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A theory for ultrafast pump-probe spectroscopy of large polyatomic molecules in condensed

phases is developed. A multimode Brownian oscillator model is used to account for high-frequency

molecular vibrations and local intermolecular modes as well as collective solvent motions. A semi-

classical picture is provided using the density matrix in Liouville space. The pump field creates a

doonoay state that propagates for a specified time interval, and the spectrum is calculated by finding

its overlap with a window state, prepared by the probe pulse. The doorway and the window states

are wave packets in phase space. For high-frequency modes and with long pulses they are expanded

in the vibronic eigenstates, whereas for low-frequency modes and with impulsive pulses the signer
(phase-space) representation is more adequate. Conditions for the observation of quantum beats,

spectral diffusion, and solvation dynamics (dynamical Stokes shift) are specified.

I. INTRODUCTION

Time-resolved optical measurements using picosecond
or femtosecond pulses provide a novel probe for molecu-
lar nuclear motions and elementary photophysical and
photochemical events. 100 fs laser pulses have been re-
ported in 1981 and pulses as short as 6 fs are now being
used. ' Since the duration of such pulses is comparable to
or shorter than typical molecular vibrational periods (the
period of a 330-cm vibration is 100 fs), it becomes pos-
sible to observe molecular vibrations and other nuclear
motions in real time. Nuclear motions on the fem-
tosecond time scale have been observed in neat
liquids, in solids, in solution, ' ' in dye-doped
polymer films, ' and in isolated molecules in supersonic
beams. ' ' Molecular vibrations in condensed phases are
subject to dissipative (friction) forces resulting from cou-
pling to other intermolecular and intramolecular degrees
of freedom. High-frequency vibrations undergo a
coherent motion for many periods whereas low-frequency
vibrations are usually overdamped and undergo diffusive
(incoherent) motion. Coherent vibrations may show up
in femtosecond spectroscopy as quantuin beats. Quan-
tum beats constitute the simplest example of quantum-
mechanical interference. When two levels are excited
coherently and emit to a common final level, the emission
spectrum oscillates with the two-level frequency. Mi-
crosecond to nanosecond quantum beats are well known
in atomic Zeeman spectroscopy. It has been demon-
strated that using a femtosecond excitation one can readi-
ly observe beats in very large dye molecules at room tem-
perature and in condensed phases. The techniques most
commonly used are the impulsive-stimulated light scatter-
ing, ' ' ' pump-probe absorption, ' ' ' and time-
resolved fluorescence. ' ' '

In the impulsive scattering technique two laser pulses
with wave vectors k& and k2 interact simultaneously with
the sample, creating a transient grating with a wave vec-
tor k ] k2. After a delay time ~, a third pulse with wave

vector k, is scattered from the sample, and the signal
with wave vector 2k& —k2 is detected. The laser pulses
are usually tuned way off resonance from any optical
transition and the signai is then related to the Fourier
transform of the spontaneous Raman experiment. Nel-
son and co-workers first applied the impulsive stimulated
emission technique to study acoustic phonons in glasses
on the picosecond time scale. Subsequent femtosecond
studies were then performed on a variety of systems, in-
cluding optical phonons in molecular crystals, s and in-
tramolecular, orientational, and intermolecular motions
in molecular liquids. Coherent vibrational motion in
liquid CHzBrz was observed by Ruhman, Joly, and Nel-
son using a two-pulse off-resonant experiment. The
transmitted probe intensity shows a 173-cm oscillation
corresponding to a bending mode fundamental. This
reflects a periodic spectral shift in the transmitted probe
field as the delay time ~ is varied. Therefore the phase of
the beats depends strongly on the optical frequency of ob-
servation. More recently it has been shown that multiple
femtosecond pulse sequences may improve the mode
selectivity of these experiments.

The first terahertz oscillations in saturated resonant ab-
sorption using two pulses was observed by Tang and co-
workers in malachite green (MG) and several other tri-
phenyl methane dyes in solution using 40-fs optical
pulses. " The combined transmitted intensity of the
pump and the probe is measured as a function of the
pulse delay time ~. The same group further measured the
frequency dispersed signals of ethyl violet in solution. '

In contrast to the off-resonance case, the phase of this
quantum beat signal does not vary substantially with the
dispersed frequency. Fragnito et al. reported recently
the probe absorption of MG in solution using 6-fs optical
pulses, showing coherent vibrational motions in the
1200—1600-cm ' frequency range. ' Chesnoy and
Mokhtari performed a variety of polarization-sensitive
resonant probe absorption measurements on MG in solu-
tion. ' These techniques allow the separate measurement
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of the absorptive and the dispersive contributions to the
molecular polarization induced by the excitation pulses.
Excited-state and ground-state molecular dynamics were
then resolved.

The vibrational quantum beats observed in all of these
experiments contain simple damped harmonic oscilla-
tions with periods of only a few molecular vibrations.
These observations raise many interesting questions such
as the following: How does the experiment select a single
vibrational mode? Do the beats represent ground-state or
excited-state evolution? What is the role of coupling to
the medium (homogeneous, inhomogeneous broadening,
and spectral diffusion processes) in these measurements?
Nelson and co-workers ' interpreted their off-resonant
impulsive stimulated experiments with a phenomenologi-
cal model based on a damped and impulsively driven har-
monic oscillator evolving in the ground electronic state.
The driving force is induced by the impulsive coupling of
the molecular transition dipole and the pump pulse. The
probe field then interacts with the driven oscillator in and
out of phase periodically. If they are in phase, the probe
field will lose energy to the medium (red shift}, while if
they are out of phase, it will gain energy from the medi-
um (blue shift). The role of the solvent is described, in
this model, by a frictional damping constant. The driven
oscillator model does not apply for the interpretation of
impulsive resonant experiments where excitation process-
es create a significant population in the electronic excited
state and the molecular dynamics in both the electronic
ground and excited potential surfaces may be important.
Stock and Domeke ' and Fragnito et al. ' interpreted the
excited-state vibrational dynamics as a coherent motion
of a nuclear wave packet in the electronic excited state.
The coupling to the solvent motion may not be included
in this wave-function formalism. Theoretical treatments
which apply to both the resonant and the off-resonant ex-
periments were made by using the Bloch equation for the
density matrix. ' ' ' ' These treatments use up to four
vibronic levels (two in the ground state and two in the ex-
cited state). The solvation dynamics are incorporated
through homogeneous broadening (electronic dephasing),
inhomogeneous broadening, and the vibrational dephas-
ing processes.

In this paper we present a unified theory of time-
resolved pump-probe spectroscopy using a microscopic
correlation function approach. The molecular dynam-
ics is calculated in Liouville (phase) space using the
Wigner representation for nuclear motions. ' For the
sake of clarity we consider an ideal situation in which the
pump and the probe are well separated in time. This al-
lows us to ignore the coherent artifact which complicates
the interpretation (although it can be included if neces-
sary}. ' The rate of solvent relaxation, compared to the
pulse durations, can either be very short, resulting in
pure electronic dephasing processes (homogeneous
broadening); intermediate, showing spectral diffusion pro-
cesses; or very long, resulting in the inhomogeneous
broadening. The following picture for pump-probe spec-
troscopy is developed in this article: We consider the
relevant phase space of the system. This can consist of
the relevant vibrations, solvent modes, etc. The pump

pulse interacts with the system and creates a nonequili-
brium density matrix which then evolves in time for a
period r (the delay between the pump and the probe).
This density matrix is called the doorway function W. e
further need to define a window function. This is a
phase-space distribution which the probe pulse is moni-
toring. The probe absorption is calculated by evaluating
the phase-space overlap of the doorway and the window
functions. The main advantages of the present theory are
as follows. First, it is valid both for resonant and off-
resonant experiments. Second, it allows the incorpora-
tion of solvation dynamics with arbitrary time scales [in-
cluding spectral diffusion processes, which are responsi-
ble for the spectral (Stokes) shifts, homogeneous,
and inhomogeneous broadening processes]. Third, the
molecular dynamics are formulated in phase space and
can be easily evaluated semiclassically. This way we
avoid the tedious multiple summations over eigenstates
which restrict the usage of eigenstate based expressions to
small systems. Finally, the present results, which are
based on the nonlinear response function, can be directly
applied to other related nonlinear spectroscopies.
The present theory provides a transparent physical pic-
ture of tine-resolved pump-probe experiments and is val-
id for an arbitrary excitation pulse duration. In the im-
pulsive pump limit, in which the duration of the pump
pulse is much shorter than the molecular dynamics, the
coherent vibronic motion in phase space is monitored.
The present theory, in this case, recovers the wave-packet
results. ' ' Moreover, in the off-resonant configuration,
the present theory reduces to the driven oscillator mod-
el. ' When the pulse duration is short and comparable
to the nuclear dynamics, only a few vibronic levels are
coherently excited, and the present theory recovers the
earlier treatments of quantum beats using the vibronic
level representation. ' ' ' ' In the other limit, where
the pump duration is long compared to the nuclear
motions of the chromophore but short compared to the
solvent reorganization processes, the present formalism
recovers the theory of time-resolved hole burning. In
this case, only the diffusive solvation dynamics as well as
the vibronic populations of the chromophore are probed.
The present formalism applies also to femtosecond spec-
troscopy in isolated molecules in supersonic beams where
bond breaking, nonadiabatic transitions, and quantum
beats have recently been reported. ~ It also offers an
insight on recent schemes suggested to achieve laser con-
trol of molecular reactions. '

The remainder of the paper is organized as follows. In
Sec. II we develop the basic formal expressions of the
nonlinear optical polarization P' ' and for probe absorp-
tion using the doorway and the window functions. The
doorway function depends on the pump pulse shape
whereas the window function depends on the probe pulse
shape. In Sec. III we consider a simplified limiting case
in which the doorway and the window functions depend
only on the pulse frequencies but not on their temporal
profiles. The resulting bare spectrum is a useful concept.
Under very general conditions the observed spectrum
may be calculated by convoluting the bare spectrum with
either the temporal or the spectral intensity profiles of the
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incoming pulses. Formal expressions for the bare door-
way and the bare window functions using the vibronic
state representation are given. In Sec. IV, the optical sig-
nal is further represented in the Wigner phase space and
the molecular dynamics are calculated via the generalized
Langevin equations using a multimode Brownian oscilla-
tor model. In Sec. V we focus on the contribution of
low-frequency modes and solvation dynamics by consid-
ering strongly overdamped (diffusive) nuclear motions.
These coordinates may describe dielectric relaxation,
spectral diffusion, as well as the homogeneous and the in-
homogeneous broadening, depending on the magnitude
of their characteristic time scales and their coupling
strength to the electronic transition. In Sec. VI, we con-
sider impulsive spectroscopy and examine the coherent
vibrational motion in phase space. The effect of the sol-
vation dynamics on the beats signal is analyzed. We fur-
ther consider off-resonant impulsive spectroscopy where
non-Condon effects play an essential role. Finally, in Sec.
VII, we present general expressions for the probe absorp-
tion signal which hold for arbitrary pulse durations. Op-
tical selectivity controlled by the pump pulse duration is
discussed. As the pulsed duration increases, the experi-
ment varies from the impulsive configuration to the hole
burning configuration.

II. DOORWAY-WINDOW PICTURE
OF PUMP-PROBE SPECTROSCOPY

We consider a molecular system interacting with an
external electromagnetic field E(r, t). The total Hamil-
tonian of the system in the dipole approximation is

Hz =0—VE (r, t) . (2.1)

+E', (t +~)exp( ik, r+i Q, t—)

+E (t)zpe(xik r —ziQzt)

+Ez (t)exp( ikz r+iQz—t) . (2.2)

Here E, (t+~) and Ez(t) are the temporal envelopes of
the pump field and the probe field, respectively. The as-
terisk represents the complex conjugate. We shall further
introduce the Fourier transform of the optical pulse en-
velopes:

Here H is the molecular Hamiltonian in the absence of
the external field. The second term in Eq. (2.1) represents
the molecule-field dipolar interaction with V being the
molecular dipole operator. We shall consider V and E to
be scalar quantities. Their vector nature is important
when studying orientational effects which can be detected
by varying the polarization of the light fields. ' These
effects will not be considered in this article. In a pump-
probe experiment the system is subjected to two light
pulses: the pump pulse whose frequency is centered
around 0,, and the probe pulse whose frequency is cen-
tered around 02. The external field is then given by

E(r, t)=E, (t+r)exp(ik, r —iQ, t)

E (to ).=(2m )
' f dt exp[i(coj. —QJ )t]Ei(t),

j=1,2. (23)

We assume that the pump pulse is peaked at time t = —~,
while the probe pulse is peaked at t=o. The time delay ~
of the probe pulse with respect to the pump pulse can be
continuously varied, allowing the probe to interact with
the system either before (~ (0) or after (~)0} the pump
field.

In this paper we shall calculate the probe difference ab-
sorption, defined as the total probe absorption in the
presence of pump minus the probe absorption in the ab-
sence of the pump. ' ' ' ' The probe absorption is
commonly detected using one of the following two
schemes. In the first scheme the total integrated intensi-
ty ""' ' ' of the transmitted probe field is measured
and the integrated signal S(Q„Qz,r) is obtained as the
function of the delay time r and Qz, the center frequency
of the probe field. We then have

S(Q~, Qz, r)= —2Im f dt Ez (t)P' '(kz, t}

—:f d tozS'( Q „Q» toz, r), (2.4a)

Here, P' '(kz, t) represents the polarization in the optical
medium, induced by the third-order interaction with the
external field with wave vector k2= —k, +k, +kz. It
should be noted that this is the same polarization which
is probed in the impulsive-stimulated light-scattering ex-
periments with a three pulse excitation schemes. ' In
Eq. (2.4a), S'(Q„Qz, coz, ~) represents the differential sig-
nal obtained by the second detection scheme, in which
the transmitted probe field is dispersed through a mono-
chrometer and the signal is measured as a function of the
dispersed frequency co&. ' ' ' The formal expression
for S' may be obtained by solving the Maxwell equation
using the polarization field P' ' as a source. ' It can
also be derived by performing a Fourier transform of Eq.
(2.4a) resulting in

S'(Qi, Qz', toz, w)= —21m' z(coz)P ' '(toz} . (2.4b}

Hereafter we shall consider only the integrated signal
[Eq. (2.4a)]. The calculation of Eq. (2.4b) is straightfor-
ward using the quantities derived in this article.

Equation (2.4) is general and is valid for an arbitrary
molecular system. We shall now specify our molecular
system and consider a polyatomic molecule with two
electronic states, embedded in a solvent. The material
Hamiltonian and the electronic transition dipole in Eq.
(2.1) assume the form

H = Ig &H, & gl+ I
e &0, & el,

v=p(lg &&el+le &&gl)

(2.6a)

(2.6b)

Here Pz(toz) is the probe field amplitude [Eq. (2.3)], and
P ' '(coz) is the toz Fourier component of the third-order
polarization,

P' '(coz)=(2n. )
' f dt exp[i(coz —Qz)t]P"'(kz, t) .

(2.5)
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Here H and H, are the adiabatic nuclear Hamiltonians
of the molecule and the solvent in the ground and in the
excited electronic states, respectively. p is the electronic
matrix element of the dipole operator which depends on
the nuclear coordinates. We shall further assume that in-
itially the system is in thermal equilibrium in its ground
electronic state, i.e.,

p( — )=Ig &p, &gl . (2.7)

Here p is the equilibrium nuclear density matrix in the
ground state. We further introduce the Liouville space
Green's function 0 (t) defined by its action on an arbi-
trary dynamical variable A,

(t) A =exp( iH —t) A exp(iH t), m =g, e . (2.8)

In this paper we shall calculate the probe absorption
[Eq. (2.4)] when the probe field is well separated from the
pump field (i.e., the duration of both pulses is much
shorter than their relative delay time r). This condition
implies that the system first interacts with the pump field
and then with the probe field. In the Appendix we calcu-
late the probe absorption signal [Eq. (2.4a)]. Within the
rotating-wave approximation, the resulting spectrum is

S(Q, , Qz;~}=Tr[ k, (Qz)Q„(~)8,(Q, }]

+Tr[ ks(Qz)Qgs(r)8g(Qi)], (2.9)

where

8,(Q, )=f" dt' f dt, E, (t')E, (t' —t, )exp(iQ, t, )
00 0

X [exp(iH, t')exp( iH, ti )pp—s

Xexp(iHgti)juexp( &H, h')]+H—c.
(2.10a)

Bs(Qi) =f dt' f dt, E;(t')E, (t' —t, )exp(iQ, t, )

X [exp(iH t')}u exp( iH, t, )p—p

Xexp( iH t, }exp( iHs t '
)]+H—.c. ,

(2.10b)

+H. c. ,

@;(Qz)=f dt f dt3Ez (t+t3)Ez(t)exp(iQzt3)
00 0

X [exp(iH, t)p exp(iH t3 )iz

X exp( iH, t3 )exp( —iH, t)]—
(2.11a)

k (Qz)= f dt f dk3Ez(t+t3)Ez(t)exp(iQzt3)

X [exP(iHst)exP(iHst3 )P

X exp( iH—, t3 )p, exp( iH—
g h)]

+H. c. , (2.11b)

Here H.c. denotes the Hermitian conjugate. Two-sided
Feynman diagrams representing the probe absorption
[Eq. (2.9)] are given in Fig. l.

Equation (2.9) provides the following physical picture
of the pump probe experiment. The pump field transfers
a fraction of the molecules from the ground state to the
excited state, creating a "particle" in the excited electron-
ic state, and a "hole" in the ground electronic state. The
density matrix representing the particle and the hole is
given by doorway operators 8, and Bg, respectively.
Similarly, the probe field creates the window operators,
@; for the particle and k for the hole. All the opera-
tors 8„8,@'s, and @', are Hermitian. The first term in

Eq. (2.9) represents the particle contribution to the probe
absorption which is simply given by the overlap of the
particle doorway, propagated for the delay time ~, with
the particle window. The propagation takes place on the
excited potential surface and is represented by Q„(z.).
The hole makes a similar contribution with its own door-
way and window operators and with the propagation tak-
ing place on the ground-state surface, as given by 9 (z.)

This contribution is the second term in Eq. (2.9). Note
that the doorway operators [Eq. (2.10)] contain the equi-
librium density matrix pg whereas the window operators
[Eq. (2.11)] can be obtained from the doorway operators
by interchanging the fields E, and E2 and by replacing
the ground-state density matrix pz with the unit operator.
In that respect the window operators correspond the
infinite temperature limit of the doorway operators.

The frequency dispersed detection scheme [Eq. (2.4b)]
leads to an expression similar to Eq. (2.9) with the win-
dow operators k, (Qz) and ks(Qz) replaced by
4,'(Qz', coz) and k t(Qz', eoz), respectively,

@',(Qz,'toz)=(2~) ' Ez (hoz) f dt f dt3Ez(t)exp[i(coz —Qz)t]exp(t'tozh3)—oo P

X [exp(iH, t)p exp(iHgt3)iz exp( iH, t3)ex—p( —iH, t)]+H.c. ,

g(Qz, toz)=(2~') '"Ez (o3z)f" dh f "dt3Ez(t)exp[i(hoz —Qz)t]exp(icozt3)
QO 0

X[exp(iH~t)exp(iHgt3)@exp( iH, t3)@exp( iH—t)]+H.c.—

(2.12a)

(2.12b)

We shall not consider this detection scheme any further
in this article.

Equations (2.9)—(2.11) constitute our final formal
doorway-window picture of pump-probe spectroscopy.
In this picture the fourfold temporal integrations implied
in Eqs. (2.4), (2.5), and Eq. (Al) are factorized into a two-

fold integration for the doorway function and a twofold
integration for the window function. We reiterate that
the only approximations made in the derivation of Eqs.
(2.9)—(2.11) are the assumption that the pulses are well
separated in time and the rotating-wave approximation.
The off-resonant terms neglected in the rotating-wave ap-
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FIG. 1. Four double-sided Feynman diagrams representing
the probe difFerence absorption [Eq. (2.9)] in the rotating-wave
approximation (Refs. 40 and 42). The left and the right vertical
lines represent the ket and the bra of the density matrix, respec-
tively, and the time runs from bottom to top. The wavy arrow
represents a matter-field interaction. The complex conjugate
contribution can be obtained by exchanging the ket and the bra.
Diagrams (a) and (b) together with their complex conjugates
represent the "particle" dynamics in the excited electronic state
[the first term of Eq. (2.9)], whereas diagrams (c) and (d) togeth-
er with their complex conjugates represent the "hole" dynamics
in the ground electronic state [the second term of Eq. (2.9)]. t„
t„and t3 represent the time intervals between the successive
matter-field interactions. The relevant time scale of t& and t3 is
controlled by the electronic dephasing, and t2 =~+ t —t'. Here,
r is the delay time. t, and t' are bounded by pump duration [cf.
Eq. (2.10)],while t, and t by probe duration [cf. Eq. (2.11)].

proximation may be important in impulsive experiments
or for off-resonant excitation. In this case, we should use
the more general expressions [Eqs. (A7)] for the doorway
and window which contain three additional terms to Eqs.
(2.10) and (2.11). Equations (2.9)—(2.11) will further be
simplified in the following section by considering special
conditions which usually hold in current pump-probe ex-
periments.

III. PROBE ABSORPTION:
VIBRONIC STATE REPRESENTATION

In this section we consider some typical experimental
situations in which the calculation of the probe absorp-
tion is considerably simplified.

A. Bare spectrum:
Pulses short compared with nuclear dynamics
and long compared with electronic dephasing

The final expression for the spectrum [Eqs. (2.9)—(2.11)]
has four time integrations. As illustrated in Fig. 1, dur-

exp(kiH t')=exp(+iH t)=1, m =g, e . (3.1)

(ii) Since the dephasing time scale is much shorter than
the pulse durations, we can neglect the variation of the
external pulses on the t and t3 time scales, resulting in

E f (t')E, (t' —t, }=lE, (t')l'

Ef (t+t, )E,(t)=iE, (t)i' .

(3.2a)

(3.2b)

When approximations (i} and (ii) are introduced in Eqs.
(2.10) and (2.11), the spectrum [Eq. (2.9)] becomes (up to
a proportionality factor)

So(Q,Q2;r) =Tr[ k, (Q2)Q„(r)D, (Q, )]

+Tr[$' (Q~)Q (r)B (Q, )], (3.3)

with

D, (Q, ):—f dt, exp(iQ, t, )

X [exp( iH, t& )pp exp(i—H t& ))Lt]+H.c. ,

(3.4a)

8 z(Q, )
—= I dt, exp(iQ, t, )

0

X [p exp( iH, t
&

)pp exp(iH—
& t, )]+H. c. ,

(3.4b)

ing the time periods t, and t3 the system is in an optical
coherence (p,z or pz, ) whereas during the time periods t,
t', and r is in a population (p„or p ). The relevant mag-
nitude of these time scales depends on the laser pulse
duration (E& controls t, and t', E2 controls t3 and t} as
well as on the relevant dynamics of the system being
probed. Let us ignore for a moment the pulse influence
and concentrate on the molecular system. The time evo-
lution of the coherence includes a time-dependent phase
arising from the nuclear degrees of freedom. This phase
depends on the initial configuration of the nuclei. When
an ensemble average is performed over these initial condi-
tions it results in an irreversible fast decay known as pure
dephasing. Consequently, the time scales t, and t3 are
dominated by the pure dephasing processes and are very
short. During the ~, t, and t' periods the system is in an
electronic population (p„ for the particle and pz for the
hole). The relevant time scale of nuclear motion is typi-
cally much longer than the dephasing time scale. The
simplified picture given below holds when the dephasing
time scale is much shorter than the molecular dynamics,
and the pulse durations are adjusted to be intermediate
between these two times scales. We then obtain the bare
spectrum, which describes an ideal situation in which the
pulses can be considered both monochromatic (with
respect to the relevant linewidth related to the inverse de-
phasing timescale) and infinitely short (with respect to the
molecular nuclear dynamics). Using the conditions
specific above, we make the following two approxima-
tions.

(i) Since the pulses are short compared with molecular
nuclear dynamics, we may neglect the molecular dynam-
ics during the time t' and t periods in the integrands of
Eqs. (2.10) and (2.11) by approximating
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g'o(Q~) = I dt, exp(iQ, t, }
0

X [@exp(iHg t3 )@exp( i—H, t3 )]+H C. ,

Bo(Q, )=i g Id)(bI QP(a}ib,p,,
d, b

g(QQ) = f tir3exp(iQ&&3 )
0

(3.5a) x
0& —

COd, +&y/2

X [exp(iH t3)p exp( iH—, t3 )p]+H. c.

(3.5b)

We shall denote S0 the bare spectrum. The name implies
that the spectrum does not depend on the light pulse
shapes and is an intrinsic molecular property (although
proper light pulses are essential in order to observe the
bare spectrum). Equations (3.4) and (3.5) define the bare
doorway and the bare window operators, respectively.
They are considerably simpler than their counterparts
[Eqs. (2.10) and (2.11)]since each contains a single (rather
than a double) time integration. In addition, they do not
depend on the light pulse shapes, but only on their fre-
quencies 0& and Q2.

In order to get a better feeling for the bare doorway
and window operators we shall expand them in a com-
plete basis set of the molecular vibronic eigenstates. We
denote the eigenstates of Hg by a, c, . . . , and 0, by
b, d, . . . , t.e.,

Q) COb ly/2

8', (Q, }=ig Ic)(aI g p,„p„.
c,a d

P(a)
Q( —co~, +i y/2

P(c)
Q ) coy~ i y /2

1

Q2 cob, +—i y /2

(3.7a)

(3.7b)

H Iv) =e.„Iv), v=a, c, . . . ,

H, I
v &

=&, I
v &, v= b, d, . . . .

(3.6)

Q2 —a)~, —iy/2

(3.8a)

We shall further denote the 0-0 electronic transition fre-
quency as co, (see Fig. 2). Using this basis set, we have

QP, bi b.
c,a b

x
Qz cob, +iy/2—

1

Q2 —cob, i y /2—

Id&

Ib&
sk

g&

/ Ic&

/ la&

(3.8b)

Here fico =—s„—e.„. is the energy difference between the
vibronic levels v and v'. P(v) is the thermal equilibrium
population of the vth vibronic level. y is the inverse life-
time of the excited electronic state.

When the pump excitation is tuned far off resonance
from the electronic transition, we expect the particle con-
tribution to the spectrum to vanish and the signal should
re6ect solely the hole dynamics in the ground state. In
order to see how this limit is obtained we shall examine
the asymptotic behavior of the doorway states following
an off-resonance pump excitation, in which the detuning
IQ, —co, I is much larger than the vibronic level spacings
in the same electronic state, cozb or co„, and Eqs. (3.7)
reduce to

FIG. 2. The molecular vibronic level scheme introduced in
Eqs. (2.6} and (3.6). Ia) and Ic) are vibronic levels correspond-
ing to the ground electronic manifold Ig ). I b ) and Id ) are vib-
ronic levels corresponding to the excited electronic manifold
I e ). co~ is the 0-0 electronic transition frequency.

8;(Q, )= y. I~&&il &P(a}pa.i.b
d, b (Q, —co,g)

(3.9a)
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80(Q, )= g ~c)(al gp„p,. ~ P(a)+P(c)
(Q, —co, )

+.P(a) P—(c)+r
1 eg

[Q~ COeg /
))Cd» (3.9b)

Both the excited-state doorway and the ground-state
doorway contain a real contribution that varies as
y/(Q, —co,g ) . The ground doorway contains in addition
an imaginary contribution that varies as I/(Ql —co,z).
For large detunings the real part vanishes much more
rapidly than the imaginary part not only due to the larger
power [(Q,—cu,s) versus (Q, —co,s) '], but also since
the damping constant y is usually frequency dependent
y(Q|) and it always vanishes for large off-resonance de-
tunings. Consequently, the excited-state (particle)
doorway state can be neglected for off-resonance excita-
tion and we need consider only the ground-state (hole}
doorway whose contribution is purely imaginary. It is in-
teresting to note that the vanishing of the real part is a
result of an interference between two Liouville space
pathways. It is the same interference that leads to the ab-
sence of excited-state frequencies in coherent anti-Stokes

exp( iH,—t )exp(iHg t ) =exp—( i Ut—),
with

(3.10a)

U=H, —B (3.10b)

as the potential energy difference between the two elec-
tronic surfaces. Upon the substitution of Eq. (3.10) in
Eqs. (3.3}—(3.5},we get

and

D, (Q, )=Ds(Q, )=2m~p, ,g~ 5(Q, —U)pg )

k, (Q2)= lVg(Q2)=2m. p,gi 5(Qz —U),

(3.11a)

(3.11b)

Raman (CARS) spectroscopy of isolated molecules.
When dephasing is added, the interference is no longer
fu11y destructive, which gives rise to dephasing-induced
extra-narrow resonances.

In concluding this section, we shall consider the classi-
cal limit, ' where we assume that the optical transition
occurs instantaneously, and further, the transition dipole
does not depend on the nuclear coordinates p(Q)=p, s
(the Condon approximation). It is better in this case to
use the forrnal expressions [Eqs. (3.4) and (3.5)] rather
than the eigenstate expansion. Neglecting commutations
in these equations we write (for t = t, and t3 )

So(Q&, Q2', r)=4m ~p,z ~ TrI5(Q2 —U)[exp( iH, r)5(—Q, —U}pgexp(iH, r)]I

+4m2~p, , ~ Tr[5(Q2 —U)[exp( iHgr)5(—Q~
—U)psexp(iHgr)]) . (3.12)

This result has a simple classical interpretation, related to
the classical Condon approximation, ' which states
that a photon 0 can be absorbed or emitted only in nu-

clear configurations with U =Q. Let us consider the first
term in Eq. (3.12). The initial doorway state is
-5(Q, —U)ps. Its subsequent evolution for the delay
period ~ is governed by the excited-state Hamiltonian H, .
This leads to the term in the square brackets. The probe
pulse creates a window function 5(Qz —U). The particle
contribution to the spectrum is given by the overlap of
the propagated doorway function with the window func-
tion. The second term in Eq. (3.12} can be interpreted
similarly except that the propagation during the ~ period
is given by the ground-state Hamiltonian 0 since this is
the ground state hole.

B. Pulses short compared with nuclear dynamics

XSp(N ), c02', r) (3.13)

C. Pulses long compared
with the electronic dephasing time scale

When the pulses are long compared with the dephasing
timescale we make only approximation (ii) [Eq. (3.2)] but
not (i). In this case the final signal may be expressed as
the temporal convolution of the total intensity of the
external fields with the bare spectrum,

pump field ~E~ ~
. Similarly, the window function

[Eq. (2.11}] is simply the spectral convolution of bare
window @' [Eq. (3.5)] with the spectral profile of pump
field ~E'2

~
. The signal [Eq. (2.9)] is then given by

We shall now consider the limiting case when the dura-
tions of both pulses are short compared to the time scales
of the nuclear dynamics of the system. We thus make ap-
proximation (i) [Eq. (3.1)] but not (ii). The doorway func-
tion 8 [Eq. (2.10)] is simply the spectral convolution of
bare doorway 8 [Eq. (3.4)] with the spectral profile of

S(Q„Q,;~)=f dr I(r—r)S,(Q„Q,;r),

with

1(r r)= f"—«'I&, ( 'rI)'I E( 'r+.—r)l'.

(3.14a}

(3.14b)
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D. Impulsive pump

This is the extreme of the case in Sec. III B, in which
we assume that the duration of pump pulse is short com-
pared with both the electronic dephasing and the nuclear
dynamics. The pump pulse can either be tuned near reso-
nance or off resonance with respect to the electronic tran-
sition. The signal [Eq. (3.13) or (2.9)] in the impulsive
pump limit can be expressed as

S(Q2', r)= f dco2iP2(co2)i

X [Tr[ W, (a)2)Q„(r)D, ]

XTr[ks(co2)Qss(r)Ds]] . (3.15)

Here we have assumed that the probe pulse is short com-
pared to the nuclear dynamics of the system (Sec. III B).
ko (co2) with m =g, e is the bare window function [Eq.
(3.5)] at frequency co2. The formal expression of doorway
D in impulsive pump excitation is different for resonant
and off-resonant conditions. In the following, we shall
consider the doorway state in both cases.

We shall first consider the doorway state in the reso-
nant impulsive pump limit. The analysis of the quantum
beat signals in this limit was discussed recently. ' ' In
this case we may represent the pump pulse by a 5 func-
tion

Ei(t) =8,5(t) (3.16a)

or

D =2pp~p

Dg [p ps +ps' 1 ~Qt ~eg ~
=~vv'

(3.17a)

(3.17b)

We now turn to consider the doorway state in the off-
resonant impulsive pump limit. In this limit, the pump
pulse is long compared with its inverse detuning; hence it
may not be considered to be a 5 function in time. In this
limit, as shown in Eqs. (3.9) and the discussion which fol-
lowed, the excited-state doorway vanishes and the
ground-state doorway retains only its imaginary contri-
bution. Up to a normalization factor, we have

(3.16b)

where ~8, ~
is the pump pulse area. The doorway for the

excited state [Eq. (2.10a)] and for the ground state [Eq.
(2.10b)], in the ideal impulsive pump limit, are simply (for

IV. BRO%'NIAN OSCILLATOR MODEL
FOR NUCLEAR DYNAMICS

In Eq. (4.1) and hereafter, we set the Planck constant
A'=1. Using the Wigner representation, the bare spec-
trum [Eq. (3.3}]can be recast in the form

So(Q& Q2'r)= f f dp dq W (Q2'p q)D (Q] &'p q)

+ f fdpdq W (Q2, p, q)Ds(Q&, r;p, q) .

(4.2)

The function D (Q&, r;p, q) is the Wigner representations
of the bare doorway operator propagated for the time v,
i.e., 9 (r)8 (Q, ), and W (Q2, p, q) is the Wigner rep-
resentation of the bare window operator k (Q2). We
have developed semiclassical equations of motion which
allow the numerical computation of these functions for a
general system with an arbitrary potential function.
These equations will be used in the following deviations.

We consider the following model for the molecular
Hamiltonian

H =—,
' g Aco (p +q ),

J

H, =
—,
'

+fico, [p +(q +d ) ]+fico,s .
J

(4.3)

In Sec. III we considered several limiting cases in
which the probe absorption signal [Eq. (2.9)] may be ex-
pressed in terms of the bare spectrum So [Eq. (3.3)],
which in turn was expanded in the molecular vibronic
eigenstates. Formally this is the simplest representation
and it is particularly convenient when only a few vibronic
eigenstates have a dominant contribution. When using
ultrashort pulses, or when the spectrum of molecular
eigenstates is very dense, the eigenstate representation be-
comes impractical since we need to consider a large num-
ber of states. It may then be advantageous to use the
Wigner phase space representation, which is particularly
suitable for semiclassical approximations. ' ' ' The
Wigner representation of an operator 3 is obtained by
the Fourier transformation of the coordinate representa-
tion

A (p, q)—=f ds exp( —ip s)(q+s/2~ A ~q
—s/2) .

(4. 1)

D, =O;

8 =i [p p
—

psjM ], ~Q, —co,s~ ))co„~ .

(3.18a)

(3.18b)

The off-resonant doorway [Eqs. (3.18)] is purely imagi-
nary whereas the resonant doorway [Eqs. (3.17)] is purely
real. In the impulsive limit, the doorway states and the
signal do not depend on 0&. We have therefore omitted
the Q, label in Eqs. (3.15), (3.17), and (3.18). Detailed
analysis of the impulsive excitation limit will be presented
further in Sec. VI.

Here p and q are the dimensionless momentum and
coordinate of the jth nuclear mode with frequency co . 1
is the dimensionless displacernent of the equilibrium
configurations of this mode in the two electronic poten-
tial surfaces. q may represent an intramolecular vibra-
tion, an intermolecular libration, a local or a collective
solvent motion. We further assume that each mode ex-
periences a Brownian motion with a time-dependent
Langevin friction function y, (t} The propagatio. n of the
doorway function by the 0 (r) has a well-defined classi-
cal analog and can be calculated using the generalized
Langevin equations,
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4

COJPJ

P, = —co, (qj. +gd, )—f dt'y (t t')—p (t')+f (t) .
(4.4)

Ip, I'
F~ (t, , r;piq )= exp[ g—j(t, )]

n(2n +1)

Here y (t) is the non-Markovian friction kernel and f (t)
represents the Gaussian stochastic random force
due to solvent motion acting the jth mode. They
satisfy the fluctuation-dissipation relation: y, ( t)
=ksT(f (t)f (0)). The parameter (=0 for the
ground-state (m =g) evolution and g= 1 for the excited-
state (m =e) evolution. In order to evaluate the doorway
[Eq. (3.4)] and the window [Eq. (3.5)] functions, we need
to propagate the system also for the t, and t3 periods, in

which the system is in an electronic coherence. The gen-
eralization of the Langevin equations [Eq. (4.4)] to the t,
and t3 periods was made recently. For simplicity we
shall further invoke the Condon approximation, in which
the electronic transition dipole depends weakly on the
nuclear coordinate, and we set p(qj)=p independent of
q . Making use of our semiclassical equations of
motion, we obtained the following exact expressions for
the doorway and the window functions for our harmonic
model system:

(q, —
q, )'+(p, —

p, )'
X exp

2n +1

G (t3,p q )=Ip, I exp[ —
g, (t3)]

Xexp( iro+iq, q, +iq2p, ),
with

n, = [exp(Ace, /ks T) 1]—
g, (t) =—d, co, f dt'M, (t')

+(n + —,')d co f dt'f dt "M (t"),
0 0

MJ(t, ) —1

(d) T(r)—
t&

(4.6a)

(4.6b)

(4.7a)

(4.7b)

D (Q„rp, q) =2 Re f dt, exp[i(Q, —co, )t, ]
0

X g F (t„r;p,q. ),

W (Qepe, q)= R2e J d(, exp[i (fle —
a&, ) ]e(

0

(4.5a)

coj dt'M t'
0

M(t )
—1j 1

(4.7c)

(4 5b) andX g Gs)(t3', pj. , qj ) .
J

D, and W, are given by similar expressions with

changing F~ and Ggj to Fj and G, . The doorway func-
tion F (t„r;p.q. ) can be obtained as follows. The sys-

tem starts with the equilibrium ground-state density-
matrix distribution F~~ (0,r, p, q, ) =ps (pj. , q& ). It then

propagates for the time period t, when the system is in

the electronic coherence

rto=(n~ +—,
' )dj .coj

X f dt' f dt "[T(t' t")T(t")Tt—(t")]&i,
0 0

l3

e(, = —
d, a&, f d( ((d, (( i, ''

rt2 =dj [MJ (t3 )
—1],

where

(4.8a)

(4.8b)

(4.8c)

F~, (t, , O p, , q )=exp( iH, t, )F (0—, 0;p, , q )exp(iH t, ) .

Finally, the system propagates for the time period ~ in
the electronic ground (m =g) state, resulting in

F (t, , r;p, q, )=exp( iH r)F, (t„0;p—, , q )exp(iH r) .

M (t) co 'M (t)— .

a), 'M, (t) co, M,(t)—
—((q (t)q, +q q (t)) —(q )

(4.9a)

The function F, can be obtained in a similar way except
that the 6nal propagation for the ~ period in the electron-
ic excited (m =e) state. The window function is calculat-
ed by starting with the phase-space distribution
6(pj' —pi)6(q~' —

q ), which then propagates for the time
period t3 in the electronic coherence

exp( iH, t 3 )5(p&' —pi )5(q~'—q~ )exp( iHs t 3 ) . —

G (t3 ,p q ) is then 'obtained by integrating the resulting
distribution over p'. q'. Note that within the Condon ap-
proximation the ground-state and the excited-state win-
dow functions are identical, i.e., G =G, . Using Eq.
(3.12) of Ref. 30, we obtain, for the ground doorway and
window functions in the harmonic Brownian oscillator
model,

s +y~(s)
s +sy (s)+co

(4.9b)

The parameter g in Eq. (4.7c) is (=0. The excited-state
functions F, and 6, are given by the same expressions
by setting g= 1. n [Eq. (4.7a)] denote. s the thermal occu-
pation number of the jth mode with k~ being the
Boltzmann constant and T being the temperature. In Eq.
(4.9b) both the time evolution and the thermal average
( ) are with respect to the ground-state Hamiltonian.
L, ' denotes the inverse Laplace transform with s being
the Laplace variable conjugate to time t, and y, (s) is the
Langevin friction in the Laplace space. In Eq. (4.8a), the
dagger superscript denotes the Hermitian conjugate, and

[]» denotes the (1,1) matrix element. In the present
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model, the time evolution of the jth mode depends entire-
ly on its correlation function M (t) [Eq. (4.9b)], which in

turn depends on its harmonic frequency co and the fric-
tion function y,.(s). It can easily be shown that MJ(t)
satisfies the equation of motion,

M, (t)+ f dt'y, (t t—')M, (t')+co2M, (t) =0 . (4.10)
0

The frequency dependence of y (s) reflects the time

yj(s)=yj(s =0)=—y, . (4.11)

In this case we can perform the inverse Laplace trans-
form in Eq. (4.9b) resulting in

scales of the thermal motions of the bath responsible for
the random force. If these motions are very fast com-
pared with the oscillator motion, the s dependence of
y (s) is very weak and can be neglected, i.e.,

M, (t)= '

Xj
exp( —y t/2) cosco t + sincoj. t, yi (2co&2' .

J

exp( y t—/2)(1+y t/2), y =2coj
(4.128)

s+ s
exp( —s t) —exp( —s+t), y &2co

s s + ' J J

exp( A t),—y »2co. .

Here

g —[~2 (y /2)2]1/2

s~ =y, /2+[(y, /2)' co]2—'~'

A —co /y

(4.13a)

(4.13b)

(4.13c)

Equations (4.12a)—(4.12d) represent an underdamped,
critically damped, overdamped, and strongly overdamped
oscillator, respectively. Equations (4.6)—(4.13) will be
used in the following sections.

Using the Hamiltonian [Eq. (4.3)] we then have

Ui =d co (q. +d /2) . (5.1b)

We assume that the Langevin friction acting on U is
much larger than its frequency y, (s) »co . Consequent-
ly, y (s) is also much larger than the relevant frequency
for M (t), i.e., y (s) »s. Equation (4.9b) thus becomes,
in this case,

—,'& U, (t)U, + U, U, (t)) &U, &'—
M (t)=.

& U,'&-& U, )'

V. STRONGLY OVKRDAMPKD NUCLEAR MOTIONS:
LOW-FREQUENCY MODES

AND SOLVATION DYNAMICS

=L 1

s +A~(s)
(5.2)

In the last section we presented the doorway and the
window functions for the multimode Brownian oscillator
system. Equations (4.5)—(4.9) are the key ingredients for
calculating the probe absorption spectrum of polyatomic
molecules (whether isolated or in condensed phases).
Low-frequency molecular modes and solvent modes are
usually strongly overdamped (i.e., the friction is much
larger than the relevant frequency). Consequently, they
do not show up in the spectra as progressions of well
resolved lines but rather contribute to line broadening.
Spectra of polyatomic molecules in condensed phases are
dominated by the broadening modes. In this section we
shall analyze in detail the low-frequency contributions for
which the expressions for the doorway and the windo~
functions are greatly simplified. Consider a low-
frequency mode q . It couples to the optical transition
through this contribution to the difference between H,
and Hs. (If the difference vanishes, that mode does not
couple to the electronic transition and is irrelevant). We
thus introduce the coordinate

G (t3, U )=exp( iU c bj) . — . —

Here

(5.3b)

with AJ(s)—:coj/yj(s). Equation (5.2) can also be ob-
tained from Eq. (4.10) by neglecting M (t). Since in this
case the momentum rapidly attains its equilibrium value
and need not be considered an independent dynamical
variable, the oscillator distribution function satisfied a
Smoluchowski equation in configuration space
(rather than a Fokker-Planck equation in phase space).
The phase-space doorway and the window functions in
Eqs. (4.5) reduce to functions F (t„r;U ) and
G J.(t3,'U~) in the coordinate space. Furthermore, the
phase-space integration over p.q. in Eq. (4.2) is replaced
by an integration over the coordinate U . Hereafter, we
refer to U as the strongly overdamped mode (SOM). We
thus get

Fsj ( t „r;U) ) = ( 2ii.b . )

Xexp[ —
—,'(UJ —U. ) /AJ g~ (ti )], (5.3a)— .

U, =H, (p, , q, ) H(p, , q, ) fico,s . — . —(5.1a) A, =
& U, ) = ,' d 2co, , — (5.4a)
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g =(U ) —(U ) =(n. +—')d m -2k TgJ J J 2 J J & J (5.4b) U= — dr+, rP r (5.7)

The last (approximate) equality in Eq. (5.4b) is derived us-

ing the fluctuation-dissipation theorem, in the high-
temperature limit (i.e.,when k21 T is much larger than the
relevant frequency scale of the UJ coordinate). The func-
tion g (t) [Eq. (4.7b)] is the line broadening function in-

duced by this strongly overdamped coordinate,

g, (t, }=iA, f , dt'M, (t'}+6,2 f dt' f dt"M, (r"). .

(5.5a)

%e further have

(5.5c)

l a
o z (co)= Re f—dt exp[i (t0 —co,s )t]exp[ —g (t)],

U =(1—2$)A, [1—M.(r)]+I, M (r)MJ(. t, )

i b, 2M,—(r) f dt'M, (t'), (5.5b)
0

b =62f dt' f dt "M (t' t")[1—
MJ (t—")],

c.= t M t (5.5d)

The parameter g was introduced in Eq. (4.4). For F and
G we set (=0. The excited-state functions F, and G,
are given by the same equations with g= l. The parame-
ter U depends on ~ and t, , whereas the parameters c
and b depend on t3. Equations (5.2)—(5.5) show that the
effect of an overdamped mode on the spectrum depends
on a single static quantity A, [Eq. (5.4a)] and the dynami-
cal (normalized and real} correlation function M (t) [Eq.
(5.2)]. ' This is to be contrasted with a general un-

derdamped vibration which requires two static parame-
ters (d and c0 ) in addition to M (t). The significance of
A, may be demonstrated by considering the linear absorp-
tion and the fluorescence line shapes, in the present mod-
el, which are given by

where I'(r) is the solvent polarization and 4, (r} is the
difference in the electric fields at point r created by the
chromophore charge distribution when it is in the elec-
tronic excited state ~e ) and in the ground state ~g ). In
the dielectric continuum model, we get: [cf. Eq. (5.4a)
and (5.2)]

fdr~4, s(r)~'
8m E'0

(5.8a)

1 ~ dc'
2&l —oo CO

L

1 /e(c0 )
—1 /eo

exp(i cot)
I /e„—1/eo

(5.8b)

Here eo is the static (co=0), and e„ is the high-frequency
(optical) value of e(co). Solvation structure may be in-
cluded using the wave vector and frequency-dependent
dielectric function e(k, co). ' '

We shall consider now some limiting cases and present
explicit expressions for the SON contribution to the
doorway and to the window functions.

gJ(tl ) =iAJt1+ 11 ~12t21

UJ =(1—2$)AJ[1 MJ(~)]+—AJMJ(r) id M (r—)t, ,

(5.9a)

(5.9b)

A. Spectral diffusion: From hole burning
to the impulsive limit

When the line shapes are broad (fast dephasing} and
the SOM motion is much slower than the dephasing time
scale, we can neglect the SOM nuclear dynamics during
the electronic transition in the time intervals t, aad
t3 'We .then have b, =0 and c, =ti in Eq. (5.5}, and
Eq. (5.3) with

(5.6a)

e)
crJ;(co)= Ref—dt exp[i(to —co, )t]exp[ —g'(t)] .

Gg (t3,'UJ. )=exp( iUJt3) . — (5.9c)

(5.6b)

Note that o F( —co}=o„(c0}so that trF is the mirror im-

age of cr z. AJ is related to a spectral shift between the
absorption and the emission. In the spectral diffusion
limit considered below we shall show that the red shift of
the fluorescence with respect to the absorption (i.e., the
Stokes shift ' ' ') is equal to 2AJ. In the present model,

UJ may represent not only a single molecular vibration
but also a collective solvation coordinate ' defined as
the difference between H, and 0 resulting from a group
of solvent degrees of freedom. Since the solvation coordi-
nate is a sum of a large number of small contributions
from individual solvent molecules, we may invoke the
central limit theorem and assume that it satisfies Gauss-
ian statistics and the Smoluchowski equation. As an ex-
ample we may consider a polar solute in a polar medium.
In that case we have

The absorption [Eq. (5.6a)] and the fiuorescence [Eq.
(5.6b)] line shapes are inhomogeneously broadened in this
case, i.e.,

o „(co)=(2n.b, )
' exp[ —(co —co, —

A, . ) /2b, ], (5.10a)

oF(co)=(2vrb, )
' exp[ —(co —co, +A, ) /2b, ] . (5.10b)

The Stokes shift, which is the difference between the ab-
sorption and the fluorescence peaks, is equal to 2A, . The
SOM dynamics can be clearly seen if we substitute Eqs.
(5.9), (5.3a), and (4.5) into (4.2) and (3.13) (ignoring for a
moment the contribution of the other modes). In this
case we recover the classical limit [Eq. (3.12)] with
Gaussian statistics. If we further take the pump and
probe spectral profiles ~P, (co, )~ and ~22(co2)~ to be
Gaussian with variances m, and mz, respectively, we ob-
tain
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S(Q„Q2;~)=2m[(b, +wi)a (~)]

Xexp [—( Q, —co,s
—

A, ) /2( 6 . +w, ) ]

X(expI —[Qz —Q, (~)] /2a (r)j

+expt —[Qz —Qs(r)] /2a (r) ] }, (5.11a)

fe&

Q,(r):—co,s
—

A, +M, (v.)(Qo ~, +A,, ),
Qs(r) =co,s+A,J +MJ(r)(Qo co—,s —

A,i ),
Q2 Ni

Qo=Qi +(co,s+A, ;)

(5.11b)

(5.11c)

(5.11d)

I

toeg
—kj

I

', coeg+Xj
I

(

[g&

a(r)—:b,, 1—
Q2

MJ(~) +wz .
J2+N21 J (5.11e)

The probe absorption has two contributions. The first
term in the bold parentheses in Eq. (5.1la) represents the
excited "particle" dynamic whereas the second term
represents the ground-state "hole" dynamics. At zero de-

lay ~=0 both terms are identical. They are Gaussians
centered at Qz=Qo and with a variance a(0}. As the de-

lay time is increased, the particle and the hole undergo
diffusive dynamics on the appropriate potential surfaces
(the excited state for the particle and the ground state for
the hole). The probe absorption then splits into two con-
tributions centered at Q, (~) for the particle and Qs(r) for
the hole. This splitting represents the time development
of the Stokes shift. At long times we have
Q, (~)=co,s —

A, and Q (ao)=co, +A, . These terms
then reQect the stationary fluorescence and absorption
[Eq. (5.10)] and their splitting is the Stokes shift 2A, . The
magnitude and sign of the particle and the hole spectral
shifts depend on the pump frequency 0&. For resonance
pump excitation Qi=co,s+AJ (or Qo=co,s+A, }, the par-
ticle experiences a time-dependent red shift from
Qz=co, +A, to Qz=co, —

A, . The hole position, in this
case, does not evolve in time. When
Q, =re,s

—
AJ(1+2wi /h~) (or Qo=co,s

—
A& ), the particle

does not shift in time while the hole undergoes a blue
shift from Qz =co, —A, to Qz =co,s +A, . In general, both
particle and hole contributions undergo time-dependent
shifts, as illustrated in Fig. 3. a(~) represents the time-
dependent spectral width of the particle and the hole.
This width increases with time with the values

FIG. 3. The dynamical Stokes shift for a strongly over-
damped mode U, in the spectral diffusion limit [Eq. (5.11)]. The
potential function for the U, mode has a displaced equilibrium
position in the ground and in the excited electronic states. For
Qp& co g XJ (Qp & 6) g 3J ) the particle relaxation in the elec-
tronic excited state results in a red (blue) shift of the probe ab-
sorption. For Qp& co,g+AJ(Qp(N g+A,, ) the hole relaxation in
the electronic ground state shows a red (blue) shift. The solid
line represents a pump excitation in which
co g AJ (Qp & co g +A, In this case, the excited "particle" re-
laxation shows a red shift while the ground state "hole" shows a
blue shift.

to as "hole burning. " The name implies that the pump
pulse burns a narrow hole in the SOM distribution since
it interacts only with a small subgroup of the ensemble.
As time evolves the hole fills, eventually acquiring the
equilibrium value a( 00 ) =6 . Finally, we note that the
signal is sensitive to the spectral linewidth w2 of the
probe pulse. That width determines the spectral width of
the window. For impulsive probe, w2 ~ cc and a(~)~ ao

and the signal loses its time dependence, i.e., the probe
absorption does not depend on ~. The probe pulse must
be, therefore, sufficiently long to allow for spectral selec-
tivity in the detection process. For that reason, experi-
ments using impulsive probes usually adopt the dispersed
detection mode S' [Eq. (2.4b)] instead of the integrated
signal S [Eq. (2.4a)].

a(0)= [g W2/(g2+ W2 )+ w2 ]1/2 (5.12a) B. The Markovian limit

a(~)=(~'+ w')'" .J 2 (5.12b)

In the impulsive pump limit (Sec. III D) where w, »b,~,
we have Qo=co,s+A. and a(0)=(b~. +wz)' =a(~).
In this case only the particle experiences a red shift. The
spectral width, as well as the hole position, do not evolve
in time. In the other extreme limit where w, and
wz«6, , we have a(0)=(wi+wz)'~ &&a(ao). The
spectral width, in this case, shows a diffusive broadening.
In this limit the pump-probe technique is usually referred

M~. (t) =exp( A/t) . — (5.13)

Equation (5.13) may also be obtained by considering a po-
lar solvent with a Debye dielectric function. Equation
(5.8b) then yields Eq. (5.13) with A ' being the Debye

In many cases, the Langevin random force in Eq. (4.4)
has a very short correlation time compared with the os-
ci11ator dynamics. In this limit we can neglect the fre-
quency dependence of the friction y (s) and assume
A~(s)=AJ. is independent of s. The SOM correlation
function [Eq. (5.2)] then reduces to
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longitudinal relaxation time. This limit also represents
the well-known stochastic model of spectral line broaden-
ing, where the oscillator motion is described by the
Smoluchowski equation. Our expression includes, how-
ever, a time-dependent spectral shift, the Stokes shift,
given by the imaginary part of g (t, ) [Eq. (5.5a)], which is
absent in the stochastic model. This model has the fol-
lowing additional limits.

1. Static (inhomogeneous) broadening

When A. &)A the molecular dynamics is very slow
and can be neglected on the relevant time scale. We thus
set M, (t)=1. The probe absorption is then given by an
average over the inhomogeneous distribution with Eq.
(5.10a) for the 0-0 electronic transition frequency.

VI. IMPUI.SIVK SPEt:rROSCOPY
AND QUANTUM BEATS

Recently, the impulsive optical excitation technique
has been widely used for probing the coherent nuclear dy-
namics of chromophores in condensed phases. ' ' In
this section we analyze the probe absorption signal [Eq.
(3.15)] for the Brownian oscillator model introduced in
Sec. IV, in the impulsive pump limit. For simplicity we
first consider the case in which the probe field is short
compare with the molecular nuclear dynamics [Eq. (3.1)],
but is long compared with the dephasing time scale [Eq.
(3.2b)]. In this case, Eq. (3.15) yields (up to a propor-
tionality constant)

S(0,2 r)= 2R ef dt3exp(iQ2t3)[J, (t3;r)+J (t3;r)],
0

(6.1)

2. Homogeneous broadening

In the opposite extreme A, &&6, the molecular
motions are very fast. We can then set

with

J,(ti;r) =Tr[p exp( t'H, t3)D—, (r))s exp(iH t, )], (6.2a)

J (t3;r) =Tr[p exp( iH, t3 ))—s8 (r)exp(iH ti )], (6.2b)

MJ(t)=(2/A )5(t), (5.14a) and

and we have [cf. Eq. (5.5)]

g, (t)=i (), /A, )+ f', t, (5.14b)

B,(r) = Q„(r)8, =exp( iH, r)8—,exp(iH, r),
8 (r) = ass(r)B =exp( iH r)8s—exp(iH r) .

(6.3a)

(6.3b)

with

(5.14c)

The absorption line shape [Eq. (5.6a)] is given by

f' cos(A, /A )+(c0—to, )sin(A, /A )

(co —to,e) +

The fiuorescence line shape [Eq. (5.6b)] is given by the
same expression, with the replacement of A,, by
When k &&A, these line shapes assume the Lorentzian
form with the width equal to the dephasing rate f', . The
Stokes shift vanishes in this case due to the rapid motion
of the SOM. The contributions of the solvation coordi-
nate to the doorway and window functions are in this
case

F, ( t, , r; U, ) =exp( f', t, ) ( 2n.A )—
Xexp[ —

—,
'

( U —
A,

~ ) /h~ ],
G (t3; U )=exp( —f' t3) .

(5.16a)

(5.16b)

F, and G, are given by the same expressions by replac-
ing U. —A. - with U. +A. . It is interesting to note that in
the homogeneous limit we do not need to consider the
solvation coordinate U explicitly in Eq. (4.2). We can
perform the U integration which simply results in the re-
placement of co,s by co,s i f' We c—an th.erefore perform
the U~ integration in Eq. (4.2) while maintaining the sim-
ple doorway-window picture. This is generally not the
case for modes U. which are not in the homogeneous lim-
it.

In deriving Eq. (6.1), we made use of Eq. (3.5) for the win-

dow state. J, and J [Eq. (6.2)] are two time correlation
functions of the dipole operator calculated with respect
to the nonequilibrium oscillator distribution functions
5,(r) and 8 (r) [Eq. (6.3)], respectively. In Eqs. (6.3),
the doorway state 8 is given by Eqs. (3.17) for the reso-
nant pump configuration, or by Eqs. (3.18) for the off-

resonant pump excitation.
We shall consider the effect of Condon approximation

on the probe absorption signal. Let us first consider the
signal in the resonant impulsive pump limit [Eqs.
(6.1)—(6.3) and (3.17)]. In general, the electronic dipole p
depends on the nuclear coordinates. Consequently, both
the excited doorway 8,(r) (particle) and the ground
doorway Be(r) (hole) vary with the delay time r. Howev-
er, in the Condon approximation, in which IM is assumed
to be independent of the nuclear coordinate, the hole
(Bs) will no longer vary with r. In this case only the
excited-state dynamics as given by 8,(r), are probed.
We shall consider this case first in Sec. VIA. Later, in
Sec. VI B, we shall consider off-resonance pumping [Eqs.
(6.1)—(6.3) and (3.18)], in which only the ground-state dy-
namics are retained and the non-Condon effects are
essential.

A. Impulsive resonant excitation

We first consider the impulsive optical signal [Eq. (6.1)]
of the Brownian oscillator model in the Condon approxi-
mation, where p =p, is independent of the nuclear coor-
dinates. The key quantities which determine the impul-
sive optical signal are the two time correlation functions
J, and Js [Eqs. (6.2), (6.3), and (3.17)]. Their calculation
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requires propagating the molecular system in the elec-
tronic coherence ~e)(g~ during the t3 period, as well as
in electronic population ~e )(e~ or ~g )(g~ during the de-

lay time ~ period. For the harmonic Brownian oscillator
model [Eqs. (4.3) and (4.4)] in the Condon approximation,
we have

A (Qz)=2k, , Im f "dt3 f 'dt'exp(iQzt3)
0 0

XJ,(t, ; ~ )M, (t'),
B (Qz)=(d /c0. )Im f dt3exp(iQzt3)J, (t3,'ao)

0

(6.8b)

(6.8c)

J,(t3, r)= ~@, ~
exp( —ico,st3)

Xexp —g [gj*(t3)+fj(t3;r)], (6.4a)
J

Js(t3, &)= ~@,,s~ exp( ic—o,st3)exp —g gj(t3) . (6.4b)
I

Here

f (~;t3)=i(2A, /coj)M (r)[1 MJ(t3—)]

+i 2k, MJ(r) f dt'M~(t'),
0

g, (t, ) =iA,,f dt'M, (t')+bz f dt' f dt "MJ(t"),

(6.5a)

(6.5b)

and

(6.6a)

b, =(n +—')d coJ J 2 J J (6.6b)

J,(t3)V)=J,(t3,'ce) g gf (t3~r)
(
—1)"

n=0 j
(6.7)

Truncating this expansion at first order (n =1), Eq. (6.1)
yields

S(Qz;r) =S(Qz; 0D )

+2ip, i g [M (~)A.(Qz)+M, (r)B,(Qz)] .
J

(6.8a)

Here

Equation (6.5b) is identical to Eq. (4.7b). Note that
within the Condon approximation Js(r3 , v) [Eq. '(6.4b)]
does not depend on the time delay ~. M is the normal-
ized correlation function of the jth mode [Eq. (4.9b) or
(5.2}]. It should further be noted that J,(t3;0)=Js(t3;0);
hence, at short delay times, the two contributions in Eq.
(6.1) are identical. In the presence of friction,
f~(t3; ~ ) =0; hence, for long delay times, the signal [Eq.
(6.1)] splits into two components with reflection symme-
try, i.e., the contribution of J~ at Q2 —~,~ equals the con-

tribution of J, at —(Qz —co, }. The calculation of the im-

pulsive optical signal of polyatomic molecules in con-
densed phases using Eqs. (6.1}and (6 4} has been reported
elsewhere.

One of the most remarkable features of impulsive spec-
troscopy of solvated dyes is the appearance of simple
damped harmonic beats with only a few fundamental vi-
brational frequencies and with a very small contribution
of overtones. " ' ' ' Equations (6.4)—(6.6) provide a
general framework for analyzing these efFects. To that
end we shall expand Eq. (6.4a) in the form with the phase

X cos( co ~+P ), (6.9a)

PJ =arctan[ —coJB (Qz)/A. (Qz)] . (6.9b)

If we carry the expansion [Eq. (6.7)] to higher orders
n =2, 3, . . . , we obtain higher overtones of the funda-
mental frequency. The nth term will contain [MJ.(r)]",
which contains the nth harmonic (nco) frequency com-
ponent. Since the expansion is in powers of
f~(t3, r) f~(t3', ao ), which—vanishes as t ~m, it is clear
that the successively higher overtones will contribute
only at shorter values of the delay time v. Furthermore,
due to a coherent interference, the contribution of the
overtone beats vanishes as the detuning ~Qz

—co,~ ~
is in-

S(Qz, ~ ) is given by Eq. (6.1) by sending r~ ~. It con-
sists of a contribution from Js and from J,(t3, 00 ), which
have a refiection symmetry around 02=co,~. The second
term in Eq. (6.8a) results from the first-order (n= 1) con-
tribution to Eq. (6.7), and depends on the delay time ~
through the correlation function Mi(~} and its derivative
MJ.(r). This term is a sum of contributions from all the
optically active modes of the chromophore and the sol-
vent modes as well. Note, however, that even at this level
of approximation, the contributions of the various modes
are not additive since the coefficients A and B.of the jth
mode depend on all the other modes through J,(t3; ao } in
Eqs. (6.8). For optically dark modes in which d =0, we
have A =B =0. Therefore optically dark modes will
not show up in the beats pattern. In the following we
shall consider the effect of the optically active modes as
well as the solvation modes on the signal. In the Browni-
an oscillator model, each optically active mode is charac-
terized by the linear coupling strength d, the coherent
oscillation frequency m, and the dissipative friction con-
stant yi, and its dynamics is characterized by the correla-
tion function M (~) and its derivative MJ(~). The strong-
ly overdamped modes (whether solvent or intramolecu-
lar) are responsible for spectral diffusion processes. Each
SOM is characterized by the temperature T, the solvent
reorganization parameter A,i, and the correlation function
of the salvation coordinate M (~}. Let us consider M (r)
of the Brownian oscillator in the four limiting cases [Eqs.
(4.12)].

(i) Coherent oscillations /Zq. (4.12a)j. For the high-
frequency modes of the chromophore in solution we have

yj & mj. %hen y j=0, the oscillator experiences a
coherent motion with M (~)=coscoj~ and MJ(r)
= —co sinco ~. Equation (6.8a) then assumes the form

S ( Qz,"r) =S ( Q ), Q z,
' ~ )

+2~p,s ~ [ A~ (Qz)+co~B (Qz)]'~
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creased. When y %0, but y &2coj, we have

Mi(r) =exp( —yjr/2) costv~r+ sinco. r7j
2coj

(6.10a)

M, (r) = —(to, /co, )exp( y,—r/2)simo, r, (6.10b)

with toj =[to —(yj/2) ]' . The first-order beats signal
is a simple damped harmonic oscillation with the fre-
quency coj. and damping rate y /2. The second-order
contribution will show beats at 2coj with damping of yj.
Again, the overtone contributions vanish as the delay
time r or detuning ~Q2

—co,s~ are increased.
(ii) Critically damped oscillations IEq. (4 12b)J. Wh. en

y /2=cot, we have

M (r)=exp( yjr—/2)(I+yir/2),

M, (r)= —(yi/2) exp( —y r/2)r .

(6.11a)

(6.11b)

The temporal profile of the impulsive signal has two basic
components: exp( —y r/2) and exp( yr/—2}r The r.el-
ative contributions of these two components depend on
the observation frequency 02 and can be determined by
the parameters A (Q2) and 8 (Q2). The higher-order
contributions, such as exp( ny, r/—2) or
exp( nyjr/—2)r", may dominate at short delay time r,
and for resonant detection 02=co,g.

(iii) Overdamped oscillations fEq. (4.12c)J. In this case,
the dissipative damping is dominant (y~/2& coj ), and we
have

quently, the contribution of the 8 term in Eq. (6.8a) is
negligible. The solvation coordinate afFects the impulsive
signal via A, , which introduces the spectral shift and can
be easily seen in the frequency domain, and via M (r},
which adds a damped background to the impulsive opti-
cal signal at a given observation frequency Q2. %'e shall
now consider the effect of some characteristic solvent
motions on the impulsive signal.

(a) Spectral diffusion limit. In this limit (cf. Sec. V A),
we neglect the solvation dynamics during the optical
transition by using the approximation M (t)
=M (t =0)=l for 0&t &t3 In. this case, Eqs. (6.5) as-
sume the form

fi(t3yr)=i 2k, M (r)t3

gj(t3 ) lA jt3 + 5 tJ3

(6.15a)

(6.15b)

The probe absorption for this case was discussed earlier
following Eq. (5.11).

In the analysis of the underdamped oscillation [case
(i}],we have indicated that, due to the coherent interfer-
ence, the contribution of the overtone beats at neo van-
ishes as the detuning is increased. This is also the case
when we add a SON. However, the detuning is now
measured by ~ Q2 —co,s+ Ai ~

with )(,J & 0, instead of
/Q, —tv„/.

(b) 1nhomogeneous broadening This .is an extreme case
of (a) obtained by setting M (r) =MJ(t3) =M (0)=1. In
this case, the mode is completely static and Eqs. (6.15) be-
comes

M (r)=
+

exp( s t) — —exp( —s+ t),
s+ s

(6.12a)

f,(t»r) =i 2k,, t, ,

g (ts, r)=i A. ti+ ,'5 t3 . —

(6.16a)

(6.16b)

$ —
y /2+[(y /2 }2 ~2]1/2 (6.12c)

It should be noted that the impulsive signal, in this case,
reaches a maximum at

s+ s

Ai(Q2) —s+8J(Q2)
ln

A (Q2) —s 8i(Q2)
(6.13)

(iv) Strongly overdamped mode IEq. (4.12c)J. We now
consider the efFect of low-frequency and solvent modes on
the impulsive signal. Here the SOM dynamics are
characterized by the coordinate UJ [Eq. (5.1)] which un-
dergoes an overdamped motion: yj(s) »tv~ (Sec. V). In
the linear solute-solvent coupling model, the solvation
coordinate is characterized by the reorganization energy
AJ [Eq. (5.4a}], its variance b,~. =2k' TA, , and its correla-
tion function M (t) [Eq. (5.2)]. In the Markovian limit
[or Eq. (5.13)]

M (t)=exp( A t) . — (6.14)

Here A.:—to, /y, . The first term in Eq. (6.5a), for a SOM,
is negligibly small compared to the second term. Conse-

s+s
M, (r) = — [exp( s t) —exp( ——s+ t)], (6.12b)

+

with

It contributes to the signal in the frequency domain by a
convolution with a Gaussian inhomogeneous distribution
function centered at the frequency A, and with a width

However, the inhomogeneous broadening does not
affect the temporal profile of the impulsive optical signal.

(c) Homogeneous broadening This is the .extreme case
opposite to case (b). In the homogeneous broadening lim-
it, the solvent nuclear relaxation is infinitely fast

M (t)=(2/A. )5(t) . (6.17)

For finite delay times r we have M (r) =0 and Eqs. (6.5)
assume the form [cf. Eq. (5.14)]

f, (t, ;r)=0,

g (t3)=i (A, /A. )+ f'J t3 .

(6.18a)

(6.18b)

The solvation parameters reduce to two: A,j/Aj and
f'J:(b, /A ). In this limit, th—e solvati. on coordinate con-
tributes to the signal in the frequency domain through
the convolution of o „[Eq.(5.15)] with the hole part, and
the convolution of oF [Eq. (5.15) with replacing A,, by—

A,, ] with the particle part. Homogeneous broadening,
like inhomogeneous broadening, does not affect the tem-
poral profile of the impulsive optical signal.
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B. Non-Condon e8ects
in impulsive om'-resonance spectroscopy

(6.19a}

with

p(~)=exp(iH ~)}u, exp( iH r) . — (6.19b)

Here we made use of Eqs. (3.18}. The signal in Eq.
(6.19a) is related to the p response function of the medi-
um. We shall now expand the electronic transition dipole
in the nuclear coordinates,

p=ps 1+pa q +
J

(6.20)

q is the coordinate of the jth mode, and a (&1 is an
electron-phonon coupling parameter. To lowest order,
the signal [Eq. (6.19a)] can be expressed in terms of the
coordinate response function

S(Q;~)=4~@,
~ ga (i[ (qv},q. ]) .

J
(6.21}

For the harmonic Brownian oscillator model [Eqs. (4.3)
and (4.4)], the coordinate response function is given by

Earlier in this section we discussed in detail, within the
Condon approximation, the optical signal resulting from
an impulsive excitation followed by a narrow-band probe
detection. This signal is the same as the differential
(dispersed at co2) signal obtained using an impulsive probe
field. If we integrate this signal over co2 (broadband
probe), the signal will become independent on r. The
reason is that in the Condon approximation the impulsive
window function is equal to the unit operator @'=1. The
beats come from a coherent oscillation, causing the mole-
cule to emit at different frequencies at different times. If
at the detection stage we integrate over all frequencies,
we lose the beats.

We shall consider now the probe absorption under im-

pulsive off-resonant impulsive pump without invoking the
Condon approximation. The signal is now given by Eqs.
(6.1)—(6.3) together with (3.18). In this case we need con-
sider only the ground-state contributions since the
excited-state doorway vanishes [Eq. (3.18a)]. It should be
noted that the ground-state doorway Bs [Eq. (3.18b)]
would also vanish had we invoked the Condon approxi-
mation and neglected the dependence of p on nuclear
coordinates. In the Condon approximation the signal
thus vanishes. Relaxin the Condon approximation, the
ground doorway state [Eq. (3.18b}],which is nonzero
and different from the equilibrium ground-state density
matrix, will evolve in time which results in quantum
beats. To demonstrate this result, let us consider the op-
tical signal obtained by an off-resonant impulsive pump
followed by a resonant impulsive probe. In this case we
may represent the probe pulse by a 5 function and the ab-
sorption signal assumes the form

,'(—q,(~)p, +p, q)(~))
(i [q (r), q ])=

z
PJ PJ

=L
N.

s +spy(s)+co

M—i(r)lcoj . (6.22)

Here M (r) is the normalized q~
—

qt correlation function

[Eq. (4.9b) or (5.2)]. Equations (6.21) and (6.22} can be
derived using the phenomenological driven oscillator
model proposed by Nelson and co-workers2 ~ to inter-
pret the coherent vibrational motions of phonon in ma-
trix and dye molecules in glass and in solvent environ-
ments, as well as the librational motions of these systems.
Equation (6.19) represents a response function of the di-

pole operator squared p, in the ground electronic state.
To lowest order in the expansion [Eq. (6.20}],it maps to a
driven oscillator moving in the ground electronic surface.
However, in the resonant situation, we should evaluate
the excited electronic state dynamics as well. This results
in a nonequilibrium correlation function in which the
time evolution is controlled by the electronic excited state
while the ensemble average is taken using the electronic
ground-state density matrix. The present analysis shows
that the linearly driven oscillator picture is limited to
off-resonant situations.

VII. DISCUSSION

In this paper we developed a systematic theory for
time-resolved pump-probe spectroscopy in condensed
phases. The doorway-window picture presented in Sec.
II allows the rigorous interpretation of these experiments
in terms of three stages, involving a preparation, propa-
gation, and detection. The present formalism allows a
practical calculation of the time-resolved probe absorp-
tion spectrum of polyatomic molecules in condensed
phases. In Sec. III we considered some limiting cases, in
which the phases of the external fields are not important
and the probe signal can be expressed in terms of a con-
volution of the bare spectrum with the (spectral or tem-
poral) intensity profiles of the fields. The calculation of
the bare spectrum of the multimode Brownian oscillator
molecular model can then be performed using the Wigner
representation and is carried out in Secs. IV and V. The
calculation becomes particularly simple in the impulsive
limit where the spectrum may be represented as a single
Fourier transform. This case was considered in Sec. VI.
The present formalism may be easily applied to optical
pulses with arbitrary time scales in which the phases of
the fields may also be important. For this purpose we
sha11 divide the total nuclear modes of the system into
two groups. The first group contains a small number of
relevant modes, which are optically active and their dy-
namics are fast or comparable to the pulse durations. We
shall represent these fast active modes in terms of their
vibronic levels with ~b ), ~d ), . . . , being the vibronic lev-
els of the electronic excited state manifold and

~
a ), ~

c ), . . . , being the vibronic levels of the ground
electronic manifold (Fig. 2}. The second group contains
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the remaining slow modes. We shall describe these
modes in the Wigner phase space representation [Eq.
(4.1)], where q and p are vectors representing the coordi-
nates and the conjugate momenta of the slow modes. The
slow modes may include collective solvent motions, rota-
tions, intermolecular librations, or low-frequency in-
tramolecular vibrations. For the slow modes the pulses
are assumed to be impulsive and we may invoke Eq. (3.1)
for time periods shorter than pulse durations. In this
mixed (state and Wigner) representation, Eqs. (2.9)—(2.11)

+ g f f d pdq W,', (Q,;p, q)
c,a

Here

XD„(Q„r;p,q) . (7.1)

become

S(Q), Qp', 1 ) = y f f dp dq W;, (Q,;p, q)Ddb(Q&, &;p, q)
b, d

Dd&(Q„r;p, q)=exp( ice—
dbms yd—br}f dc@& Q P(a)pd, p,s[P f(co, )P, (~i+~db)F, (co, col„—r', p, q)

a

+&(~&)~ f(~&+ro~)F,'(r0& —~d„r', p, q)], (72a)

D,.(Q&, rp, q) =exp( —i~«r —y«r) f d~& g p«p~. [P(~)~
&
(~&)~~(~&+~,.}F (~& —~d„r,p, q)

00

+P (c)E,(ro, )P;(co, +co„)F~'(co& ~d„r,'p, q)], (7.2b}

~~b(Q2, p, q) = f" d~2 y pd, p,~[& v~2»2(2+bodb)G, (~~—~b„p,q)+»(~2» 2(~~+~~)G,'(~~ —~d, ,p, q)],
c

(7.3a}

(7.3b)

with

F (ro&, r;p, q)= f dt, exp(ice', t, ) g F J(t„r;p, , q, ),
J

(7.4a}

G (co2, p, q)= f dt3exp(ico2t, ) g G~, (&3,p, , gJ
J

m =g, e . (7.4b)

Here F and 6 are given by Eq. (4.6). Equations
(7.1)—(7.3) provide a unified expression for the pump-
probe signal of polyatomic rnolecules in condensed
phases and are valid for arbitrary temporal profiles and
durations of the pump and the probe pulses.

Equations (7.2) and (7.3) show explicitly the spectral
selectivity induced by the laser pulses. The pump profile

P&(co, ) selects vibronic transitions in the doorway func-

tions [Eqs. (7.2)], whereas the probe profile»(co&) selects
the relevant vibronic transitions for the window functions
[Eqs. (7.3)]. In the absence of fast modes (i.e., the pulses
are short compared to the nuclear dynamics) we can ex-
clusively use the Wigner representation and Eq. (7.1)
reduces to (3.13). In this case, the phases of the laser
fields are not important and the signal depends only on
their intensities. When the pulse durations are compara-
ble to the nuclear dynamics time scales, the phases of the
external fields may become relevant. In addition, the ex-
citation processes may involve only a few (e.g. , two) vib-
ronic levels in electronic ~e ) manifold and a few in ~g )

manifold. In this case the present formalism recovers the
theory of vibrational quantum beats obtained by using
simplified molecular models with a few vibronic lev-
els. ' '2 ' Furthermore, when the spectral density of the
resonant pump field is narrow compared with the vibron-
ic level spacings, the optical selectivity in the doorway
functions [Eqs. (7.2)] leads to the selection of d =b and
c =a. Equation (7.1) then recovers our earlier hole burn-
ing results. ' ' In this case, only the diffusive solvation
dynamics as well as the vibronic populations of the chro-
mophore are probed. Vibronic coherences are not creat-
ed, and the pump-probe signal shows progressions of the
chromophore vibronic levels. As the probe delay time r
is increased, the holes acquire a time-dependent addition-
al width over the pure homogeneous broadening and the
resulting line shape splits into two components [cf. Eq.
(3.12) and the following discussion]. The present theory
can be easily extended to other related experiments. An
application to pump-probe femtosecond spectroscopy of
molecular photodissociation has been made recently.
The differential signal S' [Eq. (2.4b)] can be obtained by
simply eliminating the co& integration in Eqs. (7.3). The
impulsive stimulated Raman scattering signal measured
by Nelson, Ippen, and co-workers ' is related to
~P' '(kz, t)~, which is the same third-order nonlinear po-
larization [Eq. (Al)] evaluated in this paper. Recently, a
sequence of femtosecond pump pulses was used to im-
pulsively pump the optical medium. These experiments
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can also be described by the present theory. Their
enhanced mode selectivity can be simply attributed to a
spectral filtering by the pulses as given by Eqs. (7.1)—(7.4).
The optical transmission correlation signal, "' obtained
by measuring the transmittance of both the pump field
and the probe field, is related to P' '(k„t) as well as
P' '(k2, t). The signal, in this case, is symmetric around
~=0. For large delay times ~, the transmittance correla-
tion signal is essentially the same as the probe absorption
signal considered in this paper. However, for small ~ in
which the pump and probe overlap, we should also in-
clude the last four terms in Eq. (Al) to take the coherent
artifact into account. Finally, the present formalism may
be also used to calculate the time-resolved fluorescence
measurement ' where only the excited particle dynam-
ics are probed.
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APPENDIX A: DOORWAY-WINDOW PICTURE
OF PUMP-PROBE SPECTROSCOPY—

DERIVATION OF EQ. (2.10)

We start with Eq. (2 4a} by defining the third-order po-
larization, which is the key quantity in the calculation of
the nonlinear spectral signals, and its formal expression is
given by

P'"(k, , r)

= f dt3 f dt's f dt, S' '(t3, t2, t~)
0 0 0

X IE,(t t, )Ef—(t+r t, ——r, )E,(t+r t, t, —t, )e—xp(i—Q, t, +i Q, t, )

+E,(t r, )E—, (r +r t, r, }E—;(r—+r r, r, ——i, )e—xp(iQ, t, —iQ, r, )

+E,(t+r t, )E,(r—t, —t, )E;(t—+r t, —t, ——t, )

Xexp[EQ, t, +i (Q, Q, )&—, ~'Q, t, ]

+E,(t+r t, )E;(t+—r t, —t, )E—,(r t, t—, t—, )—
Xexp[i Qt2& +i(Q2 —Q, )t, +iQzt&]

+Ei (t+r t, )E,(t t—, t, )—E, (r—+r r, t, —t, )——

Xexp[i Qt23+i(Q2+Q, )ti+iQ, t, ]

+Ei(t+r t, )E,(t+—r t, —r, )E,(t —t, t, t, )— — —

Xexp[iQ2ri+i «2+Ql)r2+iQ2rl }]] . (A 1)

Here we have only considered contributions to P ' '(co&)

which are second order in pump field and first order in
probe. There are, of course, additional third-order terms
which are zeroth order in pump and third order in probe
which contribute to the co2 Fourier component of the po-
larization. Those terms, however, represent the satura-
tion of the probe and will not contribute to the difFerence
signal which will be calculated here. The key quantity in
the calculation of Eq. (A 1) is the nonlinear response func-
tion S' ', which contains the complete microscopic infor-
mation necessary for any g' ' measurement, such as
four-wave-mixing spectroscopy. In order to simplify the
notation, we shall, in the following, introduce the double
bracket (Liouville space) notation, in which an ordinary
dynamical variable (Hilbert operator) A is denoted as

~
A )), and the inner product is defined by

Q(t) A:—exp( iHt) A exp(iH—t}, (A4a}

VA—:VA —AV. (A4b)

or (from the right)

sumes the form

S"'(t, , r, , r, ) =i'« V~ Q(r, )VQ(r, )VQ(r, )V
~ p( —~ ) )) .

(A3)

Here Q(t) is the time evolution operator (Green's func-
tion) in the Liouville space in the absence of the external
field. V is the Liouville space dipole operator. They are
defined by their actions on an arbitrary dynamical vari-
able A (from the left),

«a~ A )) =—Tr(a'A) . (A2)

Using this notation, the nonlinear response function as-

A Q(t) —=exp(iHt) A exp( iHt), —

AV:—AV —VA .

(A4c)

(A4d)
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Physically, S' ' [Eq. (A3)] gives the polarization response
to three 5 function laser pulses. The time arguments t, ,
t2, and t3 represent the time intervals between successive
interactions with the laser fields (see Fig. 1).

The six terms in Eq. (Al} correspond to the 3!=6 per-
mutations representing the different ordering the excita-
tion pulses interacting with the optical medium. It
should be noted that in the first two terms of Eq. (Al) the
probe field acts after the interactions with the pump field.
This ordering of "pump first and probe second" is not

preserved in the last four terms of Eq. (Al). In the
remainder of this paper, we shall focus only on processes
in which the delayed probe pulse is very well separated
from the pump pulse. The system, in this case, is forced
to interact first with the pump, and then with the probe.
This assumption allows us to neglect the last four terms
of Eq. (Al), which contribute to the "coherent artifact"
characterizing the experimental signal for delay time
shorter than or comparable to the pulse durations. ' The
signal [Eq. (2.4a)], in this case, reduces to

S((2~ (2p'T)=2RCf df f dtyf dtgf df~[Et(f+t )Ep3())Ef(/+1' I )E2~(t+T fg f~)
0 0 0

X exp(iQ3ti+i Q, t i )

+E', (t+t, )E,(t)E,(t+~ t, )—Ei (t+r t, —t,—)
X exp(iQ3t3 —iQit i )]

X« V~9(t )VQ(t )VQ(t, )V~p( —
)&& . (A5)

In deriving Eq. (A5), we have changed the integration variable t to t + t3. When the pump and the probe pulses are well
separated, we may view a pump-probe experiment as a three-step process: preparation, propagation, and detection.
The pump pulse prepares an initial doorway state, which then propagates, and is finally probed at the delay time ~.
This is the doorway-window picture used in this paper. In order to define the three-step process precisely, let us rewrite
Eq. (A5) by changing the integration variable with t = t +~ t2. We —obtain

S(Qt, Q2,'T) =2 Ref dt f dt3 f dt' f dt, [E2 (t +t3)Ez(t)E;(t')E, (t' t, )exp(—iQ3ti+iQ, t, )

+Eg ( t + t3 )Ez(t)E, (t')E ', ( t' t, )exp(—iQiti —iQ, t, )]

X « Vi Q(t, )VS'(t)Q(t)Q( t')Vg(t, )V—ip(
—

) » . (A6)

(A7a)

with

Here we have used the identity Q(t2) = Q(t)Q(r}Q( t'). When —the delay time ~ is larger than the pulse durations [Eq.
(2.9)], we may replace r+ t in the upper limit of integration of t by 0(2. In this case, the signal reduces to

S(Q, ,Q„r)=« k(Q )IS(r)18(Q ) »,

~8(Q, )»= f" dt'f dt, E*, (t'}E,(t' —t, e}xp(i Qt, )[Q( t')VQ(t, )V—~p(
—~)&&]+H.c. ,

00 0
(A7b)

« k(Q2)~= f dt f dtiEz(t+ti)Ei(t)exp(iQ2t~)[&& V~9(ti)VQ(t)]+H. c. (A7c)

Here 8 is the doorway operator and defines the state prepared by the pump field, 0 is the window operator defines the
detection by the probe field. The time evolution of the system is described by Q(r) Equations (2. .10)—(2.12) can now be
obtained by applying Eq. (A7) to the two-level inolecular model [Eq. (2.6)] and invoking the rotating-wave approxima-
tion.
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