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Non-Markovian stochastic jump processes. I. Input field analysis
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A non-Markovian model of correlated phase jumps is introduced for phase fluctuations of an
electromagnetic field. This generalized jump model (GJM) treats phase jumps of arbitrary size,
occurring at random times; but in contrast to previous work, the jumps are allowed to be fully
correlated, partially correlated, or uncorrelated. The degree of correlation is defined by a single pa-
rameter derived from the theory. The familiar phase-diffusion model, telegraph-noise model,
Burshtein model, and Brownian-notion-like model are all obtained from the GJM in the proper
limits. The standard way of characterizing the spectrum of a laser has been the assignment of a sin-
gle parameter —the linewidth. However, in experiments where the details of the fluctuations are
important, or where exact line shapes are measured, this single-parameter characterization might be
insufficient. This GJM describes most cases by a set of three stochastic parameters: the degree of
correlation between the jumps, the characteristic jump size, and the mean time between jumps. In
this paper expressions are derived for the correlation function and the spectrum of a stochastic field
in terms of these three stochastic parameters. In addition to analytical work, detailed numerical
simulations are presented for the various limiting cases of the model, and the agreement between
theory and simulation is excellent. Since the stochastic parameters are not a priori known, a pro-
cedure is described for extracting the stochastic parameters from measurable quantities such as the
field correlation function or spectrum. Since correlated Auctuations are very common in optics (any
stabilization feedback procedure involves anticorrelation), the questions of relevance of the present
model to problems of current interest in optical communication and nonlinear optics are also dis-
cussed.

I. INTRODUCTION

The interaction of resonant or nearly resonant strong
laser light with an absorbing medium provides the basis
for a very wide range of phenomena within the even wid-
er field of nonlinear optics. In many applications the
laser light may be assumed to be monochromatic, and
indeed, the bulk of the theoretical treatment of nonlinear
optical phenomena is based on this assumption. As an
example, the Bloembergen approach to nonlinear suscep-
tibilities generally assumes a 5 function for the laser fre-
quency, while still allowing for (phenomenological) relax-
ation processes in the material system. As experiments
become more sophisticated, the details of resonance lines
rather than their mere existence are being investigated.
Thus, the stochastic character of the laser fields should be
considered in detail.

Several authors, using different approaches, have dealt
with the topic of laser phase fluctuations in various non-
linear optical phenomena. They considered phenomena
such as saturation, ' resonance fluorescence, ' ' mul-
tiphoton resonance processes, ' double optical reso-

nance, ' ' four-wave mixing, ' Hanle reso-
nances, diffraction of atoms by a standing wave, '

autoionization in a strong field, photon echoes, popu-
lation fluctuations, etc. The most common as-
sumption about stochastic laser fields has been that each
field may be described by a constant amplitude, a fixed
frequency, and a phase that undergoes a diffusionlike
(wiener Qepy} prOCeSS 12 14 19 21 23 24 26&27 33737 39 44 47

This phase-diffusion model (PDM), has been treated
mostly for mathematical convenience, as the statistical
properties of diffusion processes are well known, even
though in most cases, there is no a priori good reason to
assume that real lasers obey the Markovian assumptions of
the PDM. The Lorentzian laser line shape predicted by
the PDM is not generally found, and thus, more general
treatment of stochastic processes is warranted.

A possible way to extend the PDM to the case of non-
Lorentzian line shapes is to consider a Gaussian-
Markovian (Ornstein-Uhlenbeck, Brownian motion) pro-
cess of frequency fluctuations. This model for an inten-
sity stabilized laser field, which is similar to the
Anderson-Kubo treatment of material energy level fluc-
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tuations, was successfully applied to a number of
nonlinear optical problems. ' ' ' ' '

A different approach to the problem of phase Auctua-
tions was adopted by Burshtein and co-workers. ' "
These authors developed a jurnp model, where the phase
of the field is piecewise constant, with jumps of random
size occurring at random times. The Burshtein model is
Markovian, namely, the jumps are not correlated, and the
random jump time distribution is Poissonian. With these
assumptions, exact equations for the field correlation
function, the interaction with a two level system, and
many other physical processes were derived and
solved i, z, 7, », i3, 28, 3i,4i, w —46 The Burshtein equations are
valid for uncorrelated jumps of any size, with the PDM
recovered in the limit of small jumps. The Burshtein
work while very elegant, is still restricted to the Markovi-
an assumption and Lorentzian line shapes.

Another jump model discussed by Eberly and co-
workers is the phase telegraph-noise model. In this
model the phase is allowed to jump at random times be-
tween two fixed values. Eberly and others obtained spec-
tra and correlation functions, ' ' ' ' ' but again, the
model is restricted by an unphysical assumption that the
phase can only have one of two values.

Since in our opinion, fluctuations in nature are general-
ly correlated, in the present paper we extend the Bursh-
tein method to a non-Markovian generalized jump model
(GJM) for phase fluctuations. The mode1 treats phase

jumps of arbitrary size occurring at random times, but the

jumps are allowed to be fully correlated, partially correlat
ed, or uncorrelated, where the degree of correlation is
defined by a single parameter deriued from the theory
Results are obtained for any degree of correlation and all
jump sizes. In the appropriate limits, the present model
recovers the results of the theories discussed above.

In what follows, the field is written as

E(t) =Eoe +c.c.
—i [co~ t+rIS(t)]

where coL is the nominal frequency of the laser and Eo is
the amplitude. The random phase P(t) is assumed to un-
dergo sudden jumps at random times. The phase jumps p
are described by a distribution f (p). Each phase jump p
depends on the preceding jump p' according to the condi-
tional probability density h (p', p). In this work, the as-
sumption is made that the memory of the system extends
only to the jump immediately preceding the current
jump. Possible relaxation of this assumption to allow for
longer memory effects will not be discussed in this paper.
A correlation parameter y is introduced with the follow-
ing properties. When h (p', p) is independent of p' (an un-
correlated process), y =0; when the current jurnp is likely
to be of the same sign as the last jump (correlated jumps),
y )0; and when the current jump is likely to be of the op-
posite sign to the last jump (anticorrelated jumps), y &0.
In the limits, this model reduces to well-known cases.
The obvious limits can be pointed out immediately: For
y =0, the jumps are uncorrelated, and the model reduces
to the Burshtein case. For y= —1, the jumps are fully
anticorrelated (p= —p'), and for any realization of the

stochastic process the phase is jumping between two
values the telegraph-noise case. In the small-jump limit,
phase diffusion is described, with a diffusion constant that
depends on the degree of correlation. The traditional
PDM is recovered in the limit of zero correlation. In the
nearly fully correlated small-jump limit the GJM approx-
imates a continuous Markovian frequency fluctuation
process, yielding as a special case the Gaussian Markovi-
an frequency Quctuation model.

The GJM describes most cases by a set of three sto-
chastic parameters: the correlation parameter y, the
characteristic jump size B, and the weighted average of
the mean time between jumps ~,„.In this paper, expres-
sions are derived for the correlation function and the
spectrum of a stochastic field in terms of these three sto-
chastic parameters. Since the stochastic parameters are
not a priori known, a procedure is described for extract-
ing these parameters from such measurable quantities as
the field correlation function or spectrum.

In all experiments, linear or nonlinear, the laser field
interacts with some medium. When the interaction is
linear (e.g. , linear absorption) the spectrum of the outgo-
ing light is identical to that of the incoming light. In a
nonlinear experiment, however, the situation is more
complex, and the details of the stochastic nature of the
input field might be needed in order to predict the exact
output line shape. In the following paper (hereafter re-
ferred to as paper II) we derive equations for the non-
linear interaction of the present stochastic field with a
two-level system, and apply them to the interesting case
of resonance fiuorescence. In paper II, we show that two
fields with identical linewidths may give rise to very
different resonance fluorescence spectra, depending on
their stochastic parameters as defined in the present pa-
per. In addition to analyzing the observed spectrum, we
also propose a way to derive the stochastic parameters
from the observed resonance fluorescence spectrum, a
method that is complementary to the one which is based
on the analysis of the input field correlation function. It
is also shown in paper II that in some cases the procedure
proposed here for determining the stochastic parameters
from the input field correlation function may not
differentiate between different possibilities, while the pro-
cedure based on the output analysis may indicate which
stochastic parameters better describe a particular Auc-

tuating field.
The organization of the paper is as follows. In Sec. II

the basic formalism is introduced. In Sec. III we intro-
duce several parameters which are used throughout the
paper and discuss their physical significance. In Sec. IV
we apply the formalism to the different regions in pararn-
eter space and obtain specific results for the different re-
gimes. For ease of reading, most of the mathematical
derivations were placed in appendices, but they are quite
significant, and should not be overlooked. The major re-
sults, however, are reproduced in the main body of the
paper. Throughout the paper we use the Kielson-Storer
model (KSM) for phase fluctuation (to be defined below)
as an illustration for our results, even though in most
cases our results are more general. It is stated clearly in
each section what are the validity limits of the derivation
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in that section. Thus, in Sec. IV we discuss, among oth-
ers, the Born approximation for small jumps (IVB), the
case of large jumps (IV C), the case of highly correlated
jumps (IV D), and the case of highly anticorrelated jumps
(IV E). Section V includes a discussion of the numerical
results in the different regions. In addition, independent
computer simulations which were performed to verify the
analytical results are described. The paper ends (Sec. VI)
with the proposed procedure for extracting the stochastic
parameters from experimentally measurable quantities.
All aspects of the nonlinear interaction of the stochastic
field with a two-level system will be discussed in paper II.

II. FORMALISM

n

n —I

(b)

n+1

a+I

time

For the purpose of this paper, we use the following
rather general definition of a Markovian vector process.
A vector V(t) is Markovian if its conditional probability
f ( V', t', V, t) of having the value V at time t, given that it
had the value V' at time t', obeys the equation

Pn-i

n+1

n-1

df(V', t', V, t)
(2.1)

where Lv is a linear instantaneous operator which does
not depend on previous times. Here the initial condition
is f ( V', t'; V, t') =5( V —V'). The stochastic operator L„
can be shown to have the following properties:

Lvg V dV=O

Lvf ( V) =0 (2.2b)

where g ( V) is an arbitrary function and f ( V) is the dis-
tribution function of V that is assumed to be constant in
time. Moreover, if L

„

is also time independent, V ( t) is a
stationary process and f ( V', t', V, t) =f ( V', 0; V, t t')—
=f ( V', V, t t')—

The process under consideration involves phase jumps
with a random temporal distribution, where the value of
the present jump P depends on the value of the last jump
P' according to the conditional probability density
h (P', P). The field phase P(t) as defined in Eq. (1.1) is de-
picted in Fig. 1(a). At time t„,a phase jump of sizep„,occurred, at time t„ajump p„occurred, etc. In
Fig. 1(b) the jump process p(t) is defined. The function
13(t) has the value of the last jump. In this paper, the
stepwise random function P(t) is a purely discontinuous
Markov process. The mean time between two succes-
sive jumps rp(p) may, in general, depend on the current
value of » and the probability for the time of the next
jump is given by the Poissonian distribution

FIG. 1. A schematic drawing of the phase jump process as a
function of time showing (a) the phase P(t} and (b) the corre-
sponding phase jumps 13( t}.

jumps away from the value p and the second term gives
the integral over all previous values P'. Equations (2.2)
are equivalent in this case to the following normalization
and stationarity conditions on h (P', P):

f h (P', j3)dg= 1,

f f (P )
l (P P)dP f (P)

rp(P')
'

rp(P)

(2.5a)

(2.5b)

While the phase P(t) is a non-Markovian random vari-
able, as it depends on the previous jump, the vector
V(t) =[/(t), p(t)] can be shown to be a jurnp Markovian
vector. More specifically, one can write the
Kolmogorov-Feller equation for the conditional probabil-
ityf (4p Pp'0 P

df f—, h (P', P)+ ff(4o»o 0 »&' t) —', d&'=Lvf-
dt rp Tp

(2.6)

with the initial condition f (Pp, Pp'P P 0)
=5(P—Pp)5(P —Pp). The field is characterized by the
normalized correlation function

1 +n+1P rn+&
(p )

e"p
(p

(2.3)
and by the normalized intensity spectrum

(2.7)

with ~„+,=t„+,—t„. The conditional probability
f (Pp;P, t) obeys the Kolmogorov-Feller equation

1 00 I '(co 6)L )tJ(to —coL }= Ref k—(t)e dt .
VT 0

(2.8)

Equation (2.7) can be written as

k (t) = f dPpdg dP f(Po)f (Pp»p, P», t)e
with the initial condition f (Po,P, O)=5(P —Po). The first
term on the right-hand side of the equation describes = fdPr(P, t) .

(
+ f f(I3o,»', t)

(
', dP'=Ltrf-

r)t so( ) 7 p

(2.9)
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From the Kolmogorov-Feller equation (2.6) one derives
an integro-differential equation for the partially averaged
correlation function r (p, t):

r;ttf (p, )
h (P''P) dp'

r0(p)
'

r0(p')
(2.10)

with the initial condition r (p, 0)=f (p). Equation (2.10)
can be cast as

r =(Btt+Ltt)r

where L& is defined by Eq. (2.4) and

B r(p, t)=(e '~ —1)f ', r(p', t)dp' .
h(', )

ra(p')

(2.11)

(2.12)

We assume that f (p) and r11(p) are even functions of p,
and the function f (p) is fully characterized by its even
moments: (p ")-B " where B characterizes a jump size.
In particular (P ) =B . Unless otherwise specified, all
the results obtained below are valid for arbitrary distribu-
tion functions f (P) and h (P', P) which satisfy these con-
ditions together with the stationarity condition (2.5b). In
a previous paper' we have discussed the Kielson-Storer
model, which is also used here as an illustrative example
that satisfies the general conditions. As is clear from Eq.
(2.8), the spectrum is determined by the correlation func-
tion k (t). This function has a different functional depen-
dence in the different limits, and in Sec. IV analytical
solutions are obtained for k (t) for all the important limit-
ing cases.

III. CHARACTERIZATION OF THE JUMP PROCESS

The discussion of a stochastic process of the kind being
considered here is quite complicated, and involves the in-
troduction of many parameters which take different
values in the various limits. Thus, the mean jump size,
the mean time between jumps, the degree of correlation
between successive jumps, or the parameters defining
boundaries between different limiting cases need all be
defined.

The first quantity of physical significance is the weight-
ed average of the mean time between jumps ~,„.The
mean time between jumps r0(P) introduced in Eq. (2.5)
may depend, in general, on the current value of p. The
weighted average of these times is

P'~'P'dP .
r0(p)

(3.1)

k, (t)= ( e(0)e(t) )

=f f dpadpe(p0)e(p)f (pa)f (pa, p, t) (3.2)

For a constant r0(p) r =70.
A second quantity of physical interest is e(t), the fluc-

tuating frequency deviation averaged over the time r0(p):
e(t)=p(t)lr0[p(t)]. The quantity e(t) has the dimension
of frequency, and it is almost the instantaneous frequency
deviation. (Almost, because strictly speaking, in this
model the frequency fluctuations are 5 functions. ) The
autocorrelation function of this quantity is given by

where e(p) =p/ra(p) .If ra(p) were constant k, (t) would
be proportional to the autocorrelation function of the
jumps (P(0)P(t)).

Another very important time scale is v&, the jump
process memory time, given by the correlation time of
the fluctuating frequency deviation E(t),

(vtt) '=B 27,„fk, (t)dt . (3.3)
0

For constant r0(p), v&
' is the correlation time of the pro-

cess p(t).
For the case of uncorrelated jumps [h (p', p) indepen-

dent of P'], the "jump process memory time" vtt
' is r,

„

(Sec. IV A). In general, however, the jump memory time
may be longer or shorter than r,„.A (positively) correlat-
ed process is one where the next jump is likely to be of
the same sign as the previous one, and an anticorrelated
process is the opposite. This intuitive description leads to
the generalized definition of the correlation parameter y:

y =1—
vpw,

„

(3.4)

and the generalized definitions of positive and negative
correlations:

1

(2 B2)1/2

h (P', P) =h (P—yP')

28
(3.5)

[22r( 1 1,2)B2]l/2

X exp — 2, ( —1 y —1)(p —yp')'
2(1 3I )B—

(3.6)

Strictly speaking, a different symbol should have been
used for the y in the above equation, but it can be shown
that the parameter y in the KSM satisfies the definition
of the generalized correlation parameter y, and thus the
same symbol is used for both. By inspection, for y=0,
the KSM function h (p', p) is independent of p', and the
jumps are uncorrelated. The average value of P after the
jump P' is given by yP', leading to the obvious meaning
of positive and negative correlation.

The characteristic jump size 8, the correlation parame-
ter y and the weighted average time v.„describe the main
features of the stochastic field. Of these, r,

„

is a (time)
scaling parameter, while 8 and y determine the other pa-
rameters of the problem in terms of ~,„.In the general
case of ra(p) not being a constant, the details of this func-
tion are needed to fully characterize the field.

y =0, uncorrelated,

y )0, (positively) correlated,

y & 0, anticorrelated .

In order to clarify these somewhat abstract definitions,
consider the well-known Kielson-Storer model, intro-
duced first for velocity changing collisions. In this model
r0(p) =r0= const, and the distribution functions are given

by
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Since there are many formulas in this paper, Table I
lists all of the important mathematical expressions with
their definitions, a brief description of their physical
significance, and the place in the paper where first intro-
duced.

r(P, t)=r(P, O)=f(P). Inserting this equation into the
right-hand side of Eqs. (2.10), considering Eq. (2.5b), and
integrating both sides of the resulting equation over p
yields the following short-time asymptotic form of the
correlation function:

IV. FIELD ANALYSIS
k(t)=1 v—,t,

where

(4.1)

A very convenient way to consider the various cases
discussed in this paper is to plot the phase-space diagram
for the parameters B and y. The range of these parame-
ters are 0&B & 00 and —1 ~ y & 1. Figure 2 depicts the
phase space, and the different regions are marked. They
are labeled according to the letter denoting the corre-
sponding subsection.

Before discussing the specifics of the various regions, a
general statement should be made regarding the short-
time asymptotic behavior of the correlation function. In
all regions of parameter space, for short times t «v,„,

1 —e
v&= I f(P)dp.

ro }

The far wings fall off quadratically with co —~L,

(4.2)

J(co—
coL )=

tr( co coL )
(4.3)

The value of the far wing width parameter v& depends on
the particular region, but Eqs. (4.1}and (4.3) are valid in
a11 regions. For example,

TABLE I. A description of the important parameters used in the paper, a general formula, and the place in the paper where first
mentioned.

Symbol Parameter description General formula First introduced

p(t)
p(t)

f (p)
h (P',P)
rp(p)

B
7

trav

e(t)

k, (t)

y

k(t)

r(p, t)

The laser field nominal frequency

The fluctuating phase of the field

The stepwise random function equal

to the latest phase jurnp

The unconditional distribution of p
The conditional distribution of p
The mean time between the phase jumps
A characteristic width of f (p)
A weighted average of the time

between jumps

The effective frequency deviation

The correlation function

of the random process e(t)
The reciprocal jump process memory time

The correlation parameter ( —1 ~y ~1)
The laser field correlation function

The laser field intensity spectrum

The partially averaged field

correlation function

The integral operator entering

the Kolmogorov-Feller equation

The integral operator

A characteristic time between the jumps

The short-time damping rate

The reciprocal field correlation time

for B &&(1 y)
A characteristic long-time decay rate
of k(t) for 1+y &&1 (in the KSM case)

( (p2 ) )
I /2

B /(p /ro(p))

p(t)/ro(p(t) )

(e(0)e(t))

(B/r, „)'/f k, (t)dt

1 —vs, „

(e ')—[P(r)—tit )

Ref —k(t)e ~ dt
1T 0

1 f dp, h(p', p)
rp(p) ro(p')(,s 1)fdp, h(p', p)

ro(P')

f dp f(p)/ o(p)

fdpf(p) ',',
1+y B
1 —y 2w,

„

(1+y)B
4&0

Eq. (1.1)

Eq. (1.1)

Fig. 1

After Eq. (1.1)

After Eq. (1.1)

Before Eq. (2.3)

After Eq. (2.12)

Eq. (3.1)

Before Eq. (3.2)

Eq. (3.2)

Eq. (3.3)

Eq. (3.4)

Eq. (2.7)

Eq. (2.8)

Eq. (2.9)

Eq. (2.4)

Eq. (2.12)

Eq. (4.4b)

Eqs. (4.2), (4.4)

Eq. (4.22)

After Eq. (4.61)
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B /21,„,B «1
fdp f (p)/ro(p) =1/r, B~»1 .

(4.4a)

(4.4b)

In what follows, various regions of the B,y parameter
space wi11 be explored, resulting in specific predictions for
correlation functions and spectra.

A. Uncorrelated jumps

0

FIG. 2. (B,y) phase space, the regions where specific solu-

tions are obtained, are shaded and marked by the letter corre-
sponding to that region. The plots describe schematically the

negative logarithm of the correlation functions against time de-

lay.

If successive values of p(t) are uncorrelated,
h (p', p) =h (p) is independent of p'. In this case (the kan-
garoo process ) Eq. (2.5b) yields

h (P)=f (P)r/ro(P) . (4.5)

Inserting h (p) into the Kolmogorov-Feller equation (2.4),
one can obtain the Laplace transform of the conditional
probability

F(po, p) = f f (po, p, t)e "dt

1
$(p p )+ f(p) fdp f(p)

s+ro '(Po) st(Po)[sro(P)+ ] sro(P)+ I
(4.6)

Using this expression in the Laplace transform of Eq.
(3.2) and taking the inverse transform of the result yields

k, (t) =f dp f (p)[p/ro(p)] e (4.7)

By inserting Eq. (4.5) into Eq. (2.10) one can obtain the
Laplace transform of the correlation function of the field
(2.9) for the kangaroo process

E(s)=f k(t)e "dt =Joo+rJ&»J»/(I rJi2) (4.—8)

where

(4.9)

Equation (4.8) directly yields the spectrum
J(to —tot ) =m 'ReK( i (to —c—oL )) and allows one to get,
by means of the inverse Laplace transform, the correla-
tion function k (t). We note that the correlation function
k(t) is nonexPonential unless ro(P) is a constant ro. For—vlt
that special case treated by Burshtein k ( t) =e ' and the
spectrum will be a Lorentzian with a half width at half
maximum (HWHM) of v, . Specifically, for a Gaussian
distribution f (p), the spectral width of the field is given
by

have expected that correlations may be introduced either
through the conditional probability h (p', p) or through a
nonconstant ro(p), but this result indicates that correla-
tions are introduced only through the conditional proba-
bility.

B. The Born approximation (smail jumps)

When dealing with a phase fluctuating field, one may,
for all practical purposes, always approximate a continu-
ously varying phase by a succession of many small jumps,
whether correlated or not. Thus, a good point to start a
discussion of the generalized jump process is the analysis
of the small-jump limit.

In this section, the GJM is analyzed in the region of
the (B,y) space where the PDM proves to be approxi-
mately valid. The diffusion coefficient is calculated and
the results for the entire time and frequency domains (i.e.,
beyond the limits of the PDM) are obtained. For
B « ( 1 —y ) a generalized cumulant expression was
used to solve Eq. (2.11). The details of the method are
described in Appendix A, and the validity condition is
derived in Appendix B.

In Appendix A the following equation is derived:

v, = [1—exp( B /2)] lro . — k= —v+ 0 t' dt' k (4.10)

The most interesting result of this section is obtained
by using Eq. (4.7) in the definition of the jump process
memory vti Eq. (3.3). In this case, one obtains the
surprising result v&~„=1,namely, y=O for arbitrary
functional forms of ro(p) and f (p). A priori one might

where

8(t)= f fdpdp'b(p')f (p')Bttf (p', p, t) v, —(4.11)

and b (P) =(e '~ —I )/ro(P). As follows from Eq. (2.4)
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8(t) = —k, (t}—k, (t}—vf, (4.13)

where

k, (t)= —f f dpodpb(po)(e '~—1)f(po)f(po, p, t),

Bttf(p', p, t}=(e '~ —1)[f(p',p, t)

+f (P', P, t)/ro(P)] . (4.12)

Combining Eq. (4.11) and Eq. (4.12}yields

k= v]k + 6O t t k I' dt
0

(4.24)

Using Laplace transform, and neglecting higher-order
terms, one can show that

Thus, for y =0 and 8 « 1, the standard PDM holds.
The easiest way to obtain the power spectrum of the

field is to use the convolution form of the truncated cu-
mulant expression (see Appendix A). The relevant equa-
tion is

k, (t)= —f f dpodpb(po)b(p)f (po)f (po, p, t) .

(4.14)

(4.15)

v, +p(co —coL )
J(co—cot )=-

(co —
coL ) +v

(4.25)

The condition B «(1—y) means that the phase
jumps are small, simplifying Eqs. (4.2), (4.14), and (4.15)
to yield v, =B /2r, „,

k i ( t ) = ( e( 0 )P( t ) ) (4.16)

8,(t)= —k, (t) —k, (t) . (4.17)

and kz(t)=(e(0)e(t)}=k,(t). The third term on the
right-hand side of Eq. (4.13) is of fourth order in B
exceeding the accuracy of k, (t) and kz(t} which are of
order B . Thus, we may approximate 8(t) by 80(t) where

where

p(co) = —f 80(t)cos(cot)dt . (4.26)

For the central portion of the spectrum lco cot, I «vti»
lu(co —co~)=p(0)=v, —v and the spectrum looks like a
Lorentzian with width v. Since v~gy B'«1 this part of
the spectrum accounts for almost the entire intensity of
the field. The far wings ~co

—cot ~ &&vti decay like a
Lorentzian of width v&, as expected from the short-time
asymptotes.

Rearranging Eq. (4.22} one obtains an expression for y

y=(v —v, )/(v+v, ) . (4.27)
The solution of Eq. (4.10) now yields the correlation

function of the field in the form

k(t}=exp v, t+ f—dt(t —t')8, (t')dt' (4.18)

This equation can be rewritten in another form which
shows more explicitly the long-time asymptotics,

k(t) =exp[ vt +q(t) q(0)—] . —

Here

v=v, —f 8,(t)dt= f k, (t)dt —v, ,

q(t)= f (t' t)80(t')dt' —.

(4.19)

(4.20)

(4.21)

Using the definition of y, and after algebraic
simplification, Eq. (4.20) can be written as

Since both v and v, are non-negative quantities, the
correlation parameter obeys —1 y ~ 1.

Summarizing the above results we note that in the
Born approximation, the behavior of the correlation
function for short and long times and the shapes of the
central and peripheral parts of the spectrum are indepen-
dent of the details of the statistics of the underlying noise
process p(t}, and are characterized by the two parameters
v [Eq. (4.22)] and v, [Eq. (4.4a)]. Note also that these re-
sults are valid even though ro(p) is not a constant.

The power of the technique may be illustrated using
the Kielson-Storer model, where many of the functions
can be calculated explicitly. In this model, a constant
ro(p) = rp is assumed. Multiplying both sides of Eq. (2.4)
by (pop/ro), integrating over po, p results in an expres-
sion for k, (t):

1+y 8
1 y2m

1+y
1-y" (4.22) k, (T)=(B/~0) e e, vti=(1 —y)/70 .

Using a constant ro(p} in Eq. (4.17) yields

(4.28)

We note that q(t)-B /(1 —y) and is therefore a small
correction. Expanding Eq. (4.19) yields g 2

80(t) = — e (4.29)

k(t}=e "'[1—q(0)]+q(t) . (4.23)
From Eq. (4.19)

The function q(t) decays on a time scale vti
' where

vti»v. Therefore, for vtit »1, k(t) is approximately
e '. Thus for long times, the GJM is equivalent to a
phase-diffusion model in which the conditional probabili-
ty for the phase obeys a diffusion equation with the
diffusion constant v, which is a function of y.

For the uncorrelated case (y=0) one can show with
the help of Eq. (4.6) that 8O(t)=0. Hence, Eq. (4.10)—

vl f
yields an exponential correlation function [k (t) = e '

]
for all times, irrespective of the functional form of ro(P).

k (t) =exp[ v, t —(1/vii)(v —v, }—
X(vtit —1+e o )] (4.30)

g 2 g 2

k( )= 1+
(1—y) (1—y)

(4.31)

The spectrum of the field is

while from Eq. (4.23) one obtains an alternative result, '
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v, +(v —v, )[((o—toL ) /vii+1]
J(~o —toL)=-

77 (co —
toL ) +v

(4.32)

For 8 «1, approximate solutions are found in the dis-
cussion of the frequency fluctuation region.

2. The frequency jluctuation region
(generalized Kubo oscillator)

C. Large jumps [B &)1/(1+y)]

For very large jumps [8 »1/(1+y)] each jump de-
stroys the field coherence irrespective of the degree of
correlation between the jumps. Indeed, since only rela-
tive phases are important [cf. Eq. (2.10)] and the phase is
measured modulo 2~, for very large jumps one intuitively
expects that it is immaterial whether the current jump is
or is not correlated to the previous jump. In this case one
can neglect the second term on the right-hand side of Eq.
(2.10), yielding

k (t) =f exp[ t /r (oP—) ]f (P)dP . (4.33)

The correlation function is generally nonexponential with
a monotonically decreasing decay rate. The short-time
asymptotes described above are valid for t &&~ with
v&=1/F [cf. Eq. (4.4b)]. In the case vo(P)=so=const,
however, the function (4.33) is exponential:

r = 'i e(P)r +L—ttr . (4.39)

A more rigorous derivation of Eq. (4.39) can be ob-
tained from Eq. (2.11) by replacing h (P', P) by 5(P' —P)
in the operator B& resulting in

When successive phase jumps are both small and high-
ly correlated, the phase P(t) may be approximated by a
continuous stochastic process. A good approximation for
P(t) is then

p(t) J=E(t')dt'+$0 (4.38)
0

where the fluctuating frequency deviation e(t)
=P(t)/wo[P(t)) is Markovian. The quality of this ap-
proximation is not a priori known, but the problem is
now equivalent to the case of the familiar Kubo oscilla-
tor. ' One can calculate k(t) using Kubo's treatment
and obtain the equation

k(t)=e (4.34) r'=[Lit+(e '~ —1)/ro(P)]r . (4.40)

yielding a Lorentzian spectrum with the HWHM width
This result agrees with the case of uncorrelated

jumps where v, =~0 ' for B ))1.

D. Highly correlated jumps ( y = 1)

The case when successive phase jumps differ
insignificantly from each other (y=1) is designated as
the highly correlated jumps region. The derivation of the
correlation function splits into two overlapping cases: (i)
the slowly varying jump case, where p is approximately
constant for each stochastic realization, and (ii) the fre-
quency fluctuation case, where B «1. In both cases, one
can consider the width of h (p', p) as a function of p' to be
much smaller than B.

1. The slowly varying jump region

In this region h(p', p) is approximated by 5(p—p')
[i.e., the phase jump p(t) is constant] in both terms of Eq.
(2.14) yielding

k (t) = fdp f (p)exp[ —(1—e '~)t/ro(p)] .

For 8 )&1, Eq. (4.34) is regained. For 8 -1, no explicit
expressions for k(t) have been found, and the integral
must be evaluated numerically. The integral (4.35}can be
substituted by a series which is more convenient for nu-
merical calculations, e.g. , for constant ~o(p) =~0:

k(t)= f e '"~"f(p)dp

where e(p) =p/ro(p). The field spectrum is

J((o—coL }=f(co cot)— (4.41)

(4.42)

where f(e} is the distribution function of the frequency
deviation e:

When B «1, the exponential can be expanded, drop-
ping terms of order p and higher to obtain Eq. (4.39). In
this formulation, higher-order terms may be included to
generalize the Kubo result. Note that this approximation
may be inaccurate for very short times [t & r,„,when
k (t)= 1] and for very long times [t -r,„/8 when
k (t)=0]. It should be stressed that the random process
e(t) in Eq. (4.38) cannot be arbitrary, but approximates a
Markovian continuous nondifferentiable process.

The generalized cumulant expansion (Appendix A)
truncated after second order can be used to solve Eq.
(4.39). In the long-time limit (vttt )&1) k(t) decays ex-
ponentially ' ' with a damping rate v= jo k, (t)dt, re-

gaining the "motional narrowing limit" of the Kubo os-
cillator. The validity condition for this Born approxima-
tion is v«viior 8 «(1—y) .

For the case where 1 —
y «8 «1, (corresponding to

Kubo's quasistatic limit), the slowly varying jump limit
applies, and the Lp term in Eq. (4.39) can be neglected to
obtain

k(t)=e ' g (m„ n/!)(t r/)"o
n=0

(4.36) f(e) =f(P(e) )
dE

(4.43}

m„=exp(—n 8 /2) . (4.37)

where m„=jdPf(P)e '"~. For the Gaussian f(P) [Eq.
(3.5}]

Here p(e) is the inverse function of e(p). The spectrum
now mimics f(e) and is, thus, inhomogeneously
broadened. In Particular, for ro(P }=~o, J (to —~L }

=~of((to tot )~o). —Thus, the experimental determina-
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tion of the spectrum yields direct information on the
probability density f (p).

A more detailed description of the correlation function
and the spectrum of the laser field can be obtained for
KSM. In this case Eq. (4.39) takes the forin

J ( co —
toL ) = ( cos ( —,'P ) )5( co —cot i

sin 2 7p
+ dP . (4.50)

[(co—toL )rp(P)/2] +1

ip—r PBr 28 r
ap 5P2

k(t) =exp
g2

(vttt —1+e s )
(1—y)'

The solution of Eq. (4.44) yields

(4.44)

(4.45)

Although the spectrum is clearly non-Lorentzian, the
wings of the spectrum (

~
co —coL ~ r,„))1) fall off as

v, /[n( co to—
L ) ]. For the case rp(P) =rp=const, the

second term is a Lorentzian of the width 2/rp, but the 5
function remains.

The usual telegraph model follows from this result if
only one value of ~P~ is realized:

We note that except for very short times (t &1p) when

v, t cannot be neglected, this result is the same as the ex-
pression derived in the Born approximation Eq. (4.30).
For B &&1—y, expanding exp( v&t—) in (4.45) in powers
of t yields

k(t)=exp( —B t /2') [rp«t «rp/(I —y), rp/B ]

(4.46)

which coincides with the slowly varying jump approxi-
mation, Eq. (4.41).

E. Highly auticorrelated jumps ( y = —1)

1. Fully anticorrelated jumps (generalized
telegraph noise)

Under conditions of full anticorrelation, each realiza-
tion of the stochastic field is a random telegraph signal,
where the phase jumps between the values of +p. Equa-
tion (2.10), reduces to a system of two equations for
r (+p, t),

r(p, t) = [r (p, t) e'~r —( p, t)]/—rp(p)— (4.47)

and the equation which is obtained from Eq. (4.47) by the
substitution p~ —p. The solution is

r(P, t) =(—,
' )f (P)[1+e '~+(1 —e '~)e ] .

Integration of this expression over p yields

k(t)= f [e ' sin ( —,'P)+cos ( ,'P)]f(P)dP . —(4.49)

Consider the case where for each realization of the sto-
chastic process p(t) the absolute values of successive
phase jumps are nearly constant with alternating signs.
This region is designated as the highly anticorrelated
jumps region. In this region, the function h(p, p) is
sharply peaked around the value p= —p'. In the treat-
ment of this case we first consider completely anticorre-
lated jumps, where y= —1 and h (p', p)=5(p'+p), and
then allow for incomplete anticorrelations where y = —1.

f (P)=-,'[5(P—Pp)+5(P+Pp)] (4.51)

In the generalized telegraph-noise model, however, each
individual realization of the stochastic process is a
telegraph-noise process, and the average is over an en-
semble of such processes. In this paper, the distribution
function f (p) is characterized by a single parameter B
and as defined above is an even function of P with values
centered and continuously spread about p=0 [e.g. , the
case of a Gaussian distribution f (p)]. For
rp(P ) = rp =const Eq. (4.49) simPlifies to

k(t)=(sin ( —,'P))e '+(cos ( —,'P))

or in the case of a Gaussian distribution f (p)

k(t)=e ~ [e 'sinh( —,'B )+cosh( —,'B )]

with a spectrum

—B /4J(to —cot ) =e cosh( —,'B )5(to —tot )

(4.52)

(4.53)

2. Incomplete anticorrelation (0& 1+y « I)

2/(n'rp)
+sinh( —,'B )

(~—~, )'+(2/rp)'

(4.54)

The singularity in the spectrum can be understood in
the following intuitive sense. A vanishing correlation
function in the long time limit means that the initial con-
ditions for the noise process are immaterial, which is
clearly not the case for the telegraph noise. Here, for
each realization of the stochastic process, even after
infinitely long time, the phase is either equal to the initial
value or minus this value. Thus, the complex field ampli-
tude has a constant component which is symmetric in p,
resulting in a singular (monochromatic) contribution to
the spectrum.

Incomplete anticorrelation results in jump size
~ p~ that

fluctuates in time in each realization of field, which
changes the situation qualitatively: the field phase is now
not confined to two values, and can diffuse. As a result of
this, now liin, „k(t) =0 and the field spectrum becomes
nonsingular. This situation is discussed in Sec. IV E 2.

Equation (4.49) shows that lim, k(t) is nonzero.
Correspondingly, the spectrum consists of a 6 function
and a nonsingular component,

Incomplete anticorrelation means y = —1 and h (p', p)
is only approximately a 5 function. In this case, Eq.
(2.10) can be reduced to a form reminiscent of the
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Fokker-Planck equation. We do that by a method that is
an extension of that used in Ref. 48 to derive the
Fokker-Planck equation. We rewrite h (P', P) as h (P', a)
where a=p+p', and consider h (p', a) to be a sharply
peaked function of a, but a slowly varying function of p'.
We also assume that rp(p) and r (p, t) are slowly varying
functions of p, and expand the integrand in Eq. (2.10) in a
Taylor series around p'= —p. Neglecting third- and
higher-order terms yields the two coupled equations

G (Pp, P, t) = I

8 [2m(1 —e ~)]'~

Xexp
(p —ppe

I

28 (1—e e)
(4.62)

The final expression for k(t) in the long-time limit
(t »rp) is

r +
r+ —e 'f'r

rp(p)
+e '~L r (4.SSa)

—(B /4) —Y t
I

k(t)=e ' cosh( —,'8 e e) . (4.63)

An interpolation formula that correctly describes both
the short- and long-time behavior is

r —e r+
—ip

+e'~L+ r+ (4.55b)
k(t)=e [e 'sinh( —,'8 )

I

+e ' cosh( —,'8 e e )] . (4.64)

with r~ =r(+p, t),

L+r+ =+ [ai(+P)r+]+ [a2(+P)r+], (4.56)
ap'

a„(P)=[1/[n!r(pP)]] fdaa"h(P;a) . (4.57)

r +=—,'(e '~L'+ e'~r+ +L+ r+ ) . (4.58)

Here we assumed that h (p', p) =h ( —p', —p) yielding the
relation L =L+. The matching condition between the
short- and long-time asymptotes yield the following ini-
tial condition:

f (P)(1+e '~)

2
(4.59)

Introducing a new variable R(p, t)=e'~ r(p, t) trans-
forms Eq. (4.58) into the equation

R =[—a2(p)/4+L+ ]R (4.60)

with the initial condition R (p, 0)=f (p)cos(p/2).
For the KSM ai(P)=vg and az(P)=v&B where

vti = ( 1+y ) /rp. The solution of Eq. (4.60) is

R (P, t) =e fdPpG(Pp, P, t)R (Pp, 0)

where v, =vtiB /4 and the Green's function G(pp, p, t) is
the solution of the equation G =L+6:

For y= —1, L~ =0 and Eq. (4.55a) reduces to Eq.
(4.47). If y is close enough to —1 (the exact condition is
defined below), the last terms on the right-hand sides of
Eqs. (4.55) are much less than other terms and can be
neglected in the interval 0&t ~~,„.In this interval the
solution (4.49) is recovered.

Consider the long-time asymptotics t &)v,„.One can
rewrite (4.55b) as r+ =e ' r + rp(P)e ' r'

+rp(p)L + r+ . The last two terms are of order
(1+ y )8 /4, and can be neglected for y sufficiently close
to —1. Under these conditions r+ =e '~r . Multiply-
ing both sides of Eq. (4.55b) by e '~ and summing it with
Eq. (4.55a) yields

Equatjon (4.64), the main result of this section, shows
that the correlation function of the field for y = —1 con-
sists of two components: fast decaying [the first term in

E). (4.64)] and slowly decaying (the second term). For
B ((4, this expression reduces to the Born-
approximation result found above.

If 8 » I each component accounts for half of the de-
cay. In this case Eq. (4.64) reduces for the interval
t ((v& ', where most of the decay occurs, to a sum of
two exponentials:

k(t)=-,'(e '+e '
) (0&t «vti ') . (4.65)

k(t) =e

This result coincides with the results of this section and
of Sec. IVC, when appropriate, and correctly describes
the transition between regions E and C.

V. RESULTS AND DISCUSSION

A very important part of this work is the ability to
simulate the phase jumps numerically, calculate the
correlation functions [Eq. (2.7)], and obtain the predicted
spectrum [Eq. (2.8)]. In all cases the analytical results
have been compared to the simulations. While the
theoretical derivation is general, the simulation was per-

The spectrum is a sum of two Lorentzians of the same in-

tegral intensity and centered at the same frequency co&

but of significantly different widths 2/wp and 2v, .
For the case of intermediate jumps 8 —1 the second

term in Eq. (4.64) is responsible for the major portion of
decay. It is now nonexponential and produces a narrow
non-Lorentzian component superimposed on a board
Lorentzian pedestal of width 2/rp.

The above results are valid when many jumps are re-
quired to randomize the phase. For the KSM [see Eq.
(3.5)], this requires (1 y)B «—1, or since y is close to
—1, 1+y «1/28 . For any fixed y, for large enough

jumps such that 8 »1/(1+y ), the large-jump limit ap-
plies (Sec. IV C).

An alternative expression valid in the limit 8 )&1 can
be derived yielding the result

'cosh[(t /rp)e ' '] (t « 1/vti) . (4.66)
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formed for the specific case of the KSM. Extensions are
of course possible. The purpose of the simulation is to
generate, on the computer, a field with random phase
jumps as described by the different limits, and calculate
the spectrum and correlation function.

The simulation is performed as follows. At t=0 a ran-
dom phase and initial jump P(0) [from f (P)] are assigned
to the field. Given the mean time between jumps ~o, the
time of the next jump is selected from a Poissonian distri-
bution by a random number generator. At each jump
time, the phase jumps by an amount p chosen at random
from h (P,P). Time is divided into N equally spaced seg-
ments and the field is sampled at the end of each segment.
Each such calculation constitutes a single realization of
the stochastic process. The correlation function is aver-
aged over many (typically 10000}such realizations. The
spectrum of the field is obtained from k (t) by the numeri-
cal algorithm of complex fast Fourier transform.

It should be noted that although k (t) is a real function,
in practice the simulation always gives a small, nonzero
imaginary part, so that the calculated spectrum is not
necessarily symmetric. The choice of the length of time
over which averages are performed is of crucial impor-
tance. There are several requirements. (a) The time has
to be long enough so that (according to the sampling
theorem), it provides enough resolution in the frequency
domain. (b) It has to fulfill the need that the correlation
function k(t) practically vanishes outside the range of
calculation to get the correct Fourier transform. (c}The
time cannot be too long, or else the residual noise in k (t)
at long times will result in a "rough" spectrum. Thus, for
each case a suitable time range was chosen. The general
rule was that the length of the time was approximately
five times the decay time of the correlation function. In
most cases this choice proved to be adequate. The simu-
lation procedure as described here is straightforward, and
does not consume significant amounts of computer time.
It is completely independent of the approximations used
in this paper, and can provide a useful test of the approxi-
mations.

In the previous sections we derived detailed mathemat-
ical expressions for the field correlation function in each
of the regions of the B, y phase space. The approxima-
tions involved in deriving the results in each region were
detailed separately. In this section the spectral line
shapes and correlation functions are shown for the
different regions, and wherever appropriate, the transi-
tions between the regions are discussed. In all the figures
presented in this section, both simulation and analytical
results are displayed.

Figure 2 shows schematic plots of the generic form of
the correlation functions that are obtained in each region.
The quantity that is plotted is the negative logarithm of
the correlation function against the time delay t. The
different regions are marked by the letters corresponding
to the subsection of Sec. IV where they are discussed.
The reader is referred to that discussion for detailed
mathematical expressions, but the results for the KSM
are summarized in Table II. Unless otherwise stated,
these are the expressions actually used as the "theory" in
the following figures.

On the line y =0 (region A ) the function is linear with
a slope that starts quadratically for small B, and saturates
to a constant. A linear logarithm of the correlation func-
tion means a Lorentzian line shape, and this is the pre-
dicted shape, in accordance with the Burshtein model. In
the Born-approximation region (region B), the initial
slope for times smaller than r&=~o/( 1 —y ) is

v, [=B /(2')] independent of y. For longer times, the
correlation takes an effect, causing the slope to become y
dependent: [v=v, (1+y)/(1 —y)], larger than v, for
positive y and smaller for negative y. Note that the in-
tersection between the two linear asymptotes occurs at
ro/(1 —y) =(1/vp).

In the large-jump region (region C) the function is
linear for all values of y (except y very close to —1). The
slope in this region is 1/~0, independent of B and y, and
there is no signature of non-Markovian behavior in this
region. The region of y = 1 is divided into two subregions
D, and D2, depending on the size of B. For moderately
small B (1—y ((B (&1) the logarithm of the correlation
function approximates a parabola and for larger 8 it
turns into a straight line regaining the results of the
large-jump region.

In the anticorrelation region (region E), the spectrum
consists of a Lorentzian of width of 2/ro and a much nar-
rower central component. The correlation function is
thus the sum of a fast decaying component, and a slowly
decaying long-lived asymptote. The solution in this re-
gion does not merge with that obtained for large jumps,
and there is always a transition region between the two,
described by Eq. (4.66).

The following set of figures depicts the correlation
function, presenting both analytical results and numerical
simulations. For each figure the values of B and y are
given, and general trends are observed. We have chosen
to present the correlation function rather than the spec-
trum, as the differences are much more pronounced, since
all spectra (on a linear scale) look alike.

Figure 3 shows the Born-approximation (BA) region,
where the change of slope is clearly seen for negative and
positive y. In Figs. 3(a)—3(d), the theory is the BA ex-
pression from Table II.

Figure 4 presents the intermediate case (B=l). For
anticorrelation (y= —0.95), the slowly decaying com-
ponent is visible in Fig. 4(a). For Burshtein s uncorrelat-
ed case (y =0), a straight line is observed in Fig. 4(b), as
expected. For the slowly varying jump (y=0.95), the
slope is increasing [Fig. 4(c)]. Here, Eqs. (4.36) and (4.37)
were used for the theory.

As can be observed from the phase-space diagram (Fig.
2}, for B= 1, y%0, and y not too close to +1 none of the
approximations are strictly valid, and in fact, we do not
have a closed-form expression to describe the correlation
function. The simulation, however, can be performed
everywhere, and the limits of applicability of the various
approximations may be tested against it. An example of
such cases is shown in Fig. 5, where the cases of B=1
and y=+0.5 are depicted. The various theoretical ex-
pressions relevant for each case are plotted with the
letters designating each region and compared to the
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simulation results. For y= —0.5 8 /(1 —y) =—'„while
for y =0.5 it is 4. Thus, one expects the BA approxima-
tion to be much better for y= —0.5, which is, indeed,
seen in Fig. 5(a). In both cases, the simulation results are
between the limiting cases [A and E in Fig. 5(a) and A

and D~ in Fig. 5(b)]. The strength of the present analysis
is in the ability to compare the theoretical results to
simulated ones, even in regions where one has no a priori
justi6cation to expect the theory to be right. As can be
seen, even far from the regions defining the approxima-
tions the theoretical expressions are similar to the "real"
data, and in some cases the agreement is far better than
expected.

For 8=3 the large-jump (LJ) approximation is applic-
able except for y close to —1. Figure 6 shows this situa-
tion. For y= —0.95 [Fig. 6(a)] we have used the highly
anticorrelation jump expression, and for y= —0.5 [Fig.

6(c)] the LJ expression (Table II). For y) —0.5 both
simulation and theory look identical to Fig. 6(c) and there
is no point in showing additional graphs. Between these
two regions, an intermediate region always exists. The
transition is demonstrated in Fig. 7(b) for the y= —0.85
value. The expression for the interim region is the C-E
transition region expression in Table II.

As discussed in Sec. IV E, the spectrum of the highly
anticorrelated region consists of a narrow sharp feature
riding on a broader Lorentzian. In Fig. 7 the spectrum
for y= —0.99 and 8=3 is shown on a semilogarithmic
scale. The solid curve is the highly anticorrelated jump
expression, which includes both the narrow feature and
the broad Lorentzian. The dashed curve depicts only the
narrow Lorentzian sharp feature. The total intensity is
divided equally between the two Lorentzians.

In the lower right-hand corner of the phase-space dia-

TABLE II. Results for the main regions in the (B,y ) phase space, specialized to the KSM case. The conditions on 8 and y, the
formulas for the correlation function, and the spectrum are given. Here scot, =co—cot and v, = [1—exp( B /2) ]/—ro.

Limit (B,y) Region

Short-time asymptotes
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gram the frequency fluctuation (FF) approximation ap-
plies. This region overlaps the BA for small B and the
slowly varying jump region when y is close to 1. The sit-
uation is shown in Fig. 8. In Fig. 8(a) (y =0.995,
B=0.05), both the general FF expression and the slowly

varying jump limit of the FF agree with the simulation.
In Fig. 8(c) (y =0.95, B=0.005), both BA and the general
FF expressions yield the same curve. In Fig. 8(b)
(y=0.95, B=0.05), the simulation is compared to three
theoretical expressions —the BA, the FF, and the slowly
varying jurnp limit of FF. As is clearly seen, only the
general FF is valid. Note that the actual decay in Fig.
8(c) is much smaller than in Figs. 8(a) and 8(b) due to the
smaller value of B.

In the FF region a transition from a Lorentzian (BA)
to a Gaussian spectrum is predicted and is depicted in
Fig. 9 for the same cases shown in Fig. 9. The BA is the
motionally narrowed limit of the Kubo oscillator, giving
a Lorentzian line shape. The slowly varying jump limit,
on the other hand, corresponds to the quasistatic limit,
known to give a Gaussian spectrum. In order to compare
the spectral shapes, we have normalized each spectrum to
its half-width, scaling the intensity so that the area
remains unchanged.

If the spectral line shape of the real laser deviates from

a Lorentzian towards a Gaussian, one may compare the
observed line shape to a figure like the present one, and
estimate two ratios connecting B, y, and ro: the ratio
B/(I —y), which is analogous to the b,r, parameter of
the Kubo oscillator theory, and v&=( I —y)/ro. Note
that a transition region between Gaussian and Lorentzian
line shapes exists not only in the FF region, but also
within the slowly varying jump region and the input field
analysis may not be sufficient to distinguish between
them. As will be shown in paper II, a nonlinear optical
experiment readily gives the distinction.

VI. EXPERIMENTAL RAMIFICATIONS
OF THE THEORY

The results derived in Secs. IV and V predict the corre-
lation function and the spectral line shape for the GJM
model for phase Auctuations. When actual lasers are in-

volved, the experimentalist may measure some parame-
ters of the laser field, but has no a priori knowledge of the
statistical nature of the noise in the laser. Thus, tradi-
tionally lasers have been described by their "linewidth, "
which is an averaged quantity. As is clear from the dis-
cussion above, a single parameter like a linewidth cannot
describe in full the statistical properties of a stochastic
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FICi. 3. Negative logarithm of the correlation function against time delay for ~0= 1, 8=0.1, and y = (a) —0.95, (b) —0.5, (c) 0, (d)
0.5. The solid line is the Born-approximation {BA)expression. The dots are simulation results.
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field, and as was recently demonstrated by us, two laser
fields of identical linewidths may give rise to totally
different observable line shapes in experiments like reso-
nance fluorescence. '

The inverse problem of determining the stochastic
character of a field from measured quantities is extremely
complex, and is certainly not fully resolved in this article.
However, based on the derivation presented here, and
within the assumptions of the GJM, several conclusions

may be reached regarding the non-Markovian character
of the field. Without specifically assuming a particular
functional dependence of the jurnp distribution function,
one may determine the type of correlations in the field,
and estimate the average jurnp size.

In particular, we propose a procedure that character-
izes the stochastic nature of the field by a simple mea-
surernent of its autocorrelation function. The procedure
involves the following steps.

A $

I

0
0

(a)

I I I

1 2 3

t i m e

(i) Measure the field amplitude autocorrelation func-
tion k(t). (One way to do this is to split the laser beam
into two parts, delay one with respect to the other, and
measure the cross term in the total intensity of the two
fields on the same square law detector. )

(ii) Plot —ink (t) versus delay time t for the above mea-
sured function.

(iii) Compare the observed shape of this plot to the
shapes predicted for the different regions in this paper
(see Fig. 2).

(iv) If two (asymptotically) straight lines, or a parabola,
were measured, the region is identified unambiguously,
and the applicable section above describes the field. Read
that section.
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FIG. 4. Negative logarithm of the correlation function
against time delay for ~0=1, for B=1 and y = (a) —0.95, (b) 0,
(c) 0.95. The theory is taken from Table II for (a) and (b) and
from (4.36) and (4.37) for (c).

FIG. 5. Negative logarithm of the correlation function
against time delay for v.o= 1, B=1, and y = (a) —0.5, (b) 0.5.
The different line types are the approximations for different re-
gions marked by the corresponding letters.
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(a)

(v) If a single straight line is measured, the situation is
less fortunate. The underlying stochastic process may be
Markovian (y =0), it may mean a large 8 limit for yAO
or it may mean that the correlation function was not
measured accurately enough to resolve the (very) small 8
limit. In this case, the procedures proposed in this article
may not be sufficient, and the method of paper II should
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FIG. 6 Negative logarithm of the correlation function
against time delay for Op=1, 8=3, and y=(a) —0.95, (b)
—0.85, (c) —0.5. The solid lines are taken from Table II (see
text).
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FIG. 7. Spectrum for 7p= 1, B=3, and y = —0.99. The solid

line is the highly anticorrelated solution, the dash-dotted line is

a Lorentzian of width 2v, .

FIG. 8. Negative logarithm of the correlation function
against time delay in the FF region for ~p=1. (a) B=0.05 and

y =0.995, (b) B=0.05 and y =0.95, and (c) B=0.005 and
y=0.95. The solid line is the FF solution everywhere, the
dashed lines in (a) and (b) are the slowly varying jurnp limit of
the FF solution and the dash-dotted lines in (b) and (c) are BA.
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FIG. 9. Normalized spectra in the FF region. The diamonds
correspond to 8(a), the X's to 8(b), and the triangles to 8(c). The
solid lines are FF expressions for each.

be adopted.
(vi) If the observed function is neither one of the above,

a more complicated statistical process is involved. For
example, a jump process involving a nonconstant rp(p)
with large jumps, or a nonjump process.

Experiments of this kind are under way in our laborato-
ry.

VII. CONCLUSIONS

In the present paper a generalized jump model was
developed for phase fluctuations in an electromagnetic
field. The model is very general, and encompasses all
standard models as limiting cases. In particular, we show
that the well-known results of the phase-diffusion model,
the telegraph-noise model, the Burshtein uncorrelated
jurnp model, and the Kubo oscillator treatments are all
regained from the present work.

The analytical work presented in this paper is fully
supported by detailed numerical simulations. The analyt-
ical results and the simulations are compared, and the
agreement is excellent where it should be. The computer
simulations enable us to derive results even between the
regions treated analytically, and to test the quality of the
various approximations used for the different analytical
derivations. The mathematical methods developed here
are generally applicable to other problems of stochastic
effects in physical systems, like pressure broadening, line
shapes in condensed phase, electron scattering in random
media, and many more.

Since this is a very long and detailed paper, no attempt
will be made here to summarize the results. If a short
summary is needed, Fig. 2 and the KSM results in Table
II are the best such overview. Here, we will address three
important questions.

(i) Is it justified to use a discontinuous jump model to
describe the phase of a laser? The answer is not clear, but
it is not a priori unreasonable to assume that the environ-
ment affects the laser by changing its phase suddenly.
The test of this assumption, of course, is in the predic-
tions of the model, but from the experimental point of
view, any measurement of the phase is performed over a
finite time, so any information available on the phase will

always be for discrete times. Thus, &n this respect the as-
sumption is reasonable. From the mathematical point of
view, the jumps are handled rigorously, and there is no
problem with this assumption.

(ii) How realistic is the assumption of correlated
jumps? The sources for the noise discussed in this paper
are not specified, but may safely be assumed to originate
from the environment in which the laser is operating. A
free running laser interacts with its surroundings, and is
influenced by such factors as temperature changes, pres-
sure changes, etc. The time scale and range of such
changes may be different than what is required to jump
the phase of the laser, and it is plausible that a gradual
temperature rise will cause several jumps in the same
direction. In the other extreme, any stabilized laser
operates on the principle of anticorrelation, namely, the
parameter to be stabilized is monitored, and when a
change is sensed, there is feed back into the laser to undo
the change. Admittedly, most lasers are frequency rather
than phase stabilized, but the connection is obvious.
Thus, the range of 8, y phase space covered by this paper
is a reasonable one. Indeed, it is unreasonable to assume
that jluctuations in nature are uncorrelated.

(iii) Even if mathematically sound and physically
reasonable, is the model relevant to work of current in-
terest or is it merely a curiosity? The answer to this ques-
tion, as we tried to show, is that it is relevant, and that
the characterization of a laser by a single parameter is
not enough. Only one example is given here: In applica-
tions to optical communication, the bit error rate in an
optical system is usually calculated directly from the laser
linewidth where a Lorentzian shape is assumed. A laser
that is stabilized ' (highly anticorrelated in the
language of this paper) may have a spectrum that con-
tains a narrow sharp central component, and a broad
pedestal. Such a laser will not perform well in communi-
cation systems, even though its half width is very narrow.
Clearly, for such a laser more information about the line
shape is needed, and our model provides the tools to han-
dle such situations.

The very interesting question of the light-matter non-
linear interaction of a stochastic field of the type dis-
cussed here is the topic of a separate paper.
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APPENDIX A: GENERALIZED CUMULANT
EXPANSIONS

In this appendix the theory of the generalized cumu-
lant expansions is summarized, and a new version of this
theory suitable for the study of the GJM is developed.
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1. The general equation

Consider a linear equation

x = [A +B(t)]x (A 1)

Px (0)=x (0)

and A commutes with P,

PA =AP

(A2)

(A3)

where x(t) is a vector and A and B(t) are operators.
Suppose that the quantity of interest is not x (t), but rath-
er the projection Px(t) of x(t) into the "relevant" sub-
space of the functional space where x (t) is defined. If the
initial condition for Eq. (Al) x(0) belongs to the relevant
subspace

then the following equation can be written for Px(t):

Px =[A +PB(t)]Px+f K(t, t')Px(t')dt' . (A4)
0

Here the kernel K (t, t' } is the following perturbation ex-
pansion ' in orders of B (t):

K (t, t') =8,(t, t') + g f dr„ , . f dt, 8„(t,t„ (A5)

where 8„'sare totally ordered cumulants,

8„(t„,. . . , t, )=PB(t„)e " " '(1 P)B(t—„,) e ' ' (1 P)B(t—, ) (t„) )t, ) .

Cumulants 8„arecombinations ' ' of generalized moments Mk (1 k n) of B (t),

(A6)

Mk(tk, . . . , t&)=PB(tk)e " " 'B(tk, ) e ' ' B(t&) (tk) )t ) . (A7)

In particular

8,(t, t')=M, (t, t') M, (t)e—"" ' 'M, (t') . (A8)

By a rearrangement of the cumulant expansion Eq.
(A4) can be transformed to the differential equa-
tion

in the cumulant expansions (A5) and (A10) for t~~.
Both Eqs. (A4) and (A9) are exact, and thus have the
same solution but their forms are significantly different,
so that for a specific problem one may be more suitable
than the other.

Px =[A +PB(t)+R (t)]Px . (A9) 2. The Born approximation

Here

R(t)= g R„(t)
tf =2

t= g f dt„, dt, C„(t,t„„.. . , t, )
n=2 0

(A10)
Px =[A +PB(t))Px+ f 8,(t, t')Px(t')dt',

0
(A14)

Assume that the nth moment of B(t) is of order b"
where b is a small parameter. We will need approximate
equations valid up to the second order in the perturbation
parameter. In this Born approximation Eqs. (A4) and
(A9) reduce to

where C„'sare partially ordered cumulants. In particu-
lar,

and

Px =[A +PB(t)+R2(t)]Px . (A15)

C, (t, t') =8,(t, t')e (A 1 1)

The cumulant C„is the nth order in 8, and can be ex-
pressed ' either in terms of moments M„orof totally
ordered cumulants 0„.Assume that the moments I„
have the product property,

A(t, +1
—t, jM„(t„,. . . , t, ) M„,(t„,. . . , t +., )e

XM, (t, , . . . , t, )

for t, +, t, ~a& (1 ~i n ——1}. (A12)

Then the cumulants possess the cluster property,

8„(t„,. . . , t, ), C„(t„,. . . , t, )~0
for t, +, t,

" (1~i n —1—) . (A13)

Equation (A13) provides the convergence of the integrals

b~, «1 (A16)

Sometimes the functions Rzk+, (t) (k ) 1) vanish or are
anom»ously sm»1 (e g IIR2k+lll-IIR2k+211 as in Ap-

Because of the approximation, Eqs. (A14) and (A15) yield
the same solutions ' with an accuracy of b . The
present generalized cumulant expansion technique vali-
dates (for any time t )0) the decoupling method used in
early works to obtain equations of the type (A14) in spe-
cial cases.

The exact equations (A4) and (A9) provide higher-
order corrections to Eqs. (A14) and (A15). Assume that
the cumulants decay exponentially with a characteristic
time r„and that the nth-order cumulant is of order b",
then it can be shown that for long times [t ))(n —1)r, ]
11R„(t)11-b"r," '. Hence, in Eq. (A10) one can neglect
R„(t)for n ) 3 yielding Eq. (A15) if
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pendix B}. Then the validity condition becomes some-
what less restrictive,

( A +Lv)(t —t')
M2(t t'—)=QBye By, (A26)

(br, )'« I .

3. Elimination of irrelevant variables

(A17)
which may be rewritten using Eq. (A25) as

Mi(t t')= f dV fdV'Bye f(V', V t t')By f(V') .

(A27)

Consider an equation

x(V, t)=(A +Ly+By)x(V, t) . (A18)

Here A and By are matrices in the vector space X, where
the vector x is defined, B~ is an operator acting on func-
tion of V, and Ly is a stochastic operator as in Eq. (2.1),
being a scalar in the vector space X. We assume that the
initial condition for Eq. (A24) is

x ( V 0)=x (0)f ( V) . (A19)

We also assume for convenience, that A, B~, and L v are
time independent. Equation (A18) reduces to a
Burshtein-like equation in the particular case when By is
a function of V rather than an operator.

We are interested in the quantity

x(t)= fx(V, t)dV (A20)

rather than in x(V, t) itself. We can eliminate the ir-
relevant variables V by defining a projection operator P
as

Truncating the cumulant expansion (A22) to second
order yields

x=(A+8)x+ f '8(t t')x—(t')dt'
0

where, from Eq. (A8},

8(t) =8,(t) =M, (t) Be "'—8 .

(A28)

(A29)

An analogous procedure can be used on Eq. (A9) to ob-
tain the alternative form:

x=[A+8+ f 8(t')e "'dt']x .
0

(A30)

In this paper, we are interested in solving Eq. (2.11).
This is in the form of Eq. (A18) with x = r, V =p, A =0,
and By=Btt. The correlation function k(t) is then x(t)
[cf. Eq. (2.9)] and 8 =v, [see Eq. (4.2)], as follows from
Eqs. (A23), (2.12), and (2.5b). In this way, we obtain Eqs.
(4.10), (4.11), and (4.24) used in the main text. In particu-
lar, combining Eqs. (A29}, (A27), (2.12), and (2.5b) yields
Eq. (4.11).

P =f(v)fdV (A21) APPENDIX B: VALIDITY CONDITIONS
FOR THE BORN APPROXIMATION

For the L y operator possessing the properties (2.2)
PLv=LvP=O and since A is not a function of V,
PA = AP. In addition Px ( V, O) =x ( V, O). Therefore, the
results of the generalized cumulant expansion discussed
above may be applied to the calculation of Px =f ( V)X by
making the substitution A ~A +Ly and 8(t)~By In-.
tegrating Eq. (A4) over V yields the result M„(t,. . . , t)=M„=fBp(p)dp'. (Bl)

To investigate the validity of the approximation made
in obtaining Eqs. (4.10) and (4.24) we need estimates of
the moments of the operator B&,

x =( A +8 )x+ f K (t t ')x(t')d—t '

0

where

(A22)
The upper bound will be the fully correlated case. The
estimate becomes

8=fB,f(V)dV . (A23)

The kernel E(t t') can be calculated—from Eq. (A5)
using the totally ordered cumulants H„obtained from Eq.
(A6) by operating on f ( V) and integrating over V. It is
helpful to define an averaging operator Q by

Q
. =f . f(V)dV

(B2)

Since r, =v(' =r,„/(1 —y ), one obtains for

(8/r, „)", n =2k (k =1,2, . . . )

n II

'

82k/Pk —i

Hence, from Eq. (A17), the Born approximation is
justified for 8 « ( 1 —y ) .

The estimation is not necessarily valid for y close to
—1 when the random process is characterized by two
time scales 1/v& and 1/v&. Another approach is to com-
pare an explicit solution for k (t) to the Born approxima-
tion calculated for y = —1. In that case, Eq. (2.4) has the
solutionFor example, the second moment is

Then the totally ordered cumulants are given by Eq. (A6)
with the substitutions P~Q, A ~A+Ly, and
8 (t)~By. Defining the generalized moments Mt, by Eq.
(A7) with these substitutions produces the same connec-
tion between cumulants and moments as in Sec. I of this
appendix. The calculation is simplified by observing that
the conditional probability f ( V', V, t t') is given by-

L&(r —t')f ( V', V, t t') =e ' 5( V —V') . — (A25)
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f (Po', P, t) =
—,
' [5(P—Po)+5(P+Po) Oo(t)=k, (t) =IdP f (P)[P/go(P))~e (B5)

+ [&(p—po) —5(p+ po) ]e (B4)

Using (B4) in Eq. (4.17), one can calculate 80(t) to lowest

order in 8:

The resulting expression for k (t) [Eq. (4.23)]
shown to be identical with the expansion up to second or-
der in B of the exact expression Eq. (4.49). In this way,
we have proven that the validity condition is
B «(1—y) for all values of y.
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