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Multistabilities and anomalous switching in the Lorenz-Haken model
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We show that pulses in the Lorenz-Haken model can be observed well below the well-known

second threshold by using the anomalous switching technique. More specifically, if the laser sys-
tem initially operates stably above the first threshold, the pulse motion can set in when we abrupt-

ly switch the pump to a new value, which is much smaller than the second threshold. This
phenomenon is due to the existence of multistable attractors and anomalous switching between
these attractors. By using the anomalous switching, physically distinguishable three, namely, two
time-dependent and one stationary, attractors are numerically shown to coexist for some parame-
ters.

Since the theoretical prediction of laser chaos by Hak-
en' through the identification of the simpler laser equa-
tions with the well-known Lorenz equations, the experi-
mental observations of the chaotic behavior in lasers have
become a very active chapter of laser physics. However,
since the conflicting requirements for the occurrence of
chaotic pulsations, namely, on the one hand the bad cavity
and single-mode requirements and, on the other hand, the
extremely high pumping condition, an experimental reali-
zation is difficult to achieve, and the only successful exper-
iments were reported in Ref. 3. Indeed for a long time the
very high pumping condition was a main obstacle to ob-
serve Lorenz-type chaos in lasers. 5 On the other hand,
the Hopf bifurcation in the Lorenz equations is known to
be subcritical. ' This fact suggests that it might be possi-
ble to observe some stable time-dependent attractors
below the Hopf bifurcation point, which means the ex-
istence of bistability between a time-dependent solution
and the stationary-laser operation (constant laser intensi-

ty, or stationary convection in the case of fluids). Indeed,
York and York have numerically observed chaotic
motions before the second threshold, the so-called pretur-
bulence. Later, in the context of lasers, similar phenome-
na were discussed by Casperson and by Narducci, Sa-
diky, Lugiato, and Abraham. Casperson considered the
question of where the pulsing state will end up if one starts
initially from a pulsing state and decreases the pumping,
i.e., he looked at the lower boundary of the pulsing solu-
tion. All these results indicate the coexistence of certain
pulses with the steady lasing state. In this Rapid Com-
munication we will show, by making use of this bistability
and the phenomenon of anomalous switching, ' that the
pulsing threshold can be considerably reduced.

The reason behind this reduction is that the results of
linear stability analysis become invalid in the case of
abrupt change of parameters. In fact, the so-called
second laser threshold and laser instabilities usually stud-
ied in most occasions refer to a kind of instability which
occurs when certain control parameter changes adiabati-
cally over the threshold predicted by linear analysis. For
systems whose attractor is single valued, i.e., only one at-
tractor for each set of parameters, this is the only kind of

behavior. But many nonlinear systems possess more than
one attractor for the same set of parameters. For such
systems there exists still another kind of instability which
occurs when one abruptly changes the parameters of the
system with a finite amount but still below the instability
threshold of linear stability analysis. In this case the sys-
tem may be switched from one of its attractors to the oth-
er. A typical example of such phenomena is the so-called
anomalous switching in optical bistable systems as dis-
cussed in Ref. 10. The authors of Ref. 10 considered a
switching between the two branches of the solutions of op-
tical bistability before the instability of the linear analysis
is reached, due to an abrupt, finite increase in the external
field so that the expression anomalous switching (AS) was
coined.

Our starting point is the Lorenz-Haken model'2 s

describing the resonant single-mode ring laser with atoms
of homogeneously broadened lines. The equations are
given by

X k(Y —X),
Y rX —Y —XZ,

Z —bZ+XY, (3)

k)b+I,
k(k+6+3)

rth —1

(4)

(s)

One can easily convince oneself of the big size of r th and
further that its minimal value is 9, nine times the first
threshold, which is unity.

Our problem is now formulated as follows. Given the
system originally operates near but above its lasing

where X, Y, and Z refer to the electrical-field amplitude,
the macroscopic polarization, and the inversion of the
media, respectively. The relaxation constants are defined
as k tr/y~ and b y~~/y~ with y~t and y~ denoting the
longitudinal and transversal relaxation constants of the
atoms. The parameter r is related to the pumping power.
And finally the time has been rescaled by y&. The well-
known second threshold is given by'
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threshold, is it possible for the system to jump up to the

pulsing state, which exists down to relatively low pumping
values, by abruptly increasing the pumping with a finite

amount smaller than the second threshold? How large is

the minimal amount which suffices to make the system

jump up to pulse? This problem is solved on the computer
in the following way.

Suppose rp (a little bigger than 1, taken as 1.01
throughout this paper) is the pumping value where the
system is initially operating. The corresponding station-
ary lasing state is (r rp)

X, +-~ Jb(r —I),
Yp, + -+ 4b(r 1),—

Zp, ~ r —1.

With Xp +, Yp w, and Zp + (r rp) as initial conditions,
Eqs. (1)-(3) are numerically solved for some new pump-

ing value r ( r&h and the evolution is traced to the stable
stage to see whether the system ends up at the stationary
state or at the pulsing state. The minimal value of r which
makes the system switch to the pulsing state will be
identified as the threshold for the anomalous switching
and denoted as rAs, for a general discussion, see Ref. 11.

Figure 1 shows some results on r~s and the correspond-
ing second threshold for k 2 and b ~0.6. We see that

rAs can be as small as nearly half of r,s for some small b

values. For example, for b 0.01 the second threshold is
10.121 21 and the rAs is 5.469.

Figure 2 shows the multistable behavior for k 2,
b 0.01. The dashed lines represent the unstable attrac-
tors. The straight line X 0 is the state without lasing.
The curve marked by SS stands for the stationary lasing
state. A i, A2, and A3 are three time-dependent attractors,
which are discovered by using the anomalous switching
technique. The time-dependent attractors in Fig. 2 are
drawn in the following way. Given an r value, e.g. , r h we

can catch one of the pulsing solutions by using AS and we

follow the evolution to the stable state and then sample
the maximal absolute value of X within the final time in-

terval which is larger than some characteristic time, e.g. ,
the period of the pulse when the pulse is periodic. We
then decrease or increase the r value around r

~
with a

small amount and solve the equations with the final values
of X, Y, and Z of the last time as our new initial values
and sample another maximum of X. Repeating the steps
again and again we can extend the curve in both directions
and finally form the whole curve. For some r values the
curve jumps to the lower one or rises to the upper one.
The corresponding attractors will end up at that r value.
No pulsing solution has been found for an r value smaller
than the lower end of A~. Therefore this lower end also
represents the lower bound of the pulsing solution. As can
be seen in Fig. 2, this end coincides with the AS threshold
(represented by a dash-dotted line). This means that,
starting from the lasing state near the first threshold, we
can reach the pulsing state by AS technique as soon as the
latter starts to exist. This coincidence' is, however, not
necessarily true for all AS phenomena. Generally the AS
threshold lies somewhere between the two ends of the bi-
stable range as it occurs in optical bistable systems. 'p For
our present system, we have checked this point for other
parameters, e.g., those displayed in Fig. 1. No remark-
able difference has been found between the lower end of
Ai and rAs

Now we give a brief phase-space explanation of this AS
phenomenon based on our numerical simulation and leave
the complete and more detailed discussion to a regular pa-
per. " For initial pump value we choose the stationary
lasing state as an initial condition. When we suddenly
switch the pump, the system cannot respond to this pump
switch rapidly enough and therefore cannot follow up the
stationary state to the switched pump value. Instead the
system stays at the same phase-space point. But for the
new pump value this phase-space point now no longer cor-
responds to the stationary state, it can well fall into the
basin of the pulsing state, which coexists with the station-
ary state. When this is the case, we have an AS phe-
nomenon. The system will be switched to the pulsing
state. Therefore our numerical simulations naturally
leads to a definition of this AS threshold. The AS thresh-

29

27-

25-
23-
21-

o 19-

17-

15

13-

5
0,0

I

01 0.2
I

0.3
I

04 0.5 0.6 0.7

20
19-
18-
17-
16-
1.5-
14-
13-
12-
1 1

E 1Q-
09-

X Q8
07-
06-
05-
04—
03-
02-
0.1-
00

—01
0

Al

I I I I

1 2 3 4 5
I I

6 7
I I I

10 11 12 13 14

FIG. 1. The AS threshold (solid line) and the second thresh-
old (dashed line) of the linear analysis with respect to b for
k 2.

FIG. 2. The stationary states and the maximal amplitude of
X with respect to r. TS refers to two-side- and OS to one-side-
twisting pulsing, as explained in the text.
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old is the pump value, at which the steady state with the
initial pump value just falls on the boundary of the at-
tracting basin of the pulsing state corresponding to the
new switched pump. However, we shall not go into detail
about this matter, further discussion will be presented
elsewhere. "

It is also interesting to look at the multistabilities re-
vealed by the AS technique. Figure 2 shows several pa-
rameter ranges of bistable and tristable behaviors'3 be-
tween the stationary-lasing state and various pulsing
states. The tristability seems to be a new finding of this
paper. Attractors marked by TS are two-side-twisting
solutions around both stationary points S+.(Xu, +, Yu, +,
Zo, +) and S-:(Xo—,Yu —,Zo —) and that marked by
OS is one-side-twisting around one of the two stationary
states Sy or S . The behavior that occurs on A2 needs
more explanation. The large portion of this attractor cor-
responds to the OS solution, as marked in Fig. 2. As we
decrease r, such a solution undergoes period-doubling bi-
furcations until very high periods which seem to be
difficult to follow. After r is decreased to a value smaller
than r 7.03, the solution becomes TS-type and still with

high periods, extending down to the lower end of this at-
tractor. An example of the OS solution near this OS-TS
transition is given in Fig. 3. As pointed out by Sparrow, '4

the TS strange attractors originate from homoclinic ex-
plosions. Here we see that the OS attractor, which can be
attributed to the subcritical Hopf bifurcation of the
stationary-lasing state, can change into a TS-type attrac-
tor or it can itself evolve into an OS chaotic attractor. We
therefore generally have two kinds of origins of the puls-
ing states in this model, and a transition between them is
also possible. The fact that both pulsing states can be
chaotic or at least multiperiodic is indicated by the zigzag
parts of the curves in Fig. 2 (see also the trajectory shown
in Fig. 3).

Finally, we mention that the two-threshold phenomenon
discussed by Zeghlache and Mandel' can be also ex-
plained as a consequence of the AS after taking into ac-
count our previous results'6 on the nature of the Hopf bi-
furcation (see also the discussion in Ref. 16 about this
point). Another system we should mention is a dispersive
optical bistable system. In a recent paper" we have un-
covered many large amplitude time-dependent solutions,
some of which are completely isolated from the stationary
state. There we asked the question how to experimentally
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FIG. 3. An example of OS attractor caught by the AS tech-
nique, where r 7.06, k 2.0, and b 0.01. To ensure that the
attractor is really OS type, we have traced the evolution to di-
mensionless time y~t 18000. After the transient stage, the
solution is always OS type. The trajectory drawn in the 6gure is
the evolution from y&t 12000 to y&t 18000.

observe such attractors. Here we see that the AS tech-
nique could be used to serve this purpose.

To conclude, we would like to emphasize the signifi-
cance of the much lower threshold due to the AS
phenomenon. Previously the time-dependent attractors
before the second threshold have been observed by many
authors by choosing different initial conditions. ' But
how to experimentally observe such attractors is still a
question to be answered, since these numerically arbitrary
initial conditions are not always physically realizable. Of
course, one can first go above r, 1, to reach the chaotic at-
tractor and then adiabatically decrease the pumping to
reach the lower end of the time-dependent attractor. This
means that we have to attain the very high threshold,
which, as we mentioned at the beginning, is a main
difficulty for most of the normal lasers. The AS technique
suggests a possible way to observe such lower pumping
pulsings by starting from experimentally easily attainable
initial conditions. This will certainly broaden the range of
laser types which produce chaotic laser light. The findings
of multistabilities formed by time-dependent attractors of
different origins will also help further the understanding
of this model.
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