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Ground-state dtlJ, fusion rate and sticking probability using perimetric coordinates
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The ground-state energy, fusion rate, and sticking probability are calculated using a Laguerre po-
lynomial basis. The results are compared with previous calculations, and the advantages are point-
ed out.

We report the results of a calculation where a Laguerre
polynomial basis similar to that used by Pekeris' in
helium-atom calculation has been applied to the ground
state of the (dt's)+ molecular ion. The variational wave
function is
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The N s are triplets of non-negative integers. The y's are
nonlinear variational parameters. r&, r2, and r3 are inter-
particle distances. r3 is the internuclear distance. r, and
r2 are distances between muon, deuteron and muon, tri-
ton, respectively. The perimetric coordinates x; are given
by

x;=(yj+yk)(r +rk —r, ),
where i, j, and k are distinct integers in the range from 1

to 3. The generalized Laguerre polynomials LN "(x, )
t

used in Eq. (1) lead to a sparse kinetic energy matrix and
the Hamiltonian matrix is well behaved, so that very
large variational expansion can be used without double-
precision computation. We have used nearly 3000 terms.
The matrices showed no sign of any ill condition. Ex-
tremely accurate sticking probability for the

(dt's)+

sys-
tem is obtained very economically.

The masses used are given in Table I. The nonlinear
parameters are listed in Table II. The parameters used to
determine the number of terms in the variational expan-

sions are given in Table III, so that our wave function
can be reproduced easily.

The linear variational parameters A (N„Nz, N3) and
the variational energies are obtained using a variational
iterative method described in detail in Ref. 2. The stick-
ing probability and fusion rates are obtained using sud-
den approximation where the (dt's)+ wave function at
the nuclear coalescence point is given by setting r3 =0,
x, =x2 =0, and r, = rz = r The.n Eq. (1) becomes

P(r) =
(Ni, N2, N3)

8A (O, O, N3)LN "(x3)

X exp[ —(y&+y2)r] . (3)

The normalized wave function for the initial state of the
muon (relative to the coalesced nuclei) is

1/2
ttp;(r)=p(r) f 4trr dr~&(r)~ (4)

R„&(r) is the radial function of the p He atom, j&(Qr) is a
spherical Bessel function, and Qa„=5.844 (Ref. 6) (a„ is
the muon Bohr radius). The Bessel function arises from a
partial wave decomposition of the plane wave that
represents the relative motion between p He and the
ejected neutron after the nuclear reaction. The total
sticking probability is

TABLE II. Nonlinear parameters in the trial wave function.

The sticking probability for a transition to a p He atom
in the quantum state nl is given by ' '

2
to„t=4n(21+1) f P, (r)R„t(r)jt(Qr)r dr

Index
L

TABLE I. Particle indices and masses.

Type of particle
Mass ratio'

m, /m,

Particle
indices'

1,2
23
3,1

Nonlinear parameter
[(units of a„) ']

y3 =0.997
y l =0.931
y2 =0.981

triton
deuteron

muon

'Where m, is the mass of an electron.

5496.918
3670.481
206.769

'These indices refer to the particle listed in Table I.
The trial wave function contains a factor exp( —y;r;) for each

inter-particle distance r; (where r, for example is the distance
between particles 1 and 2).
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Parameters of constraints
E3 E3

Number of
basis functions

11
12
12
13

10
11
12
12

10
11
12
12

22
24
26
28

1287
1652
1977
2565

~s nl .
n, l

(6)

Analytical integration of co„l is obtained for I 4 and
n & 30 for the sake of comparison with previous calcula-
tion. The fusion rate A,I is described in detail in Ref. 7
where

A, =8.0X 10' a„sec

I = 4mr r r (7)

Table IV summarizes the results of energies, fusion
rates, and sticking probabilities obtained using five varia-

TABLE III. Number of basis functions and constraints on
the four variational functions used. K&,E2,E3 are the max-
imum order of the three Laguerre polynomials.
+tOt ~ Nl +N2+N3 ~

tional wave functions of Eq. (1) ranging from 1287 to
2565 terms. The energy has been stabilized to 11 digits
when the trial wave function has 2000 or more terms.
This is more accuracy than is necessary, since the masses
are only given to six to seven digits and the Rydberg to
eight places. However, a large expansion is necessary for
convergence in the sticking probability. It is noted that
the fusion rate 0.72X10' sec ' obtained in this calcula-
tion agrees remarkably well with our previous calcula-
tions, ' which used a very different generalized
Hylleraas-type basis. The 500-term wave function in Ref.
7 gave a fusion rate of 0.71X10' sec ', and the 695-
term wave function in Ref. 8 gave the value 0.73X10'
sec '. It is also noted that the fusion rates and the stick-
ing probability converge much faster in our old basis
despite its dependence problem. This is due to the large
number of terms that are nonzero at the nuclear coales-
cence point.

In Table V, the sticking probabilities obtained with the
present variational function are compared to similar
large-basis results. The latter variational function is also
a generalized Hylleraas basis similar to our old basis. But
the authors overcame the dependence problem using ex-
pensive computation techniques. The present basis does
not have the dependence problem. All wave functions

TABLE IV. Results of variational calculations 1 Ry=13.605 804 eV was used. Sticking probabilities are given for two values of

Number
of terms

N
Energy

(eV)
Fusion rate
(10' sec ')

Total sticking probability' co, (%)
Qa„=5.844 Qa„=5.846

1287
1652
1977
2201
2565

—319.140 125 355
—319.140 125 405
—319.140 125 434
—319.140 125 438
—319.140 125 432

0.720
0.714
0.716
0.717
0.717

0.8978
0.8851
0.8841
0.8843
0.8843

0.8961
0.8834
0.8824
0.8826
0.8826

'All sticking calculations have been carried out to n & 30, 1 & 4. All other terms contribute 0.0006%%uo', that is,
y30 gmax(n —1,4) +p ppppp6

TABLE V. Muon sticking probabilities compared to previous calculations [N„i(%)].

nl

1s
2$

2p
3$

3p
3'
4s
4p

4d +4f
5s

All others
Total

Present work'
Qa„=5.846

0.6800
0.0975
0.0237
0.0296
0.0085
0.0002
0.0126
0.0038
0.0001
0.0065
0.0195 +0.0006'
0.8826

Ref. 9
Qa„=5.846

0.6826
0.0979
0.0238
0.0297
0.0086
0.0002
0.0127
0.0039
0.0001
0.0065
0.0200
0.8860

Ref. 10
Qa„=5.846

0.6825
0.0978
0.0238
0.0297
0.0086
0.0002
0.0127
0.0039
0.0001
0.0065
0.0200
0.8859

'Results for wave function with N =2565 terms.
Calculated for n 30, 1 4.

'Estimated for all n )30, 1 & 4.
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are obtained using 14-place single precision in a Cray
computer.

The set of input masses used in the present calculation
are slightly different from that used in Ref. 9 (different in
the seventh place at the most). We used their masses in a
695-term calculation and found that the sticking proba-
bility differs only in the seventh place. It is completely
negligible compared to the 0.004%%uo difference in co, be-
tween the two calculations as shown in Table V. We used
the same Qa„value for the sake of comparison. The
value of co, is very sensitive to the value of Qa„used.
This can be seen from the two values of Qa„ listed in
Table IV.

Using his large basis variational wave function, Kam-
imura' also obtained a sticking probability of 0.8859%.
It appears that co, has converged to at least two

significant digits.
Our energy of —319.1401 eV agree with at least

three "" completely different variational calculations
using the same sets of masses. We have shown that the
Laguerre polynomial basis provides an efficient and
economical precision calculation of the (dt's)+ ground-
state properties.
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