(t)x(t+mt, )] . (2.2)

Next, the algorithm randomly selects arbitrary points
on the attractor to serve as local centers around which a
fixed number, q, of nearest neighbors will be processed
(after subtracting out the center coordinate of each local
region). The local regions, each of which has its own
characteristic spatial distribution of data points extend-
ing into various orthogonal dimensions, ' ' are assumed
to cover the entire attractor. The number of significant
orthogonal dimensions in each local region is the local in-
trinsic dimension.

In this paper we apply the k-nearest-neighbor (NN}
technique to the problem of estimating the I.ID. This ap-
proach, which is based on nonparametric estimation of
the density functions, relies solely on the local properties,
and not on the global properties, of the distribution of the
data. An initial estimate of the probability density func-
tion p(X) may be formulated as follows:

p(X) V=k(X) N/, (2.3)

where N is a large number of samples, k is the number of
samples falling in a small local region L(X) around X,
and V is the corresponding volume of L(X). This is
known as the Parzen density estimate, in which case V is
fixed and k is allowed to be a random variable that is
dependent on X. An alternate approach is the NN tech-
nique discussed in this paper in which k is fixed and V is
allowed to be a random variable, V(X). The local region
L(X) may then be extended around X until the kth
nearest neighbor is located. We may interpret the NN
method as being equivalent to the Parzen density esti-
mate with a uniform kernel function whose size is adjust-
ed automatically, depending on the location. In this way,
if k is fixed, V becomes larger in regions of low density
and smaller in regions of high density. Assuming a uni-
form kernel function, such that

1/V inside L(X)
a F ='

0 outside L(X), (2.4)

the distance to the kth nearest neighbor may be expressed
in terms of the corresponding volume as

I' "(n /2+1) Vip„(X)
"xw (2.5)

where I is the gamma function, n is the dimension of the
local region, and, with a defined as the radius of the local
region, a A gives the covariance matrix, X, of the kernel
density.

Next the first-order approximation u(X)=p(X)V(X)

(2.6)

which is a beta distribution B(k,N k+—1); the beta dis-
tribution can describe a large class of local data distribu-
tions. Then the mth-order moments of dk (X) can be

NN

determined by'

E[dk (X)]~f dk (X}p„(u}du =—vp ~"(X),

(2.7a)

where

I ~"((n+2)/2) I (k+m/n ) I (N+1)
~m/2(y~m/2~ I (k) I (N+ 1+m In )

(2.7b}

The overall average of the distance in Eq. (2.7a) in the en-
tire space is then

E„E[dk (X)]—vE„[p "(X)] . (2.8)

For the case m =1 and k large in Eq. (2.7b), we may use
the Stirling approximation of I (x } for large positive x,
that is,

I (x ) =—x "e "(2n /x )'~ 1+ + +1 1

12x 288x 2

(2.9)

to show that I (k+1/n)/I (k}=k'~" for the typical
values of n considered in this paper (i.e., n =2-8). Then
from Eqs. (2.7) and (2.8) the ratio of two NN distances is
found to be

E„E[dk +,(X)]
=-1+

E„E[dk (X)] k~zn
(2.10)

to first order in 1/kzz. (The second-order term dropped
here is approximately two orders of magnitude smaller
than the first-order term retained. )

From computations of the left-hand side of Eq. (2.10)
one can solve for n. Since the spatial averaging is per-
formed over many small local regions, conservatively
500, this dimension n must be the average local intrinsic
dimension of the data, which we denote as ALID.

III. NUMERICAL RESULTS

To demonstrate the method presented here we have ap-
plied it to several standard cases of interest, in particular,
to the Lorenz system, the Henon map, the DuSng and
Rossler systems, and to cases of multiple sinusoids with
additive noise over a range of SNR's.

I.orenz data were generated from the Lorenz system of
equations:

is used, where u(X) is the coverage of L(X) whose
boundary is determined by the kth nearest neighbor, and
the density function for u is taken to be

lp„(u)=,
,

u '(1 —u) ", 0&u ~1
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x =a(y —x ),
y =cx y xz

z = —bz+xy,

(3.1b)

(3.1c)

x = —(y+z),

y =x+ay,
z =b+z(x —c),

(3.1a) the following system of equations:

(3.4a)

(3.4b)

(3.4c)
where a = 10, b = —', , and c =28. In generating the
Lorenz data we used initial conditions
x(0)=y(0)=z(0)=1 and a Runge-Kutta integration step
size of 0.003. Using a decimation factor of 10 the data
used for this analysis were taken every 0.03 time unit.
Henon data were generated via the map:

x, +, =ax, , +1—ax,', (3.2)

where a =1.4 and b =0.3. Duffing data were generated
from a special case of the Duffing equation

x +bx +x =8 cos(rot ) . (3.3)

This equation can be used to describe an electrical circuit
with a nonlinear inductance and linear resistance, driven

by a sinusoidal voltage. We used the parameters
b=0.05, 8=7.5, and co=1.0. Rossler data, which are
best known for their use in describing the dynamics of
chemical reactions in a stirred tank, were generated by

where the parameters used are a=0. 15, b=0.20, and
c =10.0. In order to obtain high resolution over the fu11

spectrum, a decimation factor of 10 was also used for the
Duffing and Rossler data. Data for the two-torus were
generated using sine waves of frequencies 2' Hz and
7' Hz and a sampling time equal to 0.05 sec, which
more than satisfies the Nyquist condition that the sam-
pling rate should be at least twice the highest frequency.

Table I contains results for the ALID for difFerent
values of kNN for the data sets studied. We find that the
NN approach produces results close to the actual dimen-
sion in the absence of noise (i.e., infinite SNR). Empirical
studies indicate that kNN =(q)' is a reasonable choice.
In Fig. 1 ALID results for the Duffing attractor for a typ-
ical value of kNN=6 are plotted against the SNR. For
the data in Table I the average radius & a ) of the local re-
gions is approximately 0.1 or 0.2 of the full attractor ra-
dius A. Typical values of & a ) /A for different SNR's are
plotted in Fig. 2. In general, sufficiently small local re-
gions may be obtained if we restrict the number of sam-
ples q to a maximum of three, four, or 5ve times the

kN~ =16kNN=8SNR

TABLE I. ALID results determined via Eq. (2.10) for the Lorenz, Henon, two-torus, Duffing, and

Rossler attractors. Averaging of NN distances here was performed over 500 randomly positioned local
regions, with each local region containing q =40 total points. (a ) /A gives the ratio of the mean local

hypersphere radius to the full attractor radius. 6 represents the average standard deviation of the
ALID results. The actual correlation dimension values d2, determined by applying the GPA algorithm
for large a and infinite SNR are listed in the last column.

&a&

A
kNN =4 kNN =12 d2

Lorenz

Henon

Two-torus

Duffing

Rossler

10
20
30

10
20
30

10
20
30

10
20
30

10
20
30

0.2
0.1

0.03
0.02

0.2
0.1

0.1

0.1

0.2
0.05
0.03
0.08

0.2
0.1

O. l
0.1

0.1

0.05
0.02
0.01

7.4
7.3
6.3
2.1

6.9
6.3
3.7
1.3

7.6
7.5
2.5
1.9

8.4
6.5
3.9
2.7

9.9
8.8
6.8
2.1

8.3
7.5
5.1

2. 1

7.3
5.8
3.0
1.4

7.3
7.4
2.3
1.3

8.5
6.3
3.7
2.4

9.6
9.0
6.4
1.9

7.2
7.1

44
2.3

6.9
5.7
2.1

1.3

7.3
6.7
2.7
2.2

8.1

5.4
3.4
2.4

9.5
8.8
6.3
2.0

7.6
6.7
4.4
2.3

7.4
4.3
2.1

1.3

7.1

6.3
2.9
2.4

8.8
6.1

34
2.5

9.1

8.6
6.1

2.0

0.2
0.3
0.2

0.1

0.5
0.1

0.4
0.2
0.1

0.3
0.3
0.1

0.3
0.2
0.4

2.0

1.2

2.0

2.6

2.0

'Average standard deviation for ALID determined using nearly 40 values of kNN.

Actual dimension determined here by the number of sinusoids used to generate the data.
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