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Spin effects in highly relativistic systems
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Coupled integral equations are developed variationally and solved numerically for the two-

particle bound-state problem in quantum electrodynamics. The ansatz incorporates explicit photon
degrees of freedom, and the resulting equations, when perturbatively reduced, yield the correct per-
turbative a coefficients. The results are of interest as they may be applied to the large spin-

dependent effects in the highly relativistic bound systems of quantum chromodynamics.

I. INTRODUCTION

In a previous paper, ' which we will refer to as I, in-
tegral equations were developed variationally ' for the
particle-antiparticle bound-state problem in quantum
electrodynamics (QED). Our motivation for this work
was to explore the highly relativistic nature of bound
states at high e. This, we hope, in the first case, to be
useful in the incorporation of relativistic effects in quark-
model building and ultimately (perhaps) to the strong-
coupling problem in quantum chromodynamics (QCD) it-
self.

In I, our ansatz was insensitive to explicit photon de-
grees of freedom and thus unable to give all the spin
effects, which in perturbation theory appear at order a
We will remedy this now. For quark-model building this
is important as the spin-spin and spin-orbit effects are
found to be phenomenologically large in the hadronic
spectrum.

In Sec. II we develop the coupled integral equations
and demonstrate that a perturbative reduction yields the
a coefFicients of perturbation theory. In Sec. III we nu-
merically solve the (perturbatively decoupled) integral
equations and present our results and discussion.

II. INTEGRAL EQUATIONS

For completeness we give the QED Hamiltonian. In
radiation gauge it is

H= Jd'x(g [a [(1/i)V eA]+Pm I—g+ —,'(E +B )),

where

E =E, +EI, E, = —A, B=V'XE,

e 3 x x y y
4m. fx —

y/

Our expanded Fock-space variational ansatz, sensitive
to all pieces of the Hamiltonian, is

~e+e )=~e e )+~e+e y)+~e+e e+e y)+~y) .

(2)

In this extremely compact notation we have suppressed
all integrals over internal momenta, sums over spins, and
polarization vectors. For example,

~e+e )= g J d pF(p, s, s')b (p, s)d (
—p, s')~0),

$$

~e+e y)= g fd pd qG(p, q, s, s', l)b (p, s)
ss A,

Xd (q, s')a (
—

p
—q, A, )~0),

where F(p, s, s')=u(p, s)I v( —p, s')f(p) and I =l, ys, y,
y5y depending on whether we wish to construct a scalar,
pseudoscalar, vector, or pseudovector state, respectively.
The function 6 is constructed in such a way as to gen-
erate three-particle states with identical quantum
numbers generated by F [e.g. , G(p, q, s,s', X)
=e( —

p
—q, k) u(p, s)yv(q, s') for the scalar. ] Angular-

momentum considerations determine the dependence of
F(G) on all but one(three) variable(s). It is this remaining
dependence which is (in principle) variationally opti-
mized.

To summarize the procedure, the Hamiltonian is
sandwiched between the ansatz of Eq. (2). The F, G-type
functions for all four Fock-space components are then
variationally optimized, resulting in coupled integral
equations. The equations are rather complicated but for-
tunately a great deal of the complexity can be circum-
vented by physical considerations. We note that the cou-
pling of the ~e+e e+e y) Fock-space component gives
rise to three types of effects. These are the vacuum ener-

gy bubble, single-fermion (Z graph) self-energy contribu-
tions, and a single-photon (Z-graph) annihilation contri-
bution. The latter, along with the ~y) Fock-space com-
ponent, gives the entire annihilation contribution (only
present in the l state). Although we will present the
annihilation contribution later, we would like to em-
phasize that for the eventual QCD application it is not
relevant as quark-antiquark color singlets do not couple
to single color-octet gluons.

Thus at the level of the Fock-space expansion of Eq. (2)
the only interesting dynamical bound-state effects will
come from mixing with ~e+e y ), resulting in the follow-
ing coupled equations:
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2

MF(p, o,5)=2E F(p, o,s)+ g f d q F(q, o', 5')u(p, o )u( —
q, o')v( —q, 5')v(p, 5)

2~' . EpE, Ip
—ql'

+ g d q, [G(p, —q, o,p, i)v, ( q—,p)y e(q —p, i, )v( —p, 5)&a, m 1

—G(q, —p,p, 5, A. )u(p, (7)y e(p —q, A. )u(q, p)],
MG(p, q, o—, 5,k)=(E~+E, + lp

—ql)G(p, —q, o,5, A)

2

+ g f f d kd k', G(k, k'—, o', 5', k)5(p —q —k+k')
2m ~ s (EpEqEkEk )'

u(p, o )u( —k, o')V( —k', 5')v(q, 5) u(p, o )v(q, 5)v( —k', 5')u( —k, o'}
Ip

—kl' Ip
—ql'

(4)

+ g [F(p,o,p)v( p, p—)y e(q —p, A, )v( —q, 5)
2n (E E ) vip —

ql

—F(q, p, 5)u(p o )y e(q —p A, )u(q p)] . (5)

Note that by setting 6 =0 we recover the integral equations presented and solved in I.
A solution of this coupled system of Eqs. (4) and (5) would give a true variational upper bound to the two-particle

bound-state mass. The problem is difficult, however, as it is effectively a coupled system of a one-dimensional and
three-dimensional integral equation and there is no way to decouple the equations easily. We can, however, obtain an
approximate equation by setting the second term of Eq. (5) to zero, then solving for G in terms of F and obtaining a
one-dimensional integral equation solely in terms of I'. Certainly this procedure is justified perturbatively as the
neglected term gives contributions of higher order in a. Exactly the same procedure is followed to obtain the annihila-
tion contribution.

We now present our new improved kernels for the same states considered in I:

Mf (p) =2E~f (p) f K—(p, q)f (q)dq;
4m p

pseudoscalar,

Ep +E +6E E 4m p +q 2pqK(p, q)= ln — (Ref. 5);EE p —
q EE

scalar,

(6)

(7a)

(Ez+Ez)(E Eq m )+6E&Eq(E&E&+m ) 4m (E +E ) +4m
K(p, q)=

pqE E

pseudo vector,

p+q 2m

p —
q EE (7b)

vector

4(E&+Ez)[(Ez+Ez) —4m ]—16m (E E —m )

4p9'E E
2' 2Eq 4m 2

+
Eq Ep E E (7c)

K(p, q)= 2pq
[(2E2+ m 2)(2E2+ m 2)]1/2

q

4(E~+E~)[(E +E ) +2m ]—2m (E +E )
—Sm (E E +m }

ln
4p9'E E

X ~ —4—2E 2E 3m

E E (no annihilation) (7d)

(2E +m )(2E +m )

3m E E ( plus annihilation ) .
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The kernels can be expanded in p //m. Retaining terms
/m) one can show that this yields the Breitup to (p/m one can

re resentation. ThenHamiltonian in the momentum repres
erforming a nonrelativistic redduction of our functionsper or

in 1 the Clebsch-Gordan coefficientsyields corresponding y e
f he ( '+'L, J )=('SO, O +), ( S„l p,of te

( P 1++) states. Sandwiching the reduce
between e n

' ' ' '
wave functionsbetween the nonrelativistic positronium w

gives the following: Pseudoscalar,

Z.Q

/. 5—

/. Q—

E a—=2-
m 4

63a +0( q) '
192 0.5—

scalar,
2 4E

2
a 95a

(
m 16 3072

vector,
(8)

O.O
0.0

I I

0.5
I

/. 0
I

/. 5

numbers of theFIG. 2. Bound-state mass vs a. The quantum num
—+ ——0++ 1++curves are indicated 0, ,0

a /192 (no annihilation)a2 a '+0 a
m 4 49a /192 (plus annihilation)

pseudo vector,

E a —47a +0( ~) .
m 16 3072

These are in ac e af t th coefficients of standard perturba-
6tion theory.

that the kerne1s which were obtainedWe can claim t a e
lation (and there-f approximate variational calcu ation an

fore capable of being pushed to higher a) are p
tively correct to or er a .d . They will therefore yield a11

the correct spin- ep
'

-d pendent physics encountered up to
that level.

III. NUMERICAL RESULTS AND DISCUSSION

s (6) and (7) are solved numerically as in I.
A

'
sed an optimized discretization proce ureAgain we use

the inte ral equations which reduced effectively to a
maatrix diagonalization prob em. onv g

ith 100 oints for most oftained typically to five figures wit p
'

the curve. At the critica p
'

1 oint a (i.e., where t e
bound-state mass vanishes) 300 points were required to
obtain close to three-figure accuracy.

for theIn Fi . 1 we p o e1 t th bound-state mass versus a for t eg
or states. We compare our resultspseudoscalar and vector sta es.

to a perturbation theory and note that up to a = . e
curves are indistinguis a e.ishable. Keeping in mind an eventu-

1 rgeal QCD application, we note that 'ght at hi her a a arge
s s littin arises naturally. Inpseudoscalar-vector mass sp

' '
g

r all fourFi. 2wepot e1 th bound-state mass curves or a our
I there is dramatic turnaround behav' iorstates. As in I t ere is

n 't'
1 oint as well as persistence o gf the de en-near t e critica poin

r seudovec-erac of the scalar, pseudoscalar and vector, pseu
tor states at the critical poin . pp

' t. It a ears that the degen-
1' '

eds not an artifact of the limitecracy observed in I was no
h dFock-space expansion used but iit survives an en ance

and thus improved calculation.
The degeneracy can be understood

'
od in the following

of the kernels reveals that in theway. Examination o e
re identical. Thism =0 limit the corresponding kernels are identica . is

=0 ~ED is chirally invariant and there-
fore could result in parity doubling in the spectrum. e
can exp icit y so ve1' '

1 1 the massless equations and obtain for
a, the values

/. 0—

0.5—

a 0 +,0++)= — —=0.748 (Ref. 7&3'�/2+2/7r&3
V'8

1 406
~/&8+ &8/~

a,(1,1 +)=

These are very c ose o1 t our best numerical values for
the massive theory
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FIG. 1. The pseudoscalar-vector bound-und-state mass splitting.

The solid curves are the solutions of the g qe inte ra1 e uations (7).
The dashed curves are the result of perterturbation theory, Eq. (8).
The annihilation contribution is not included.

a, (0++ ) =0.756,

a, (0 +)=0.755,

a (1 ) = 1.414 (no annihilation),C

a, (1 +)=1.415 .

(10)
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The lack of rapid convergence near the critical value is
the result of large cancelations between the kinetic and
potential energies which just precisely balance when the
wave function goes over to the massless form f (p) =p
This is a state which is extremely localized in
configuration space sitting deep in the potential well at
the origin. The energies involved are so large that a small
fermion mass becomes irrelevant.

To summarize and conclude, within the present level of
Fock-space expansion, the solution of the integral equa-
tions yield, at low a, physics that corresponds to pertur-
bation theory up to order a . At higher a the equations
reveal the kinematics and some dynamics of the ultrarela-
tivistic region. Renormalization effects at this leve1 can
all be reabsorbed into a mass reparametrization. (There

are no effects due to "off-shell" electron propagation in
the bound state which would appear at higher order. )

We feel the technique presented which is relativistic and
nonperturbative and which incorporates all the short-
range physics of one-gluon exchange will be useful in the
study of the bound systems in quark models in QCD.
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