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Coherent interaction of an ultrashort zero-area laser pulse with a Morse oscillator
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Dissociation probabilities, energy absorption, and ground-state populations are calculated numer-

ically for interaction of a Morse oscillator with a resonant ultrashort t, tp (10 ' sec) intense laser
pulse as a function of intensity and pulse area in order to investigate the sensitivity of coherence
phenomena to delocalization and chaos in molecule-radiation field systems. It is concluded that a
zero-area pulse can reduce considerably energy absorbed by a molecule as well as dissociation prob-
abilities for intensities below and near the chaotic region. It is found that the two-level model
(describing the interaction of light resonant with the ground to first excited level transition) works
well up to the intensity 10' W/cm', above which transitions to higher levels must be considered.

I. INTRODUCTION

The resonant interaction of radiation and matter on
the time scale shorter than all relevant relaxation times
gives rise to coherent effects such as self-induced
transparency (SIT) and soliton formation. ' These phe-
nomena are usually described by a model in which matter
is represented as an ensemble of two-level systems. If
these systems have nondegenerate levels then the
Maxwell-Bloch (or Maxwell-Schrodinger) equations
reduce to the sine-Gordon equation. This means that
electromagnetic radiation pulses can propagate undistort-
ed (as solitons) and without energy loss through a nor-
mally absorbing medium. This remarkable effect is
modified considerably when the two-level systems are de-
generate since then the resulting propagation equation
is not integrable (except in some particular cases ) and
thus one does not know whether distortionless pulses can
be formed. However, it follows from the propagation
equation integrated over time, see, e.g. , equation (8) from
Ref. 5, that in this case pulse absorption will be greatly
reduced for certain values of the pulse area S defined by
the formula

S =(pl%) J e(t, z)dt,

where p is the transition dipole moment and E(t,z) is the
slowly varying electron-field envelope. The complete
vanishing of absorption in this degenerate case occurs for
a pulse having the area S equal to zero. An example of
this is a pulse consisting of two pulses whose phase differs
by m. Such a pulse may eventually spread in the the de-
generate case (in the nondegenerate case a pulsating soli-
ton can be formed ) and will not be absorbed until its
width approaches the dephasing time T2. Recently, we
showed ' that a similar situation occurs when light prop-
agates in a medium consisting of systems having X-
equidistant levels. Such a model is certainly more ade-
quate than two-level models for the description of the
propagation of radiation resonant with molecular vibra-
tions or rotations, ' in particular, when the Rabi frequen-
cies approach the detuning present in molecular sys-

tems. ' We showed that the coupled Maxwell-
Schrodinger equations describing the propagation of ul-
trashort pulses reduce then to a multisine Gordon -equa
tion which predicts that zero-area pulses are not absorbed
and the absorption depends strongly on the pulse area,
having deep minima for certain values of the area.

In this paper we investigate a model in which an ionic
molecule represented as a Morse oscillator interacts with
a zero-area laser pulse. The radiation is taken to be reso-
nant with the transition from the fundamental to the first
excited vibrational level. Thus this model is more realis-
tic then the above-mentioned ¹quidistant level model
since it includes the detuning resulting from the anhar-
monicity of the molecular potential and also transitions
to continuum states but requires a full numerical treat-
ment. In our previous models the transition amplitudes
and the laser induced medium polarization were found
analytically from the Schrodinger equation as functions
of pulse area. In this paper we present the results of a
numerical integration of the time-dependent Schrodinger
equation allowing us to investigate the response of a
Morse oscillator to a zero-area pulse and thus to see how
the above-mentioned coherent effects are modified in the
presence of important multiphoton transitions to higher
vibrational levels as well as to the continuum states (dis-
sociation of the molecule). Recently, there appeared in
the literature a number of papers in which strong radia-
tion interaction with atoms or molecules is treated non-
perturbatively by solving numerically the time-dependent
Schrodinger equation. " ' Most of these are devoted to
the above-threshold ionization phenomenon (ATI). The
interaction of a Morse oscillator with an intense continu-
ous radiation was already discussed in Refs. 11—13. In
particular, Ref. 11 discusses the importance of chaos in
multiphoton excitation of molecules. This problem had
been discussed earlier in a number of papers, ' in which
the molecule was represented as an anharmonic oscilla-
tor.

II. MODEL CALCULATIONS

Our model is based on the Schrodinger equation with
the Hamiltonian

41 6480 1990 The American Physical Society



41 COHERENT INTERACTION OF AN ULTRASHORT ZERO-AREA. . .

8 +D [1—exp( —ax) ]
2m Qx

d—,xEM U(t) cos(toL t ), (2)

where x =r —ro, ro is the equilibrium separation of nu-

clei, d, is the effective charge or dipole gradient, EM is
the maximum value of the radiation electric field, and
U(t) is the pulse envelope chosen to equal 1 at the maxi-
mal value of the electric field. The energy eigenvalues E„
and normalized eigenfunctions g„of the Morse oscillator

11,12, 18

quence of two equal phase pulses each of duration t
while (10b) describes a corresponding zero area pulse,
since the second pulse is now out of phase by m..

The time evolution of the wave function described by
(7) was carried out according to an implicit Crank-
Nicholson scheme

1+ Hi(~+5wl2) f(v+5~)
2

1 — H, (r+5m/2) f(r), (11)

E„=BD(n + —,
' )[2—B (n + —,

' )],
Q„=C„y'exp( —y/2)M( n, 2s—+ l,y),

where

(3)

(4)

where H, is the dimensionless Hamiltonian defined by
the right-hand side of Eq. (7). After discretizing the X
variable and approximating the space derivative in point
X by the formulas

' 1/2
Aa

2mD
2

y =—exp( —ax), s =1/B —n —
—,', a'y Wk+ i 24k+—

0k
Xk, t

BX2 5X2

(5) Xk = aro/2+—k5X (12)
1/2

a I'(2/B —n)2s

n!I (2/B —2n)z
(6) 40=4k =o

for any t (boundary condition },

where

KXU—( t ) cos(pv)
(7)

r=DB tlfi, X =ax, K=d, EMlaDB

p, =kcoL /DB

(8)

(9)

We have integrated numerically Eq. (7) for various values
of the peak laser intensity I =(c/8m. )Est (the light is as-
sumed to be linearly polarized) using the following values
of parameters present in (5)—(9): B =0.0419, D =6.125
eV, a =1.1741ao ', d& =0.786Db/ao, r&=1.7329ao.
These numbers correspond to the HF molecule and were
taken from Refs. 11 and 12. For these parameters the
Morse potential supports 24 bound states and its charac-
teristic vibrational time is t, =A'/[E(1) —E(0)]=8.41
X10 ' sec which is equal to the light cycle because of
our choice of light frequency coL resonant with the transi-
tion from the ground state to the first excited level. The
pulse envelope function was chosen either as

U(t)=~sin(mtlt )~, (10a)

or as

U ( t)=sin(m t It~ ), (10b}

where 0 & t &2t The first en. velope (10a) describes a se-

and M ( —n, 2s + l,y) is the confluent hypergeometric
function (Kummer's function) being equal, in the case of
integer n (up to a multiplicative factor) to the generalized
Laguerre polynomial' n =0, 1, . . . , n & 1/B —

—,'. Using
the same dimensionless variables as in Ref. 11 we rewrite
the Schrodinger equation in the form

T

l = — +B [1—exp( —X)]z
QZ

BX

P (t)=1—g l(g„lg(t))l',
n=0

A (t)=((Q~H, i ~g) Eo)/D, —

(13)

(14)

(15)

where H 01 is the Hamiltonian of a free molecule. We
display in Figs. 1 —3 these quantities calculated for the
time t =2t (i.e., at the time when the second pulse is
switched ofI} as functions of peak pulse intensity. Since
the coherent resonant effects are expected to depend on
the pulse area we display each quantity in two different
ways; we either varied the peak intensities keeping the
area S [this is an area of one pulse of the pulse sequence
described by formula (10)] fixed [Figs. 1(a), 1(b},2(a), 2(b),

Eq. (11) reduces to a tridiagonal system of linear equa-
tions which is solved using the algorithm given in Ref.
20. More details concerning this integration scheme can
be found in Refs. 16 and 20 (because of the very steep in-
crease of the potential for r approaching zero it was
sufficient to start our X grid at X =—are/2 instead of
X = —aro). In the calculations reported below the time
and space steps and kM vary as a function of the laser in-
tensity and total pulse duration, the extreme case being
5t =5&IDB =0.037filD =0.0005 cycle, 1 cycle
=t, =8.41X10 ' sec, 5x =0.0085ao, k~=5000. The
last number means that we confined our oscillator in a
box of size about 44ao. The final choice of values of these
parameters was done after having performed numerous
test runs yielding negligible sensitivity of the results to
values of 5t, 5x, and kit.

Having found the wave function we calculated the dis-
sociation probability PD(t), energy absorbed A (t) and
the population of the ground state Po(t) using the formu-
las
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FIG. 1. Dissociation probability PD at t =2t~ as a function of
pulse peak intensity I at fixed (a) area S=2.5~; (b) area
S =5.5n", (c) individual pulse duration t~ =21 cycles (1
cycle =8.41X10 "sec). The parameters t~, S, and I are relat-
ed by (17). Cl, zero-area pulse sequence described by Eq. (10b);
+, nonzero-area sequence described by Eq. (10a). The abscissa
on the right displays values of molecular energy expectation
values.
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FIG. 2. Absorption A defined by formula (14) as a function
of peak intensity I. 0, zero-area pulse sequence described by
Eq. (10b); +, nonzero-area sequence described by Eq. (10a)
(same parameters as in Fig. 1).

3(a), and 3(b)] or varied the intensity keeping the pulse
duration t fixed [Figs. 1(c), 2(c), and 3(c)]. The pulse
area S was calculated using the transition dipole moment

p calculated with the help of the expression

p =po, =d, ~f, lx lgo) =d, (8/2)'~'/a =0.097Db . (16)

The relation between the individual pulse area S, intensi-
ty I, and pulse duration t can be found from the follow-

ing formulas:

S=po, E~/A J U(t)dt, t (c)=2.215X10 S/I'
0

(17)
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In the last formula the intensity is expressed in W/cm
and time in cycles. The total area of the pulse sequences
described by (10) was either 2$ (lines with crosses) or zero
(lines with squares). One concludes from Fig. 1 that for
S =2.5~ the zero-area pulse leads to a decrease of disso-
ciation compared to the nonzero-area sequence by a fac-
tor approaching 10; for an area S =5.5m this factor never
exceeds 2. The difference between a zero-area and
nonzero-area pulse sequence is much sharper for the ab-
sorption A (2t ) and the ground-state population Po(2t )

as shown in Figs. 2 and 3. Also the sensitivity on the
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FIG. 3. Ground-state population defined by (14) as a function
of pulse peak intensity I. 0, zero-area pulse sequence described
by Eq. (10b); +, nonzero-area sequence described by Eq. (10a)
(same parameters as in Fig. 1).
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pulse area magnitude is much stronger here; this explains
the rapid variation of the absorption and ground-state
population observed in Figs. 4(b) and 4(c), since this is the
case when the pulse duration is fixed and the area
changes from 0.85~ to 13.5m. Finally, Fig. 4 shows the
dissociation, absorption, and ground-state population as
functions of time for intensity I=7.9X10' W/cm and
S =2.5m.

III. RESULTS AND DISCUSSION
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FIG. 4. Time dependence of (a) dissociation probability
PD(t), (b) absorption A (t), and (c) ground-state population
Po(t) calculated for peak intensity I =7.9X 10' (S =2.5m. ). 0,
zero-area pulse sequence described by Eq. (10b);
uouzero-area sequence described by Eq. (10a). The abscissa on
the right in (b) displays molecular energy expectation values.

The present work was motivated by the results of our
earlier investigation ' showing that a zero-area pulse in-

teracting with a molecule modeled by N-equidistant levels
should not be absorbed at all (for durations shorter than
any medium relaxation or dephasing time) and that its
absorption as a function of pulse area should exhibit deep
minima for certain values of the pulse areas. For this
reason we chose to investigate here two successive pulse
sequences of individual area S equal to 2. 5m (5.5n. ) such
that the total area of each sequence would be either 5n.

(lie) or zero. In a two-level system, the first pulse se-

quences (with nonzero area} would lead to the complete
inversion of the system, whereas the zero-area sequence
would return the system completely to the initial state.
We first conclude that the two-level model works very
well up to the intensity Ir =10' W/cm, i.e., we found

that the ground-state population and absorption calculat-
ed with our algorithm coincide with the two-level model
predictions, the dissociation probability I'D being smaller
than the accuracy limits of our programs (i.e., PD (10
for I close to Ir ). Such a high value of Iz can be easily
attributed to the fact that the anharmonicity of the HF
molecule is very large leading to a detuning 5 of the tran-
sition from the first to the second excited level. One easi-

ly finds using Eq. (3) that 6=2B D =173.46 cm '. Ac-
cording to arguments given in Refs. 9 and 10, virtual
transitions to the second excited level will occur if the
corresponding Rabi frequency Qz =p, zE~/Pi=6. 32
X10 I'~, where I is W/cm and Qz in cm ', becomes
comparable to the detunin h. This occurs when the
laser intensity is close to 10' W/cm, for which Q„-=200
cm '. Thus the delocalization of the molecular wave
function P(x, t) is inhibited by the detuning below 10'3

W/cm . This fact explains also the relatively low dissoci-
ation probabilities shown in Fig. 1. We expect that both
the wave-function delocalization and the dissociation
probability will be greater for molecules having smaller
values of this detuning h. In order to illustrate better the
wave-function delocalization we add a right-hand side
axis in Figs. 2 and 4(b) for the molecular energy expecta-
tion values (g~H „~P). One observes a considerable
delocalization of the wave function at time t =2t above
I =10' W/cm (i.e., the expectation value of the energy
exceeds the energy of the first excited level E, in this in-
tensity region). The time plot of the molecular energy,
Fig. 4(b), shows that even at intensities as high as
I =7.9X10' the zero-area pulse reverses delocalization
in the second time interval t ( t & 2t . In other words, at
this intensity the coherence is still clearly visible. These
coherent effects become visibly smaller in all our figures,
at intensities above 10' W/cm for which, according to
the results of Ref. 11, one approaches the regime in
which the Morse oscillator exhibits chaotic behavior. In
the calculations presented here we took values of parame-
ters corresponding to the HF molecule because we want-
ed to compare our results with the study of chaotic be-
havior in HF presented in Ref. 11, even though one
should not forget that in this regime of intensities
(I) 10' W/cm ) one should consider ionization of atoms
(rates of 10' s ', at I=10' W/cm, are predicted, see
Refs. 21 and 22). This means that for such high intensi-
ties one approaches the limit of the applicability of the
model based on Harniltonian (2). However, the phenome-
na discussed here will occur at lower intensities in mole-
cules having lower anharmonicities, i.e., according to our
estimate concerning Rabi frequencies Qz presented
above, we expect the changing a molecule should roughly
lead to the rescaling of the intensity axis by (a/aHF),
where a=6/Po, (aH„=a for HF) and h,po, are the
anharmonicity and transition dipole moment of another
molecule. Thus we expect that for molecules having
smaller a the chaotic region will be shifted towards lower
intensities.

Of note is that the dissociation probability is less sensi-
tive to coherent effects than the absorption and ground
state population, the last one being clearly most affected
by them. Thus Figs. 2(b) and 2(c}show that the zero-area
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pulse sequence leads to a dissociation about half that of a
nonzero-area sequence. We think that this is related to
the fact, that a significant part of the dissociation is
occuring via a tunneling mechanism ' which is corn-
pletely insensitive to the pulse phase history. Thus the
second part of the zero-area pulse, as seen in Fig. 4, by
tending to populate only lower levels, lowers the dissocia-
tion rates, but the dissociation caused by the first part
cannot be reversed in the framework of this tunneling
scheme. Obviously, one sees that this tunneling mecha-
nisrn is not always dominant here; the dissociation proba-
bility shown in Fig. 4(b} shows oscillatory behavior relat-
ed to the resonant, coherent character of processes inves-
tigated here, while the tunneling mechanism leads to
monotonically increasing dissociation probabilities
(as a function of tine).

Finally, we interpret the maxima of the ground-state
populations in Fig. 3(c) which correlate with minima in
the corresponding absorption plot [Fig. 2(c)]. These
occur for both pulse sequences at intensities 8X10',
2 X 10' (2.5 X 10' W/cm, for a zero-area sequence) and
5X10' corresponding to individual pulse area S =8.4,
13.4 (15, for a zero-area sequence}, and 21.2 (two of them
occur at same values of S for both pulse sequences).
These values are close to the areas for which absorption
minima occur in a three-level harmonic system. One
finds, using formula (45) of Ref. 9 that such a three-level
system returns completely to the ground state for areas

S =2nn/A&=7. 25Xn, where A &=0.5[1+(p,z/po& )z]'~2

and n =0, 1,2, . . . . Note that the zero-area pulse shown
in Fig. 3(c) does not return the system completely to the
ground state already at intensities around 10' W/cm .
This is related to the fact that the pulse is very short
(t~ =21 cycles) and thus its spectral width is close to the
detuning b, . The plots shown in Figs. 3(a) and 3(b) de-
scribe longer pulses in this intensity region and lead to
populations of the ground state close to 1 for zero-area
pulses up to the intensity 10' W/cm . We have verified
that for much longer pulses (tz =100 cycles) this limiting
intensity is even closer to 10' W/cm, the chaotic regime
border. However, even for a short pulse the difference
between the two pulse sequences is clearly visible in the
time dependence of the population plotted in Fig. 4(c).

Summarizing, we note that our study shows that there
exist pulses which minimize the energy absorbed by a
Morse oscillator. It remains to be investigated how stable
are such pulses, i.e., can they exhibit SIT when propaga-
ting in a medium consisting of Morse oscillators. We are
currently pursuing this question.
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