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A nonlinear, kicked quantum optical system, which classically exhibits regions of regular and
chaotic motion, is proposed as a possible experimental test of quantum chaos. The mean photon
number is shown to undergo regular collapse and revival in the regular region of phase space and

irregular revivals in the chaotic region.

The quantum behavior of periodically kicked, nonlinear
Hamiltonian systems can reflect the classical dynamics be
it regular or chaotic. Early work focused on the change in
quasienergy statistics of the quantum problem as the cor-
responding classical realization moved into the chaotic re-
gime.l More recently, it has been shown that the classical
transition to chaos is reflected in the appearance of irregu-
lar collapses and revivals in the time evolution of certain
moments,? as opposed to a regular collapse and revival se-
quence in the nonchaotic case. However, in many ways it
is becoming clear that classically chaotic behavior is
drastically modified if not eliminated by quantization.
This is very evident in the quantum suppression of energy
diffusion, for example in the kicked rotor,** due to com-
plicated interference effects reminiscent of Anderson lo-
calization.® In this phenomenon we see the signature of
the most characteristic feature of quantum mechanics,
coherent superposition states, a feature at the heart of the
less intuitive aspects of the theory.

The quantum suppression of chaotic diffusion is the one
aspect of quantum chaos which has been subjected to ex-
perimental test.® The microwave ionization of hydrogen
can be closely modeled by the combined effects of the
Coulomb field and an oscillating electric field. Numerical
results indicate that the observed threshold for ionization
follows the classical threshold for the appearance of a
chaotic instability in a suitable parameter range. Bayfield
et al. ® have recently presented results which clearly indi-
cate the localization phenomenon discussed above. The
search is now on for other systems which may enable yet
more direct tests of the unusual quantum dynamics of
nonintegrable systems.

Most recently Prange and Fishman’ have suggested
that the nonlinear behavior of fields in optical fibers may
provide simple realizations of the dynamics of kicked non-
linear systems. In their proposal, the field is not quantized
but the nonlinear wave interactions in the fiber are analo-
gous to a quantum kicked system. In this Rapid Com-
munication I wish to present a relatively simple, fully
quantum model, which may enable a direct experimental
test of a kicked nonlinear system.

Consider a single-mode field propagating in a medium
with an intensity-dependent refractive index. This could
be an optical fiber or a nonlinear material placed in a cavi-
ty. The single-mode field is well described in terms of the
dynamics of a simple harmonic oscillator. The effect of
the nonlinearity is then to induce an energy-dependent
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phase shift of the oscillators’ complex amplitude, that is a
rotational sheer in the complex plane.® The mode is also
periodically “kicked” by parametric amplification which
for a very short time turns the origin in phase space into a
hyperbolic fixed point, thus stretching and shrinking the
phase plane in orthogonal directions. Such devices pro-
duce squeezed states and now operate successfully in a
number of laboratories.® The periodic amplification could
be produced by placing a chain of parametric amplifiers
along a nonlinear fiber, or in the cavity configuration a
pulsed pump field could be used to turn the parametric
amplifier placed inside the cavity on and off.

The classical dynamics of this system exhibits a rich
structure of regular and chaotic motion, with the amplifier
gain being the control parameter. The phase space is
divided into two regions, bounded but possibly chaotic
motion around the origin and unbounded motion at some
distance from the origin as trajectories escape to infinity.
When the system is quantized one finds, for example, that
the mean photon number undergoes a collapse and revival
sequence for initial states localized in the bounded region
of phase space. This sequence is periodic for initial states
in a regular region and irregular for states in a chaotic re-
gion. Similar behavior has been found by Haake and co-
worker in the dynamics of a kicked nonlinear top. '

During the period of free evolution between the kicks,
the system dynamics is determined by the Hamiltonian®

HNL-g(a*)zaZ, (1)

where y is proportional to the third-order nonlinear sus-
ceptibility and a,a' are the complex amplitude operators
for the field. These operators obey the commutation rela-
tion [a,a']=1. In terms of dimensionless “position” and
“momentum” operators (or quadrature phase operators)
(Xl,Xz), a "Xl +iX2.

The Heisenberg equation of motion for a is

_d_(l - — 7 t
= iya'aa )

(units have been chosen such that 2 =1). As the energy
operator a 'a is a constant of motion, Eq. (2) has the solu-
tion

a(t) =e ~ia'ag(0) 3)
where u=yL/c, with L the interaction length of the non-
linear medium and c the speed of light. Equation (3) de-
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scribes an energy-dependent phase shift.
The parametric kicks are described by the Hamiltoni-
9

an

H,(-mg(a"—ah. (4)

In writing this Hamiltonian it is assumed that the pump
carrier frequency is twice that of the field oscillator and a
transformation to an interaction picture has been made.
The coupling constant x is the product of the pump field
amplitude and the second-order nonlinear susceptibility in
the parametric gain medium. Thus « is increased by in-
creasing the pump amplitude.

The Heisenberg equation of motion following from Eq.
(4) is

da _ .t
2K (5)
(and a corresponding Hermitian conjugate equation).
The solution is
a(t) =a(0)cosh(r)+at(0)sinh(r), )

where r=xt. (In the case of a pulsed pump field r is
determined by the integrated time-dependent amplitude
of the pump.) Equation (6) may be written in terms of
the Hermitian phase-space operators:

X () =e"X,(0)=gX,(0), (72)

Xy(t) =e "X, (0)= ézfrz(m , (7b)

where g=e’ is the parametric gain.

To define the corresponding classical equations we re-
place the operators (a,a’) and (X,,X,) by classical com-
muting phase-space variables (a,a*) and (X,X,).!" The
classical analogues of Eqs. (3) and (6) are then

a(t) =e ~12lq(0) , (8)
and
a(t) =a(0)cosh(r)+a*(0)sinh(r), 9

where a =X+ iX,. Combining Eqs. (8) and (9) the clas-
sical map for the variables (X|,X,) may be written

Xi g 0 cos(uR?) sin(uR?) | [X) (10)
X3 0 1/g) | —sin(uR?) cos(uR?) | |X2)"’ 10
where R2=X?+ X3.

In Figs. 1(a) and 1(b) phase portraits of the system for
two values of the gain g are shown. Clearly evident in Fig.
1(a) are two period-one fixed points near the origin.
(There must be two as the map is symmetric under
X1— —Xi; X2— —X3.) Various island chains of odd
and even order occur. Further from the origin is a
period-two fixed point beyond which chaotic unbounded
trajectories occur. Regions of chaotic behavior are clearly
evident in Fig. 1(b).

The quantum map is better specified in terms of the
change in the state vector rather than the system opera-
tors (i.e., in the Schrodinger picture rather than the
Heisenberg picture). The change in state after free evolu-
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FIG. 1. Classical phase portrait of the map in Eq. (10); (a)
g=1.2, 4 =0.01x (b) g=1.5, u=0.01x.

tion and a kick is then given by
ly)=Uly),

where the quantum description is provided by the unitary
operator

U =exp lé[(a*)z—azl]exp[—i%(a")zaz] . an

The initial states for the quantum analysis were chosen to
be coherent states |a), which may be expanded in terms
of the energy eigenstates of a free oscillator as

had n
|a)-e—la|2/2 3 a_|,,).

2 (12)
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The quantum dynamics was determined by writing the unitary operator in Eq. (11) in the number basis {| n)} with, of
course, some suitable truncation. In this basis the matrix elements of U are

’

N 2, 1/2
SR+, @~ Pliexp | —ib(m?—m) ZO(—l)P('B") d Lmtnl]
=

P (R—2p)p+ +(Q@—R)I!
(n|U|m)= piptzie 13)

. —misev
0, n—m isnoteven, n s even,

f
where g =coshr, A = § tanhr, R =min (n,m), Q =max(n, tem evolved numerically by repeated application of the

m), and truncated matrix. The truncation is chosen sufficiently
large to ensure that the state after every kick is very close-
+1, n=m, X . .
S mm)/2 (14) ly normalized to unity. (In practice, n =51 was found to
(=D ,n<m, be satisfactory.)
In Figs. 2(a) and 2(b) the mean photon number versus
N= R/2, if n and m are even, kick number are shown. The parameters in each case are
R—1/2, if n and m are odd . (15 chosen as in Figs. 1(a) and 1(b), respectively. In Fig.
2(a) the initial state was taken to be the vacuum state
The initial state in Eq. (12) is also truncated and the sys- (a=0). Classically one expects an initial distribution of
@)
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FIG. 2. Mean photon number {a'a) vs kick number for an initial coherent state |a); (a) a=0, g=1.2, u=0.01m; (b) a=1.0,
g=1.5, u=0.01x.
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points centered on the origin to split, moving along the hy-
perbolic orbits about the origin, eventually becoming
evenly distributed around each period one fixed point,
leading to a steady-state mean photon number. The quan-
tum result, however, clearly indicates regular collapses
and revivals, as expected for a regular region. For initial
states in regular regions further from the origin (e.g., at
the four-island chain) regular collapse and revival is still
observed with a very wide separation in time (not shown).
In contrast, in Fig. 2(b) an initial coherent state was
chosen in the chaotic band surrounding the two fixed
points in Fig. 1(b). The mean photon number is now seen
to undergo a very irregular collapse and revival sequence
centered on a mean photon number of approximately ten.
Such an irregular recurrence sequence was also reported
in Ref. 2.

Is this system practical? The gain parameters used in
Figs. 1(a) and 1(b), 1.2 and 1.5, respectively, are quite
modest corresponding to a squeezing reduction of vacuum
fluctuations of 30% and 56%, respectively. These values
have been achieved in experiment.® The nonlinear phase-
shift parameter can be scaled out of the equations by
x;=u'2X; for i=1,2. Thus decreasing u produces the
same phase-space structure but at larger scales, i.e., larger
mean photon number. We can estimate a photon number
scale as follows. In the units used here, 4 is given by®

_3ho® L

K 4edV c

’

V the interaction volume, and 1(3) the third-order suscep-
tibility. In SI units a very modest value for z© is 10 ~3!
(corresponding to about 10 ~!2 esu). At optical frequen-
cies we then find u ~3% 10 ~'7. The mean photon number
scale then is proportional to u ~!, i.e., ~10'® photons.
This is at the upper end of a cw laser scale but easily
achievable in a pulsed experiment. Of course a higher
third-order nonlinearity would make the experiment
easier. In conclusion, it seems that a practical realization
of the scheme described in this paper is easily within the
reach of current technology.

The real problem in searching for coherent quantum
structure, however, is dissipation. The crucial question is
the time scale of quantum recurrences compared to the
dissipative decay rates. In the cavity configuration one
could use very high Q cavities, as the mean photon num-
ber inside the cavity may be monitored by determining
depletion of the pulsed pump field of the parametric
amplifiers and the pumpfield does not couple to the cavity
through the cavity mirrors. Including small dissipation,
the map turns fixed points into attracters but chaos can
still be found for certain parameter ranges. This work will
be published elsewhere. If the decay is not too large some
coherent recurrence features may still be observed. Thus
one requires low loss materials with a high third-order op-
tical susceptibility.
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