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We have discussed the photon statistics of the spectral components of N-atom time-dependent

resonance 6uorescence. It is shown that in contrast to the stationary limit, sub-Poissonian photon
statistics in the sidebands occur for any number N of atoms including the case N &) 1. Reduction in

Mandel s parameters Q+, is found with increasing numbers of atoms. The typical time for the pres-

ence of sub-Poissonian statistics is proportional to 1/N.

I. INTRODUCTION

In recent years the quantum properties of light such as
squeezing (see Refs. 1—3 and references quoted therein)
and sub-Poissonian statistics ' have attracted a great
deal of attention. The first experimental observation of
sub-Poissonian photon statistics was reported by Short
and Mandel. Applications of sub-Poissonian light for
quantum-noise-limited measurements have been dis-
cussed in various papers.

The photon statistics in the stationary resonance
fluorescence from a single atom as well as from an ensem-
ble of atoms have been studied theoretically.
Experimental studies of the photon statistics of single-
atom fluorescence have been reported. ' ' The photon
statistics of the spectral components and the cross corre-
lation between them have been investigated in previous
papers. ' ' ' In particular, it has been shown that in the
steady-state limit, sub-Poissonian statistics disappear if
the number of atoms is large.

In the present paper we investigate sub-Poissonian
photon statistics of the spectral components of ¹ tom
time-dependent resonance fluorescence. In contrast with
the stationary limit, sub-Poissonian statistics in the side-
bands occur even for large numbers of atoms. The side-
bands become more sub-Poissonian with an increasing in
number of atoms. It is shown that the typical time for
observing sub-Poissonian statistics is proportional to
1/N.

II. THE MASTER EQUATION

We consider N identical two-level atoms (the Dicke
model) interacting with an external classical field at fre-
quency coL and with the vacuum of the radiation field.
For simplicity the external field is assumed to be in exact
resonance with the atomic transition frequency ~. By us-
ing the rotating-wave and Born-Markov approximations
for describing the coupling between the system of atoms
and the vacuum reservoir, one finds a master equation (in

the interaction picture) for the reduced atomic system in
the following form:

i [A(J—~z+ Jz& ),p]

(Jzi Jiz)o —2Jizl Jzi+I Jzi Jiz)=LP (2.1)

1 1
az = —c) + —cz

2 2

(2.2)

one finds that the Liouville operator L appearing in Eq.
(2.1) splits into two components, Lo and L&. The com-
ponent Lo slowly varies in time, whereas L

&
contains rap-

idly oscillating terms at frequencies 2Q and 4Q. In the
case of the intense external field, such that the condition

(2.3)

where y is the atomic spontaneous transition rate, 0 is
the resonant Rabi frequency, and the operators J,"
(i,j =1,2) are the usual collective atomic angular opera-
tors defined by

N

J;, = g li&kl, &jl
k=1

These operators satisfy the commutation relation

[J;J,Jt~]=Jim&, I Jt)&tm . —

Following Ref. 22, we introduce the Schwinger represen-
tation for these operators:

Jj=a; a,. (i,j =1,2),
where the operators a; and a obey the boson commuta-
tion relations

[a, ,a,~]=5„
After performing the canonical (dressing) transformation

1 1
a& = —c&+ —cz,

2 2
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is fulfilled, one can use the secular approximation, ' '
i.e., to retain only the slowly varying part, and the master
equation (2.1) can be reduced to the form

Bp —i Q[R3,p]+ + (2R3pR3 —R 3p pR—3 )

+ (2R»pR» —R»R»p pR—»R»)
8

+ (2R z1PR» —R»R»P —PR, zR z, ), (2.4)

where p=UpU and U is the unitary operator of the
canonical transformation (2.2); R 3

=R zz
—R 11 and

R, =c, cj (i,j =1,2) are the collective angular operators
of the dressed atoms. The operators c; and cj satisfy the
boson commutation relation

[c;,c, ] 5;, ,

so that

&s,'s,'s, s, &,
—((s,'s, &, )'

&s,'s, &,
(i =0,+1) . (3.2)

The factors Q; for the atomic operators are equal (up to
constant terms) to Mandel's parameters9 and describe the
photon statistics of the spectral component S;. The con-
dition for sub-Poissonian photon statistics of the spectral
component S; (i =0,+1) is taken in the fortn9

Q, &0. (3.3)

The equations of motion for the atomic operators
(S;S;S;S;&, and (S;S;&, follow from Eq. (2.6). In par-
ticular, for the case when the atoms are initially in the
symmetric Dicke state

tor sources of the spectral components at frequencies
coL +20, ~L, and ~z —20. Further we shall consider the
relative intensity fluctuations of the spectral components
S;:

[R;~,R( ]=R; 5)1 Rt)5;— (2.5) p0=
~
n „nz& & n1 ttz

~
(3.4)

The equation of motion for the mean value of an atomic
operator B follows from the master equation (2.4):

—(B &, =i Q( [B,R3] &,

we have

—(Rz &,
= — (R3 &, ++(N +2N), (3.5)

+ (([R3,B]R3 &, +(R3[B,Rz] &, )

+ (([Rz1,B]R1z &, +(Rz1[B,R1z] &, )

+ (([R1z,B]Rz1 &, + (R1z[B,Rz1] &, ),

—(Rz1R, z &, = — (Rz1R1z &, ++(N +2N)

=—(R, R, &, ,
=d (3.6)

—( R z &, = —5y ( R 3 &, ++
( 6N + 12N —29 ) ( R 3 &,

d

where

(2.6)
+ y (Nz+2N),

2
(3.7)

(B&, =(B(t)& =Sp[p(t)B] .

In the following, Eq. (2.4) will be used in an investigation
of the dynamical evolution of the photon statistics of the
photon spectral components.

d—(R', ,R '„&,= —sy(Rz, ,R 1z &, +2y «3 &

dt

+y(N +2N —7)(Rz1R1z &,

(3.8)
III. SUB-POISSONIAN PHOTON STATISTICS

OF THE SPECTRUM COMPONENTS

The dynamical evolution of the resonance fluorescence
spectrum has been considered previously for a single
atom. Squeezing in time-dependent collective reso-
nance fluorescence has been considered in Ref. 28. In
this section we will investigate the dynamical evolution of
the spectral components. From the canonical transfor-
mation (2.2) it follows that

+exp( —3yt/2)[(R 3 &0
—

—,'(N +2N)], (3.9)

(Rz, R, z &,
=

—,'(N +2N)+exp — t3y

Equations (3.5)—(3.8) are exactly solvable and their solu-
tions are

(R3 &, =—', (N +2N)

J21 —2R21 2R )2+ —,'R3

J)2 —
—,'R, 2

—
—,'R2& +—,'R3

(3.1) X[(R21R12 &0 6(N +2N)]

(3.10)

It is easy to show that in the case of a large Rabi frequen-
cy II, such that the condition (2.3) is fulfilled (the secular
approximation), the operators —,'Rz, ( —,'R1z), —,'R3 ( —,'R3),
and —

—,'R, z (
—

—,'Rz, ), which will be denoted as S1 (S, ),
S0 (S0), and S, (S, ), can be considered as the opera-

+—,'X&exp
3yt (3.11)

(R3 &, =(R3 &, +exp( —5yt)((R3 &0
—(R3 &,

—
—,'X1)
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&Rz,R,z&, =&Rz,R fz &,

+exp( —5yt)(&Rz, R, z &o

&Rz&Rfz &s

+ ~XzexP — ~ t —&Rz Rz3
(3.12)

1 (N +2N D—) 8—(N +2N D—)+12Dz
8 N +2N —D

(N +2N D—) +SN +16N —60Dz

64 (N +2N+D )

(3.27)

&R3 &o= —,'(N +2N D—),
&R3 &, = —,'(N +2N),

&Rz, R12&0, (N +2N+D ),
&RziR, z &, = —,'(N +2N),

Xi=1(6N +12N —29)(&R3 &0
—&R3 &, ),

Xz =2( &R 3 &o
—&R 3 &, )

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
1 3N2 —N
8 N'+N ' (3.29)

It is seen from the relation (3.27} that Qo &0 for any
value of D and N. This means that sub-Poissonian pho-
ton statistics are absent in the central spectral component

So for the short times. Moreover, one can show that the
super-Poissonian statistics of the central spectral com-
ponent are preserved during the whole time.

On the other hand, it is seen from Eq. (3.28) that
Qz, &0 for the case ~D~ =N. I—n particular, when
D =+N we find that

+(N +2N —7)( & R zt R,z &o
—

& R z, R,z &, ), (3.18)

& R 3 &,
=

—,', [6(N +2N) —8(N +2N)],

&RziR fz &, = ,', (N +2N—)(N +2N —3), (3.20)

&R3 &o= —,'[3(N +2N D) 8—(N +2—N D)+12D —]
(3.21)

&R'tR' &
=—'[(N'+2N+D')'+-, '(N'+2N —D')'

+4N +SN —30D ] . (3.22}

1 &R', &,
—(&R'& )'

4 &R'&

1 & R 21R 12 & t ( & R 21R 12 & t )

4 &Rz1R1z &i

(3.23)

(3.24)

where the quantities &R3 &„&Rz,R,z &„&R3&„and
& R z1R1z &, are given by the relations (3.9)—(3.12).

In the steady-state limit relations (3.23) and (3.24) be-
come

The initial population inversion of the atoms is denoted
by D =nz n, . It is—clear from Eqs. (3.10) and (3.12) that
the sidebands S+ &

have the same photon statistics
(Q, =Q, ). The factors Q; defined by Eq. (3.2) now take
the form

which means that during the first moments of the evolu-
tion the sidebands S+, have sub-Poissonian photon statis-
tics (Q+, &0) for any number of atoms N (including the
case N »1).

The dynamical evolution of the factors Q+1 as a func-
tion of the scaled time Nyt for various numbers of the
atoms is shown in Fig. 1. This figure shows reduction in
Mandel's parameters Q+1 (i.e., the sidebands S+t become
more sub-Poissonian) with increasing the number of the
atoms during the initial period of time. It is also seen
that the characteristic time during which sub-Poissonian
photon statistics are present is equal to I iNy. From
Eqs. (3.9)—(3.12) one can see that the stationary state can
be reached for times proportional to 1/y.

Finally, we should like to note that the intensity of the
sidebands, i.e., the quantity &Rz, R,z &„is proportional
to N . Thus it follows that an increase in N enhances the
intensity of the sidebands, which then have sub-
Poissonian photon statistics over a shorter time.

IV. CONCLUSIONS

We have considered the photon statistics of the spec-
tral components of collective time-dependent resonance

0.5

Qo= —,', (N +2N —3),

Q+, =—„',(N +2N —18) .

(3.25)

(3.26)

Q. ,
0.25

From Eqs. (3.25) and (3.26) it is easy to see that in the
steady-state limit the center component of the spectrum
So has no sub-Poissonian statistics (Qo & 0) for any num-
ber of the atoms, although the sidebands S+, have sub-
Poissonian statistics (Q+, &0) for the cases N =1,2, 3.
When the number of the atoms is large, all three spectral
components have super-Poissonian photon statistics.

In the short-time limit Nyt « 1, Eqs. (3.23) and (3.24)
take the following form:

—0.25

—0.5
0.0

i

1.0 2.0 3.0
scaled time fNt

I

4.0

FIG. 1. Factor Q+, as a function of scaled time Nyt for vari-
ous vaiues of N and with D =+X.
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fluorescence. It has been shown that in contrast to the
steady-state case, the sidebands can exhibit sub-
Poissonian statistics even for large numbers of atoms.
We have shown that during the initial period of time, the
sidebands S+& become more sub-Poissonian with increas-
ing numbers of atoms. The characteristic time during
which sub-Poissonian statistics can be observed is equal
to 1/Xy. The occurrence of sub-Poissonian photon
statistics in the sidebands of the time-dependent reso-

nance, together with squeezing and the violation of the
Cauchy-Schwarz inequality in the steady-state limit,
clearly demonstrates the quantum nature of the sidebands
of the Mollow's triplet.
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