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Power spectrum of light scattered by a strongly driven Morse oscillator
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We evaluate the power spectrum of light scattered by a weakly nonlinear Morse oscillator driven

by a strong single-mode classical electromagnetic field, taking radiation damping into account as the
only relaxation process. The spectrum is calculated in the small-noise limit under a near-resonant
condition (the resonance is considered in terms of an effective detuning parameter). We show that
the single-peak structure that appears in the weak-field limit splits into a symmetric doublet center-
ing around the driving field frequency in the presence of an intense field when the Rabi frequency
far exceeds the natural damping rate.

I. INTRODUCTION

It is well known that the steady-state fluoresence spec-
trum' of an ensemble of two-level atoms irradiated by a
strong near-resonant cw laser field is a symmetric spec-
trum about the laser frequency consisting of three spec-
tral components. The interest in this problem was mainly
initiated by Mollow who, using a classical description of
the light field, first gave a complete theoretical calcula-
tion of the spectrum that was subsequently observed ex-
perimentally by several independent groups. From the
theoretical point of view, full quantum treatments have
also confirmed this result. The theory of resonance
fluorescence has been further extended to a number of
other model systems, such as many two-level atomic sys-
tems, three-level atoms, the driven Dicke model, etc.,
under a variety of different conditions, and also to ac-
count for the modification of the spectral characteristics
in Raman scattering, ' in optical double resonance, " in
four-wave mixing, ' and in other quantum optical effects
in intense laser fields.

The purpose of this paper is to evaluate the power
spectrum of the radiation scattered by a Morse oscillator
driven by a strong incident field, which is assumed to os-
cillate harmonically near the resonance frequency. The
oscillator is assumed to be weakly nonlinear and attains
an equilibrium with the driving field through the effect of
radiation damping only. We omit all other relaxation
processes and also neglect the wave-mixing effects from
the present analysis. We show that the single-peak struc-
ture in the presence of a weak driving field splits up into a
doublet in the limit of a strong driving field (Rabi fre-
quency Qo much greater than the natural relaxation rate
2y) as a result of an appreciable contribution of the in-
elastic scattering. The power spectrum of the scattered
field in this limit consists of two peaks at the displaced
frequencies co+Qo, with their widths proportional to
EQoy, where K+ —,

' denotes the number of bound states
and is a measure of nonlinearity of the oscillator. The
doublet structure of the power spectrum is reminiscent'
of the vacuum Geld Rabi oscillations in a two-level atom
in a cavity with a finite quality factor and loss rate, con-

II. THE MODEL AND THE BASIC EQUATIONS

The Hamiltonian of a Morse oscillator driven by a
classical radiation field and coupled to heat bath is given
by

where

HM+HMF++B +0MB (2.1)

H~ =If(So+S S+ ), (2.2a}

veniently described in terms of dressed states in the
current literature.

The basis of the present analysis is the model that con-
sists of a Morse oscillator described' ' in terms of the
generators of su(2} Lie algebra, interacting with a classi-
cal electric field. The effect of radiation damping is in-
corporated through the usual linear coupling of the oscil-
lator to the quantized electromagnetic-field modes treated
as a bosonic heat bath. Starting from the master equa-
tion for the reduced density operator of the weakly non-
linear Morse oscillator valid under Born-Markov and
rotating-wave approximation, we formulate the appropri-
ate Fokker-Planck equation with the help of P represen-
tation using spin coherent states for the generators per-
taining to su(2). The corresponding Ito-Langevin sto-
chastic differential equations under a small-noise lineari-
zation scheme can then be employed to evaluate analyti-
cally the relevant correlation function whose Fourier
transform, apart from some simple factors, represents the
power spectrum of the scattered light.

The rest of the paper is organized as follows: The
model, the master equation, and the associated Fokker-
Planck equation are presented in Sec. II. The Ito-
Langevin equations and their mean-field solutions are
given in Sec. III. To obtain nonstationary solutions in
the limit of large driving field and small nonlinearity, the
small-noise linearization has been carried out on the sto-
chastic differential equations, which then reduce to the
description of a multivariate Ornstein-Uhlenbeck pro-
cess. The power spectrum is presented in Sec. IV. The
paper is concluded in Sec. V.
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H~~=fiQ(t)(S++S ),
HB =A' g co, b, b, ,

(2.2b)

(2.2c)

and

H~~ =A+ (y;b;S++y,'b; S } (2.2d)

s, lz, v & =(I(.—v) lz, v & . (2.3c)

For the representation of interest the states lE, V& di-
agonalize HM and N, the total excitation operator with
the eigenvalues —Rf [(E+—,

'
)
—

( V+ —,
' )] and 2E, respec-

tively, where the range parameter a and the dissociation
energy Do of the Morse oscillator are related to f and E
as

and

Af =a fi /2p,

K+ —,
' = —(2pD )'0/a fi, (2.4)

and p is the mass of the oscillator. K can be considered
as a parameter of nonlinearity in the present theory. In
the harmonic limit K~ 00.

The Liouville-von Neumann equation of motion for the
reduced density operator for the system under Born-
Markov and rotating-wave approximation is given by'

if[(SO+S—S+),p] iQ(t)[(S++—S ),p]dt

represent the Morse oscillator (H~), the classical driving
field term (H~F ), the harmonic oscillator heat bath (Htt ),
and its linear interaction' with the system (Hatt�), i.e.,
the Morse oscillator, respectively. S+, S, and So are
the generators of the su(2) Lie algebra' which act on the
basis lE, V&, where E+—,

' and V denote the number of
bound states and the quantum level number of the oscilla-
tor, as follows:

S+ lK, V&=[(2E—V)(V+1)]' lE, V+1&, (2.3a)

S I&, V&=[(2&—V+1)V]'"I&,V —1&, (2.3b)

term represents the loss of energy from the oscillator to
the bath. We neglect the diffusion of Auctuation in the
heat bath into the oscillator mode, i.e. we intend work in
the zero-temperature limit.

The above formulation of the master equation for the
reduced density operator in which the system is described
by su(2) operators, while the bath is described by boson
operators, is commonly encountered in the Dicke mod-
el. ' The damping term in the master equation has been
used by Kilin and others in their treatment of the Dicke
model with interacting atoms where the system operators
are nonlinear in su(2) operators. What is implicit in these
(and also in the present) treatments is the assumption
that the irreversible terms in the master equation remain
unaffected by the nonlinearity of the free oscillator.
Haake et al. ,

' however, have shown that for such a pro-
cedure to be adequate we require, in addition to the weak
coupling of the system and heat bath, (i) weakness of the
nonlinearity, i.e., K is not very small; (ii) the Rabi fre-
quency Qo)) 2y, the natural relaxation rate; and (iii) the
number of thermal quanta is effectively zero (note that we
are working here in the zero-temperature limit). Second-
ly, the master equation (2.5) assumes that the driving and
the damping act independently. This commonly used ' '

assumption of independence, however, is true so long as
the driving field is not strong enough to modify the un-
perturbed levels, significantly setting an upper limit to
flo.

The assumption of weakness of the nonlinearity of the
free oscillator has two additional implications. Since we
are considering a situation where the Morse oscillator is
strongly driven, such as Qo&)2y, an oscillator with a
high degree of nonlinearity may dissociate or a chaotic
dynamics may set in as a precursor to the process of dis-
sociation. ' Secondly, this assumption allows us, as we
shall see in Sec. III, to use the method of small-noise ex-
pansion in the stochastic differential equation in the
limit of large driving field. Since noise is often small, this
method has been widely used. The linearized stochastic
differential equation then describes an Ornstein-
Uhlenbeck process which is solvable analytically.

As the next step we transform the master equation (2.5}
to a c-number form by introducing the diagonal represen-
tation of the density matrix p,

+2y(S pS+ —1/2pS+S —1/2S+S p), (2.5)
p(t) = J d'q P(q, q', t ) l q & & ql, (2.7)

where y=2ng(co)ly(co)l a.nd g(co) represents the mode
density evaluated at co, the frequency of the classical
external field.

Here 2y denotes the Einstein spontaneous-emission
coefficient and Q(t) is related to Rabi frequency Qo
through the following relation:

where lg & denotes the spin coherent state ' of Radcliff
pertaining to su(2) operators as follows:

(2.8)

Q(t) =Qocos(cot ) . (2.6)

The first term in Eq. (2.5) signifies the free motion of the
Morse oscillator. The next term is due to an external
classical field that drives or pumps the oscillator. The y

As usual, lgl represents the average excitation of the
Morse oscillator.

Using standard techniques, ' ' we arrive at the follow-
ing Fokker-Planck equation for P(g, g", t ), which is the
c-number equivalent of the master equation (2.5):
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dp
dt

a
3ifrt 2—ifKri 2—Kyri i—Q(t)+iQ(t)ri P

1+ frit'

a2 a2+ [(y+if }rtz]P +—,', (y~g~ )P +c.c.
a~.

' '
. a~an'

(2.9)

This c-number equation for a damped, driven Morse
oscillator forms the basis of our further analysis. If we
neglect the diffusion terms, i.e., all the second derivative
terms, it reduces to a first-order equation. For deter-
ministic systems such as those considered here, the densi-
ty evolution is necessarily a first-order differential equa-
tion. Since from the quantum-mechanical point of view
the motion is stochastic around the classical "mean
motion, " the complete equation (2.9) describes the quan-
tum dynamics of joint probability density.

One important aspect of the two-dimensional Fokker-
Planck equation (2.9) has to be clarified. Equation (2.9)
does not have a positive-definite diffusion matrix. How-
ever, by taking g and ri' as independent complex vari-
ables, we can interpret Eq. (2.9) as a Fokker-Planck equa-
tion with a positive-definite diffusion matrix in a four-
dimensional space. This implies that we are using a posi-
tive P representation, which allows us to go over to the
associated stochastic differential equations which we dis-
cuss in Sec. III. It may not be out of place, however, to
mention that serious doubt has been cast on this method,
which, fortunately, does not affect the present work be-
cause it uses the positive P representation only near a
fixed point.

velope approximation, whereby following Slusher et al. ,
we assume the complex amplitude ri oscillates at the driv-
ing frequency co such that

rt=g(t)e' ',
rt'=rt (t)e

(3.5a)

(3.5b)

The c-number stochastic differential equations for in-
dependent slowly varying amplitudes g and g are ob-
tained by substituting Eqs. (3.5) and (2.6) in Eq. (3.1) and
equating the terms of the same frequency. We also point
out that in the process we neglect the higher-order fre-
quency mixing effects. The resulting equations are

g —2Kyg

iQO iQO+ rt +—G„(t), (3.6}

together with the equation for g .
It is convenient to define two quantities f ' and 5 as fol-

lows:

5=co f', —

where

III. THE ITO-LANGEVIN EQUATIONS
AND THE MEAN-FIELD SOLUTIONS f'=f 3 —2K

1+gg
(3.7)

i Q(t)+ G„(t), — (3.1)

together with the independent equation for g*. Here
G„(t) and G, (t) are independent Langevin forces with

zero reservoir average as follows:

& G„(t))„=0=& G, (t))„. (3.2)

The moments of the Langevin force may be read off by
inspection from Eq. (2.9):

(G, (t)GJ(s))„=2D; 5(t —s),
where D;J are the diffusion coefficients; for example,

(G„(t)G (s))z =yri' ri 5(t —s),
(G„(t)G„(s))g=(y+~'f )ri 5(t s) . —

(3.3)

(3.4)

To dispense with the undesirable fast time dependence
of Q(t} from Eq. (3.1), we invoke a slowly varying en-

Having obtained the Fokker-Planck equation (2.9), one
can immediately write down the Langevin c-number
equations of motion by inspection. We then have

1 —nn'=3ifri ZifKrt, — 2Kyri+i Q—(t)rt

Equation (3.6) can then be rewritten as

i00 i00
ri= i5ri 2—Kyri+— ri

— +G (t) .
2 2

(3.8)

i00 iQO
i 5,g, +2Kyg, — g, + =0, (3.9)

where the subscript e refers to equilibrium values. The
quantity 5, then becomes 5, = co f,', where—

f,'=f 3 2K—
1+ fq, /'

The important point that has to be noted here is that
although g and g are independent complex variables,
the mean-field solutions g, and g, are complex conju-
gates since we have neglected the fluctuation in the
steady state.

It is now easy to see that the quantity inside the large
parentheses in the right-hand side of the last expression

If we neglect fluctuation, i.e., work within a mean-field
limit, we may set G (t)=0 to obtain a steady-state ampli-

tude g, from the following equation obtained by putting
the left-hand side of Eq. (3.8) equal to zero:
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dg(r)= Ag(r)—dr+D dW(r), (3.10)

where A and D D are the constant drift and diffusion
I

for f,' modifies the oscillator frequency f through the
nonlinear parameter I(: and the average excitation num-
ber ~g, ~

. Assuming (1—
~g, ~

)/(1+
~ g, ~

) to be a slowly
varying function of the average excitation number, one
can interpret 5, as an effective detuning parameter.

Under the near-resonant condition we may set the
effective detuning parameter, 6, =0, and obtain the
steady-state deterministic solutions of g, together with

ri,
' from Eq. (3.9).
In the limit of the large driving field such that Qp &)2y

and for the small nonlinearity of the Morse oscillator, a
small-noise linearization process around the equilibrium
solutions can be carried out in the full equation (3.8)
and the equation for g'. We thus let ri=ri, +g and

=g+g", where g and g" are the fiuctuations around
the . steady state. The result is the Ito stochastic
differential equation of the form

matrices, d W(t) denotes the independent Wiener process-
es d W& and d Wz, and g(t) represents a two-dimensional
vector. The Ito stochastic differential equation (3.10) de-
scribes a multivariate Ornstein-Uhlenbeck process that is
analytically solvable. In the Sec. IV we calculate the
power spectrum from the knowledge of the drift and
diffusion matrices.

IV. THE POWER SPECTRUM

XD DT[A i(v —co)I—) (4.1)

The explicit calculations show that the expression (4.1)
reduces to the following form:

We consider a near-resonant condition 5, =0. Then
the power spectrum centered at v=co (the driving laser
frequency) may be written as

S +(v —co)= f exp[ i(v—co)]—(g(t)g'(0})dtg'

=
I [A +i (v co)I—]

y ~g, ~ t Qc[2IC(y/Qc)+C]'+Qcri, +(v—co)'j

I(v —~)'—Qo[g, —4&(y/Q, )rI, rj, 4E—'(y/Q—,)']]'+ t4Qc2r7[2E(y/Q, )+g, ]]'
(4.2)

y[QO+(v —co) ]

[(v—co) —Q ] +(8EyQO)
(4.3)

In the limit of very intense incident field, the spectrum

where g, and g, are the real and imaginary parts of g, .
In the limit of the strong driving field, i.e., Qo/2y && I,
the last expression can be further simplified if we see that
in this limit the steady-state deterministic solution of Eq.
(3.9},ri„ is real such that g, = 1. We then have

I

is a superposition of Lorentzian functions at each of its
maxima at v=~+ Qp and v=co —Qp. For a weak field we
find, however, a single-peak structure at v=e. As an il-
lustration, we have displayed these power spectra for a
Morse oscillator with I( =20 in Fig. 1 for different values
of Qp. The doublet structure is reminiscent of the vacu-
um field Rabi oscillations of a single two-level atom in a
cavity where a single quantum of energy is transferred
back and forth between the atom and the cavity. ' It is
also interesting to note that, although the nonlinearity of
the Morse oscillator has a profound effect on the widths,
the magnitude of splitting in high field is weakly depen-
dent on it. The appearance of Qp in width is a typical
power-broadening feature.

V. CONCLUSIONS

Q o:
g 0
(:I- o=

C3—
0$
o600 400 200 0 200 400

FREQUENCY

FIG. 1. The power spectra yS +(v —co} as a function of the

frequency ( v —~}/y for different values of 00/y and for E=20
(both scales arbitrary).

Although the problem of a damped driven Morse oscil-
lator has received wide attention from various work-
ers' ' over the last two decades in various contexts—
particularly from the point of view of regular and chaotic
dynamics of energy change during multiphoton excita-
tion and dissociation —one aspect that still remains to be
considered is the calculation of spectral features at the
level of fundamental quantum optics. Our aim here is to
address these points. Just as the model describing a two-
level atom interacting with a single-mode field in the
presence of radiation damping lies at the heart of quan-
tum optics, the present model of a Morse oscillator in-
teracting with a single-mode classical electromagnetic
field in presence of a quantized heat bath may similarly
serve as an analogous paradigm in molecular spectrosco-
py. The Morse oscillator has been realized in the present
paper in terms of su(2) Lie algebra which discards the
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continuum [which can, however, be incorporated in
terms of su(1, 1)]. This is a convenient realization for the
situations where one is not concerned with dissociation.
It may, however, be mentioned in this context that the
effect of the continuum in fluorescent spectra has been
considered by Dalton for the case of two-level atoms to
treat internal atomic relaxation process. Leaving out
coupling to the continuum may imply the neglect of this
kind of relaxation process. Although the considerations
on the relaxation processes are too idealistic, we still hope

that the strong-field splitting described in the present pa-
per can be realized experimentally in a suitably chosen di-
atomic molecule.
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