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of single-atom theories to experiment
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We present a simple two-state model illustrating the fact that the most prominent features ob-
served in high-order harmonic generation are generic to strongly driven systems. We also address
two important questions that arise in the comparison of theory and experiment.

In ex riments employing very intense laser fields
(I & 10' W/cm2) in gaseous media, high-order harmon-
ics of the fundamental driving frequency have been ob-
served. For instance, the thirty-third harmonic has been
obtained in argon with 1.06 pm irradiation, and with ir-
radiation by a 24S-nm excimer laser the seventeenth har-
monic has been reported, corresponding to a wavelength
of 14.6 nm. Thus far the most successful computational
approach to this harmonic generation involves direct nu-
merical integration of the time-dependent Schrodinger
equation. 3 The numerical results display some of the
prominent features observed experimentally: (1) the
spectrum of scattered radiation consists of peaks at the
odd harmonics of the fundamental driving frequency; (2)
the spectrum has a plateau region in which harmonic
peaks are of similar strength; and (3) there is a rapid
cutoff at the highest harmonics.

In this Rapid Communication we first describe a simple
model for this high-order harmonic generation. Our pur-
pose in doing so is mainly to point out that the same quali-
tative features (1)-(3) just mentioned are generic to
strongly driven systems, and are not peculiar to atoms in
quasimonochromatic fields. Furthermore, such a simple
model allows us to study some aspects of harmonic gen-
eration with a minimum of computational effort.

A second purpose of this paper is to address two ques-
tions that, to our knowledge, have not previously been dis-
cussed in the literature: (1) Should the calculation of the
spectrum be based on the power spectrum of the expecta-
tion value of the induced dipole moment, or of the dipole
correlation function? We show that it should be based on
the latter. However, we also suggest why the existing
theories, which employ only the dipole expectation value,
may in fact be relevant to the experiments. (2) What is
the appropriate power of the frequency that should multi-
ply the square of the Fourier transform of the dipole
correlation function (or expectation value)? We show
that the answer depends critically on whether one is con-
sidering single-atom scattering or the actual experimental
situation in which multiatom scattering and propagation
effects must be addressed. We suggest, therefore, that
spectra measured from single atoms or atomic beams
would be different from those measured in the experi-
ments cited above.

The model we consider is quantum mechanical but in-
volves only two atomic states. Thus we consider the fol-
lowing optical Bloch equations for a two-state atom in a

quasimonochromatic field:
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FIG. 1. Log spectrum S(m) for a two-level model with

0/co 0.5 and m/mo 0.25.

where mo is the transition frequency, z is the difference be-
tween the upper- and lower-state probabilities, and x and

y involve cross products of the upper- and lower-state
probability amplitudes. 0 (2d/tl )Eo, where Eo is the
electric-field amplitude and d is the transition dipole mo-
ment. Note that we do not make the rotating-wave ap-
proximation (RWA).

We compute using Eqs. (1) the squared modulus of the
Fourier transform of the induced dipole moment ex(t).
As in previous work we temporarily associate this quan-
tity with the spectrum of scattered radiation. In our com-
putations the field is ramped on according to the algo-
rithm

Eo sin (mt/4a ) sin (mt ), 0 & t & 2na/m,

Eo sin(mt), t ~ 2tra/m,

where a, the number of cycles required to "turn on" the
field, is typically set equal to five. For fairly weak fields
the computed spectrum shows peaks at the first few odd
harmonics of the applied frequency, but the peak ampli-
tudes fall off monotonically with increasing harmonic or-
der, as shown, for example, in Fig. 1. The appearance of
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FIG. 2. As in Fig. 1 with 0jm 4.0 and ru/cup 0 25.

only odd harmonics follows automatically from such an
approach, without direct recourse to dipole selection rules.

For larger values of 0 we observe qualitatively the
same plateau and cutoff structure obtained by numerical
integration of the full Schrodinger equation. The conse-
quences of a more sudden turn on of the field than occurs
with a 5 are that the peaks are less sharply defined and
there is a high-frequency continuum component in the
spectrum. Effects associated with field turn on may also
be avoided in our model by introducing small damping
terms in Eqs. (I).

Figure 2, for instance, shows the log spectrum obtained
with 0 4.0 and tn/tun 0.25. This figure illustrates that,
for field strengths at which perturbation theory breaks
down, successive harmonic peaks at intermediate orders
do not fall off sharply but rather display a plateau struc-
ture. However, the falloff is quite sharp at the highest or-
ders. This is qualitatively the same kind of behavior that
has been observed experimentally and in computations of
the spectrum based on space-time integration of the
Schrodinger equation for one- and three-dimensional
models. In fact, results quite similar to those obtained
by integration of the Schrodinger equation may be ob-
tained with our grossly simplified model, as can be seen by
comparing Fig. 2 with Fig. 1 of the paper by Kulander
and Shore.

In our simple model the cutoff in the harmonic genera-
tion spectrum is linearly proportional to the ratio of the
Rabi frequency 0 to the external field frequency; such a
linear dependence of the cutoff on the field strength is, in
fact, found experimentally. In the present context of the
Bloch equations, this is easily understood: In a strong
field the dipole moment induced in a two-level atom is am-
plitude modulated at the Rabi frequency 0, so that 0
determines the envelope of the oscillations induced by the
field of frequency tn. The quantity 0/e is therefore the
ratio of the modulation frequency to the driving frequen-
cy, and gives the number of harmonics of ru over which
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FIG. 3. Intensity dependence of different harmonics obtained
with a two-level model, showing that higher harmonics have ap-
proximately the same intensity dependence. The integer labels
for the different curves indicate the harmonic orders.

the atom can substantially respond to the field.
It is also interesting to note that other, more quantita-

tive features seen in the space-time integration approach
are also reproduced by the simple two-level model. For
example, Kulander and Shore report that on considering
the intensity dependence of the harmonic generation spec-
tra, the higher-order peaks all exhibit the same effective
order ofnonlinearity, a simple measure of power-law scal-
ing with intensity. The intensity dependence obtained
from our two-level model is shown in Fig. 3, and it is also
clear that in our model the higher harmonics all have ap-
proximately the same intensity dependence.

We now turn to the question of the relevance of any
single-atom model or theory to the experiments. Consider
the formal expression for the expectation value of the
number of photons in mode (k, A, ) at time t:
(ay~, (t)ag, (t)) &a~t(0)a~(0))

+2C~Re dt'(x(t')a~(0))e

+Cg„,dt &, dt "(x(t")x(t'))e' '"
(3)

where C~ is a coupling constant and x is the component
of the electron coordinate along the polarization of mode
(k, A, ). The first term, (a~t(0)a~(0)), is simply the num-
ber of photons in mode (k,A, ) at time t 0. The second
term corresponds to absorption from, or stimulated emis-
sion into, mode (k, A, ). If mode (k, A. ) is initially described
by a coherent state

~ a~), so that a~ ~
a~) a~ ~ c~),

then

t l
2C~Re„dt'&x(t')a~(0))e ' " =—&a~t(t)a~(t)), b, 2C~Re aq dt'(x(t'))e (4)

The dipole expectation value (er(t)) thus gives the absorption (or stimulated emission) spectrum.
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The last term in (3) is the contribution to the photon
number expectation value of mode (k,X) from scattering
and spontaneous emission. If the mode is initially unexcit-
ed, this term is the only one contributing to &aktt. (t)akim(t) &:

then it follows frotn (7) that

r
2

&akim (t)a~(t)& ~Ck' g ) dh'&x; (t') &e'""

+r ~ t H

&aktr (t)a~(h)& Ck dt' dt "&x(t")x(t')&e

(5)

2t. r

-Cp' g dt'&x(t')&e'""
)4o

Thus, whereas the absorption spectrum is determined by
the dipole moment expectation value, the spectrum of
scattered light is determined by the dipole correlation
function. If we make the replacement &x (t ")x(t') &

&x(t")&&x(t')&, which of course is in general
unjustified, then (5) becomes

&aktt, (t)a1o,(t)& &aktt. (t)&&a 1o,(t) &

Cg dt'&x(t')&e' "

ier, (r '- r ")
Xg (7)

This decorrelation Ansatz is implicit in the computational
approaches of Kulander and Shore, 3 Eberly and co-
workers, ' ' and Potvliege and Shakeshaft. '

These approaches to harmonic generation rely on the
assumption that a single-atom theory is relevant to the ex-
periments. Although it is well known that serious errors
can result from the use of the dipole expectation value in-
stead of the correlation function in the computation of
scattered light spectra, 7 the single-atom theories based on
power spectra of dipole expectation values may in fact be
applicable to the experiments under consideration. Con-
sider the scattering of light by N atoms, in which case (5)
is replaced by

N 1V ~r t r

&aktt, (t)a~(t)& -Cj g g dt' dk"&x;(t")x, (t')&
r' I J

if all the atoms are assumed to see the same field. In other
words, the single-atom theories based solely on the dipole
expectation value are applicable under the assumption
that there are no interatomic correlations.

Regardless of whether the dipole expectation value or
the correlation function is employed, there is another im-
portant consideration involved in the comparison with ex-
perimental spectra. Consider the expectation value of the
power radiated (scattered) by a single atomic dipole. As
is well known, this expression has the same form as the
classical Larmor formula: "

ghmk(atq4)au(t)) (2e l3c )
& ).t k, g dt

Because of the appearance of the square of the second
derivative of r(t) in this expression, each frequency com-
ponent to in the spectrum of the scattered light is therefore
weighted by (to 2) co, exactly as in Rayleigh scattering.
The rate of emission of photons of energy @to therefore
has a factor tu'. This factor also follows from (5), (6), or
(7), since Cg is proportional to tok and the summation
over modes brings in another factor to), as is well known.
This factor, which has been included by Potvliege and
Shakeshaft, ' but not by Kulander and Shore and Eberly
and co-workers, ' obviously has a large effect on the
peak height ratios predicted for high-order harmonic gen-
eration. An accurate assessment of such to-dependent
prefactors demands, of course, that attention be paid to
field propagation and phase-matching effects. Work in
this direction is in progress.

If the different atomic dipoles are uncorrelated, so that
&x;(t")x,(t')& &x;(t")&&xj(t')& for i', and if N»1,
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