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Polarization instabilities of dark and bright coupled solitary waves in birefringent optical fibers
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We investigate the stability of the propagation of bright and dark coupled solitary waves that may
travel in the orthogonal polarization modes of a birefringent nonlinear optical fiber. In the anoma-

lous dispersion regime, the coupled-solitary-wave decay is self-induced by modulational polarization
instability of the dark component background pulse. In the normal dispersion regime, stable propa-
gation only occurs for distances of the order of one linear beat length. We identify different instabil-

ity mechanisms such as gray soliton formation, polarization wave breaking, polarization dispersion,
and self-stimulated Raman scattering that leads to asymmetric coupled-solitary-wave breakup.

I. INTRODUCTION

There is a growing interest in studying the propagation
of optical soliton pulses in fibers, in view of their poten-
tial application to fiber-optic-based communication sys-
tems, lasers, and switching devices. Since ultrashort soli-
ton pulses are stable against dispersive spreading, they
are attractive for ultrahigh bit-rate long-distance time-
division multiplexed optical communication systems.
The validity of this early proposal' has recently been
confirmed by experimental evidence. On the other hand,
the propagation of soliton pulses enjoys other important
properties such as self-compression and particlelike be-
havior: this has been successfully exploited for ultrashort
pulse shaping in lasers and for all-optical switching. '

As is well known, nonlinear pulse propagation in a
single-mode fiber is described by the nonlinear
Schrodinger (NLS) equation, which, in the anomalous
group-velocity dispersion (GVD) regime, has soliton solu-
tions propagating as bright pulses. In the normal disper-
sion regime (that is, for wavelengths below 1.3 pm in
nondispersion-shifted fibers), NLS solitons occur in the
form of dips embedded in a continuous background, and
have been termed dark or gray solitons.

Henceforth, propagation of temporally localized or
bright solitary pulses in the visible may not occur in opti-
cal fibers, unless some coupling between two distinct
guided modes is exploited. In fact, it is known from plas-
ma theory that the coupling with a transverse elec-
tromagnetic wave may lead to the localization of a Lang-
muir wave packet for otherwise forbidden wavelengths. '

Coupled solitary waves may also arise from the coupled
NLS equations describing the interaction between Lang-
muir and ion-acoustic waves or between two transverse
polarized electromagnetic waves in a plasma' or in a
magneto-optically active medium. ' In the context of
nonlinear fiber optics, it was first pointed out in Ref. 15
that cross-phase modulation (CPM) between any two
copropagating fiber modes could sustain optical coupled
solitary waves. In particular, a bright solitary wave may

propagate in the normal dispersion regime, when coupled
with a dark pulse in the anomalous dispersion regime.
Note that this interaction requires a careful tuning of
wavelengths in order to insure group-velocity matching
between the two pulses.

From a practical standpoint, it would be desirable to
avoid coupled solitary pulses with distinct mean wave-
lengths. In fact, as was proposed in Ref. 16, dark and
bright coupled solitary waves may also result, both in the
normal and in the anomalous dispersion regime, from the
interaction between the two orthogonal polarization
modes of a birefringent fiber.

In the above cases, dispersive temporal broadening of a
short pulse that propagates in the normal dispersion re-
gime is compensated by nonlinear coupling. We may
mention here that an alternative approach to propagating
bright solitons at visible wavelengths is modifying the
dispersive properties of the fiber itself through linear
mode coupling. ' In fact, recent analyses have shown
that bright soliton propagation in fiber filters may occur,
both in the copropagating' and in the counterpropagat-
ing' ' (or distributed feedback) geometry.

A solitary-wave solution of a nonlinear wave equation
is properly termed soliton if it represents a physically
stable wave packet. This is always the case if the problem
is completely integrable by means of the inverse scatter-
ing transform: Then each soliton is characterized by a
discrete set of eigenvalues in the complex scattering
plane. Unfortunately, the coupled NLS equations
describing propagation in two-mode fibers are not com-
pletely integrable (except for very special casesz2 2 );
therefore, the stability issue is of primary importance for
their solitary-wave solutions.

The stability of coupled-solitary-wave solutions of the
CPM-coupled NLS equations has been studied by varia-
tional, perturbative, and numerical methods by several
authors. ' ' When linear coupling occurs between
the modes, as in the case of circularly polarized waves in
a birefringent fiber, a relatively complex picture of soli-
ton instabilities emerges from the stability analysis. In
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this work we concentrate on the interesting case of cou-
pled bright and dark solitary pulses propagating in a
birefringent fiber. ' These solitary-wave solutions exist
both in the normal and in the anomalous GVD regime,
but we shall see that the stability properties are rather
different in the two cases. The various instabilities will be
revealed by beam propagation simulations and the physi-
cal mechanisms behind them will be identified. In partic-
ular, the model shall include temporal walkoff due to po-
larization dispersion, and stimulated Raman scattering
(SRS).

II. DARK-BRIGHT COUPLED SOLITARY WAUES

s =(t z/—V)/t„ g=z/z, = ~ajar/t2,

u (Rt /~a~ )
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U=(Rt /~a~)'
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where the plus and minus signs hold in the case of anom-
alous or normal dispersion, respectively. We have used
the following normalized coordinates and field ampli-
tudes:

The transverse electric field E(r,z, t) traveling along a
weakly guiding single-mode birefringent fiber is decom-
posed in terms of orthogonal linearly polarized modes:

E(r,z, t)=[xf„(r)A„(z,t)+yf (r)A (z, t)]e '+c.c.

= [xf„(r)A„(z,t )e

+ yfy ( r )A y (z, t )e ' ]e ' +c.c. ,

where t00 is the mean optical frequency, f, (r) =fy(r) are-
the transverse field distributions of the linearly polarized
modes, and x, y are unit vectors oriented as the
birefringence axes, with linear propagation constants
P, =coon„ /c. In glass fibers the electronic (non-
resonant) third-order nonlinear polarizability is complete-
ly symmetric and reads

PNit, (r~z~ t ) =a,,k, E,(t)Ek(t)E, (t)

where 2P=P„+P and t, is the temporal width of the
fundamental bright NLS soliton, ' which would propagate
for on-axis input polarization [i.e., u ( g =0,s ) =0 or
u((=0,s)=0 in Eqs. (2)]. Furthermore, V—=2V„V /
( V„+V )-=(V„+V )/2, 5=(n„ny )t, /2—~a~c, and
«=(n„n)coot, /2—a~c =5coot,

By neglecting the contribution of the polarization
dispersion 5 (we shall discuss the effect of 5 in a later sec-
tion of the paper), one obtains the following solitary-wave
solution of Eqs. (2)

u = Uosech(s/so)e"

U = Votanh(s/so)e'~
(3)

where one must take a &0 in the case of normal disper-
sion and ~&0 for anomalous GVD. In other words, the
bright solitary wave travels along the slow (fast) axis of
the fiber whenever the dispersion is normal (anomalous).
The amplitudes and width are

where i,j,k, l =x,y and

aljkl X(5'J5kl+5ik5jl+5'l5jk )

1
Uo =(p —3«), Vo =(p+«), so =

4v
(4)

Here 5," is the Kronecker 5. Hence the complex field am-
plitudes A, obey the coupled NLS equations '

a~„ 1 a~. a'~„
Bz V„Bt 2 gt 2

+R(I A„I'+-',
I Ay )')A„+(R /3)A„'Ay =0,
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I A„ I') Ay+(R /3) Ay" A„'=0 .

Here V„» =(BP„»/Bco) '~ are the modal group veloci-

ties, whereas a—=8 P„ /8 ~~ is the chromatic disper-

sion, which can be assumed to be common to both polar-
izations. Finally, the nonlinearity coeScient
R(W 'm ')=coonz/cA, &, where n2(m /W) is the non-
linear refractive index and A,z is the effective core area.
By writing Eqs. (I) in a time-retarded frame and in terms
of dimensionless units, one obtains

The quantity p is an arbitrary positive constant. Equa-
tion (4) shows that the temporal width of the pulses (3)
equals the NLS soliton width t, for ~= —,'. In the follow-
ing sections we shall present numerical investigations of
the stability of the solutions (3) and (4) of Eqs. (2). In
fact, the nonlinear coupling between the modal ampli-
tudes u and v is strong, which prevents the applicability
of a perturbative stability analysis as was done in Ref. 27
for weakly interacting dark-bright coupled solitary
waves.

III. MODULATIONAL POLARIZATION INSTABILITY

We have integrated Eqs. (2) by a modified version of
the beam propagation or split-step method with up to
2048 temporal grid points. In the calculations, the
birefringence term is included in the dispersive step,
whereas the nonlinear step may be carried out immedi-
ately if Eqs. (2) are transformed in the corresponding
equations for the components of the circular polarization
basis. We assumed initial conditions as given by Eqs.
(3), with a finite-width Gaussian background pulse super-
imposed to the dark solitary wave,
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u ( (=0,s ) = Uosech(s /so ),
v((=O, s ) = Votanh(s /so)e

(5)

Consider first the anomalous dispersion regime: Then
we must set «(0 in Eqs. (2), which means that the dark
pulse U is the slow mode component. Figure 1 shows the
evolution of intensities in the two linear polarizations,
when U0=3 and V0=2, whereas the coupled-solitary-
wave width so=1. The variance of the background pulse
is rr =12.5. As can be seen, the dark pulse component is
unstable: modulational instability (MI) is self-induced
at the edges of the dip and leads to breakup of the slow
axis component into a train of high-intensity pulses with
a repetition period approximately equal to 2so (see Fig. 2,
which shows the intensity in the slow mode for (=5).
Note that there is characteristic distance for the develop-

ment of MI: the coupled solitary wave propagates virtu-
ally unchanged for a distance g=—3. Subsequently, dark
pulse breakup is followed by substantial polarization con-
version from the fast to the slow mode. The bright pulse
in the fast mode does not decay into radiation but rather
remains localized with a complex temporal structure.
Note that in the absence of polarization coupling, the hy-
perbolic secant pulse with peak power U0=3 would
evolve into a longitudinally periodic N =2 NLS soliton.

The condition so= 1 implies ~a~ =~5nt, /( Ia~IA)= ,', o—r

Lb =4m t, /Ia ~, where 5n =
I n, n—

~
and Lb =5n /A, is the

beat length. Therefore, with a dispersion a= —0.018
ps /m at k = l. 5 pm, one obtains a soliton width

t„wHM =1.76t, =70 fs with Lb =1 m. Note that the peak
power of the bright pulse Uo =3 is well above the thresh-
old power for continuous wave (cw) modulational insta-
bility (or polarization instability ), which is equal to
U =p, =3~= —,'. This instability leads to the growth of
sidebands in the slow mode, which explains the polariza-
tion conversion that is seen in Fig. 1. In physical units,
assuming an effective area A,&=6.5X10 cm, and
with n2 = 3.2X 10 ' cm /W, one obtains a bright pulse
peak power P„=8k,A,fr/n2Ls =24 kW.

IV. FINITE BACKGROUND EFFECTS

From now on, we shall only consider coupled-solitary-
wave propagation in the normal dispersion regime. In
this section and in Sec. V we shall discuss the effects of
varying the background pulse width cr relative to the soli-
ton temporal width so.

Whenever a )0, if one takes Ir &0, then u (v) is the
slow (fast) mode component. Figure 3 shows the evolu-
tion of intensities in the two polarizations with initial
conditions (5), Uo=2, Vo=3, so=1, and a background
pulse variance o. =7.5. As can be seen, due to dispersive
temporal broadening of the background, after g-=3 the
dark pulse decays and so does the bright one. After a
transitory region where the peak intensity of the
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FIG. 1 ~ Propagation in the anomalous dispersion regime.
Evolution of intensities of (a) the bright solitary-wave com-
ponent u (fast mode), and (b) the dark solitary wave v (slow
mode). Intensities are in arbitrary units: The values have been
normalized both in (a) and (b) to the peak values. Time and dis-
tance are in the soliton units of Eq. (2).

-30 -15 0
TIME

30

FIG. 2. Intensities of input dark pulse (dashed curve) and of
propagated pulse at a distance /= 5, as in Fig. 1(b). The intensi-
ty scale is given in arbitrary units, time is in soliton units.
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FIG. 5. Intensities of {a) input (dashed curve) and propagated
bright pulse for (=7; (b) same as in (a), for the dark pulse, with

a width o =12.5.

effective area A,&=1X10 cm, the peak power of the
bright component would be P„=1.5 or 6 kW, respective-

ly. Finally, the normalized distance (=1 corresponds to
z, =Lt, /4m =8cm with —Lb = 1 m. FIG. 6. As in Fig. 3, with a background pulse width o.=30.

V. POLARIZATION WAVE BREAKING

Until now we have only considered the case so=1: In
this section we shall present results of simulations where
the coupled-solitary-wave width (with respect to the NLS
soliton width t, ) is varied. In particular, we shall eluci-
date that the freedom in choosing the coupled-solitary-
wave time width so in Eqs. (4) is only formal. In fact,
whenever the wavelength and the fiber birefringence are
fixed, different choices for so only imply a rescaling of
coordinates but all of them will correspond to the same
actual pulse time width.

Figure 8 illustrates the evolution of the polarization
components for initial conditions as in Eqs. (5) with
so= —,

' (i.e., 1~=1), Uo=8, and Vo=12. The background

pulse width is o. =30 as in the previous figure. As can be
seen, gray soliton formation is closely followed by break-
up of the coupled-solitary-wave polarization components
into a rapidly varying irregular wave train. The dark
component appearing at the propagation distance (=10
is shown in Fig. 9, along with the input pulse profile.
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FIG. 7. Intensities of input (dashed curve) and propagated
dark pulses for a distance (=7, with a width o =30.
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lul

Again, a substantial amount of energy is converted with
distance from the fast mode (v) to the slow mode. The
origin of this instability is therefore the modulational in-
stability that may occur in a birefringent fiber also in the
normal dispersion regime. In fact, when the fast axis is
pumped by a quasicontinuous wave of peak power

p, )p, =3~, orthogonally polarized weak sidebands with
angular frequency detunings up to the cutoff frequency

0, =2[(p, /p, —1)ir]'~

would experience exponential growth along the propaga-
tion distance. Here MI of the dark pulse is induced by
the presence of the orthogonally polarized spectral com-
ponents of the bright pulse. Note that this instability did

lul

FIG. 8. As in Fig. 3, when the coupled dark-bright soliton
width is half the width of the fundamental NLS soliton (i.e.,
so = —j.—1

2
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FIG. 9. Intensities of input (dashed curve) and propagated
dark pulse after a distance (= 10, as in Fig. 8(b).

FIG. 10. Same as in Fig. 3, with a square background for the
dark pulse. In this case, the coupled-solitary-wave width is
twice the fundamental soliton width (i.e., so=2). Background
square pulse width is o.F~„M= 160.
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not appear up to (=10 in the previous simulations with

so=1 since the pulse intensities were four times lower
and this correspondingly reduced the instability gain per
unit of normalized distance.

On the other hand, Fig. 10 shows that stable coupled-
solitary-wave propagation results, as least for g(10,
whenever so=2 (a.= —,', ). In this ease, we took Uo= —,',
Vo= —,', and a square background pulse with a temporal
width of 160 temporal units. From the expression for the
normalized parameter tt, one sees that, for a given value
of the beat length, ~ can be reduced four times by halving
the time t, . Since this also increases by a factor of 4 the
peak powers, this means that the actual coupled-solitary-
wave time width and peak powers corresponding to Figs.
3-9 and 10, with Lb fixed, are the same. In other words,
the arbitrariness in choosing the coupled-solitary-wave
time width so that results from Eqs. (4) is fictitious. In
fact, in order to get the same physical distance as in Figs.
3-7, the normalized distance in Fig. 10 should be in-
creased by a factor of 4, which explains the propagation
stability in Fig. 10.

lul

VI. POLARIZATION DISPERSION

In all of the previous simulations we have neglected the
presence of group-velocity walkoff between the two or-
thogonal polarizations, or polarization dispersion 5.
Since 5=~A, /(2mt, c ), polarization dispersion cannot pos-
sibly be discarded when providing a realistic estimate of
the maximum distance over which the coupled-solitary-
wave solution maintains its stable identity during propa-
gation. If this has been done up to now, this was justified
by the interest in gaining a separate understanding of
effects leading to the various types of instability.

Figures 11 and 12 were obtained by assuming A. =615
nm, D =350 ps/nm km, Lb = 1 m, which yields
5= l. 1 X 10 . This corresponds to a group delay
difference between the linear polarization modes of only 2
ps/km. The initial conditions are the same as in Fig. 3,
that is, ~= —,', U0=2, and V0=3, whereas the back-
ground square pulse width is equal to 60 time units. As
can be seen, the dark pulse travels on the fast mode and
arrives at the distance (=10 slightly in advance with
respect to the center of the background (see Fig. 12},
while the gray satellite pulses are asymmetrically distort-
ed. At the same time, the bright component is complete-
ly broken up into a rapidly oscillating wave train as soon
as g) 7. This indicates that even a sinall polarization
dispersion may set a practical limit to the validity of the
coupled-solitary-wave solution [(3) and (4)] to about half
of the birefringence beat length.

VII. SELF-STIMULATED RAMAN SCATTERING

As we have seen, for typical birefringence beat lengths
(that is, of 1 m or less) the temporal width of the coupled
solitary wave is of the order of 100 fs. For such short
pulses, the noninstantaneous contribution to the non-
linear response of the fiber or self-stimulated Raman
scattering may be important. In fact, Raman scattering
may be self-activated by the mixing, through the Raman

FIG. 11. Breakup due to polarization dispersion. The initial
conditions are as in Fig. 3.

susceptibility, among the lower and higher frequency
components of a pulse. In the anomalous dispersion re-
gime, this effect leads to a continuous downshift of the
mean frequency of a soliton. Nonlinear pulse propaga-
tion in optical fibers in the presence of Raman scattering
may be described in the time domain by adding a delayed
nonlinear term to the NLS equation. We extend
here previous scalar treatments to the case of two cou-
pled polarizations [Eqs. (1)]. We may write the total
third-order polarizability as P' '=P~R+P~'. The reso-
nant part can be written, in the Born-Oppenheimer ap-
proximation, as a convolution integral

PR (t)=E/(t}J ds f&k&(t
—s)Ek(s)E&(s),

where the tensorial Raman response function f,."k&(t)
reads
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FIG. 12. Intensities of input pulse (dashed curve) and of pro-
pagated pulse (solid curve) for a propagation distance (=10, as
in Fig. 11(b).

f J//(t) =/2(t 5/Jfi//+ ,'b(t)(f-//~J/, +~;k&J/)

i,j,k, 1 =x,y .

Clearly when a single polarization mode is involved, one
recovers the familiar Raman causal response function

g ( t) =f;;;;( t) =a ( t }+b( t) By i.nserting the expression (8)

(b)

I I I I I I I I I I I I I I I I

lvl

(a)

I I I I I I I I I I I I I I I

0
-100 —50 0

TIME
50 100

FIG. 14. Same as in Fig. 13, for a propagation distance
= 10.
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into Eq. (7), one obtains for the normalized complex field
envelopes u and U the modified coupled NLS equations

2u
/ +/5 2T~ 2

+Ku +'/1( lu I'+-,'lv I')u +
Bs

+(1 ~)f' «g(s-r}[lu(.)12+Iv(~)12]=0,
(9)
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ag as 3 3

(b) 3—
v
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+(1—21}f drg(s —r)[lu(~)l +lv(~)l ]=0 .

Here g~0. 8, and we have neglected the contribution of
b(t) with respect to a(t). This approximation may be
justified by the fact that in silica the depolarized Raman
cross section [which is the Fourier transform of b(t)] is
more than one order of magnitude smaller than the paral-
lel one. The fused quartz Raman response function g(t)
can be well approximated by

Tf+Tp
g (t)= exp( —t lr2)sin(t lr, ), (10)

7

FIG. 13. Effect of self-stimulated Raman scattering: (a) the
input (dashed curve) and propagated (solid curve) bright pulses
at a distance j=5 are shown and (b) the same for the dark pulse
component.

with ~, = 12.2 fs and ~2= 33 fs.
Figures 13 and 14 show results of the propagation of

bright and dark pulse components in the normal disper-
sion regime, when computed by integrating Eqs. (9) and
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(10) for distances (=5 and 10, respectively. The initial
conditions were given as in Figs. 6 and 7: Up =2 Vp =3,
sp = 1 and cT =30. We also assumed a coupled-solitary-
wave width t„wHM =130 fs at the wavelength A, =600 nm.
As can be seen, up to (=5 the effect of self-SRS is negli-

gible, and the bright pulse is even slightly amplified at the
expense of the dark one, whereas for distances as large as
(=10, the bright and the dark pulses acquire a slight
asymmetry while breaking up. As occurs for single-mode
NLS dark solitons, ' the gray solitons have now different
depths, which appear, however, much reduced when
compared with the gray pulse depths (obtained with

purely instantaneous response) that are shown in Fig. 7.
Qualitatively similar results are obtained with different

choices for the expressions approximating the Raman
response function (for example, a simple exponential de-

cay), or with different choices for the symmetry of the de-

layed tensorial nonlinearity. In order to present an ex-
treme case, we may consider a purely relaxing tensorial

third-order susceptibility,

. BQ . BQ+ 8 Q+15 +— +Ku +gu +fv 0
Bs ' gs2

. Bv . Bv+& 8 v
i &—5 +—,

' —Kv+riu+P*v=0,
Bs

r "+my=/v/'+-, 'Iu)',F77 (12)

+P=—'uv '+ c.c.
Bs

In the limit ~ 0, the above equations reduce to Eqs. (2).
Equations of this type may describe, for example, the
effect of stimulated Rayleigh-Kerr scattering on the prop-
agation of ultrashort pulses in carbon disulphide (CS2)
liquid-core fibers, where linear birefringence can be in-
duced by applying a static electric field.

Figures 15 and 16 show bright and dark coupled-
solitary-wave propagation when solving Eqs. (11)and (12)
with the same input conditions as in Figs. 13 and 14. The
relaxation time was assumed ~=0. 1t, . As can be seen,
the bright and dark pulses become strongly asymmetric
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FIG. 15. Same as in Fig. 6, with a purely relaxing third-order
susceptibility.

FIG. 16. Coupled-solitary-wave components as in Fig. 15 at
the fiber input (dashed lines) and after a propagation distance
g= 10 (solid lines).
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as soon as g& 5: In particular, the dark pulse shifts in

time, which prevents the formation of the slower gray
soliton until g =—10. Furthermore, the distortion and
wave breaking of the bright component appears to be
more dramatic here than in the previous case [compare
Figs. 14(b) and 16(b)].

VIII. CONCLUSIONS

We investigated the propagation stability of coupled
dark and bright solitons in birefringent fibers, both in the
normal and in the anomalous dispersion regime. We
have individuated different physical mechanisms that
may concur in breaking up the coupled solitary wave,
such as modulational and polarization instabilities, polar-
ization dispersion, and self-stimulated Raman scattering.
The analysis has shown that stable propagation only

occurs over a limited distance, which typically is of the
order of one linear beat length of the Aber.
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