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Generation and intensity-correlation measurements of the real Gaussian field
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The generation of a broadband laser field with well-defined and controllable statistical properties,
known as the real Gaussian laser field, has been achieved through the random modulation of the
amplitude of a stabilized laser beam. The verification of the field-generation technique is provided
by measurements of the laser power spectrum (Lorentzian) and by measurements of the intensity au-
tocorrelation function. The latter is shown to decrease exponentially from an initial value of nearly
3 to a final value of 1 with a decay time related to the inverse bandwidth of the field. The techniques
for generating this field and for its characterization are discussed in this paper.

INTRODUCTION

Laser bandwidth has been shown over the past several
years to have a strong influence on qualitative and quan-
titative observations of multiphoton interactions. (See
Refs. l —6 for representative works in this area. ) Calcula-
tions of these effects are typically based upon one of
several different models of laser fields, and it has been es-
tablished theoretically' that two lasers possessing the
same power spectrum can produce significantly different
results in nonlinear processes due to different higher-
order statistical properties. Experimental verification of
this has recently been provided in the microwave regime
in comparisons of the phase diffusing field with the phase
jump field. In this report we discuss the laboratory gen-
eration of a field known as the real Gaussian field, and a
study of its statistical properties. The ultimate goal of
this project is the application of this field to nonlinear
atomic systems for the direct comparison with the results
of theoretical calculations and with experimental results
which test other field models. '

The real Gaussian field can be described by the expres-
sion

E(t) =Eoe(t)e

where e(t ) is a fiuctuating real amplitude and coL is a con-
stant frequency. The random amplitude is a Gaussian
process and the average value of e(t ) is zero, i.e., it is pos-
itive as often as it is negative.

The method we use to generate this field involves the
random amplitude modulation of the output of a stabi-
lized dye laser using an acousto-optic modulator. This
process has the ability to transfer the statistical proper-
ties of an rf drive voltage to the diff'racted optical field.
Generation of the optical real Gaussian field therefore de-
pends upon our ability to generate an rf drive signal
which has the properties of the real Gaussian field. This
is done using a combination of rf mixers and hybrid junc-
tions, as will be described later.

The real Gaussian field is closely related to the radia-
tion field produced by a thermal source. (The latter has
been referred to often as the chaotic field, a name which

we will avoid here because of the recent explosion of in-
terest in the chaotic behavior of nonlinear systems. We
will instead use the name thermal field. ) The real Gauss-
ian field and the thermal field are similar in that each is
characterized by strong intensity fluctuations. An impor-
tant distinction, however, lies in the phases of the two
fields. The field produced by a blackbody emitter is the
superposition of fields of a large number of independent
randomly phased elements of the source. As a result the
phase of the resultant field is randomly distributed, and
the field can be described as a complex variable

E(t)=Eo[e'(t)+i e"(t)]e

where the two amplitudes e'(t ) and s"(t ) are real Gauss-
ian variables with zero mean. In addition to a blackbody
emitter, other sources of the thermal field include a laser
operating on several independent, randomly phased lon-
gitudinal modes, and light incident upon an ensemble of
randomly distributed scatterers, such as a rotating piece
of ground glass. "

The intensity fluctuations of the real Gaussian field are
much stronger than those of the thermal field, as we will
discuss in a later section. Larger intensity fluctuations
are expected to lead to stronger laser bandwidth effects
on nonlinear processes. For example, the two-photon ab-
sorption rate by a broadband absorber is expected to be
enhanced by a factor of 3 for the real Gaussian field over
that for a monochromatic field of the same average inten-
sity, while the thermal field absorption rate is enhanced
by a factor of only 2. ' The frequency width of the two-
photon absorption profile should be the same in each
case, increasing as twice the laser width. In the case of
the ac Stark effect associated with the saturation of a
one-photon process, Georges has calculated that the am-
plitude fluctuations of either field tend to wash out the
Rabi sidebands as observed through resonance fluores-
cence measurements. Again this effect is more pro-
nounced for the real Gaussian field.

Recently, Vemuri, Roy, and Agarwal' have developed
a formalism to consider the effect on the resonance
fluorescence spectrum when an atomic system is driven
by a field which consists of a coherent and an incoherent
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component. The incoherent component is modeled as the
thermal field. Since the relative amplitudes of the
coherent and incoherent parts are adjustable in their
work, the authors are able to derive the change in the res-
onance fluorescence spectrum between the limits of
monochromatic excitation and broadband excitation.
This theory can be extended to the case where the in-
coherent part is the real Gaussian field, ' which we are
able to generate with our technique with a single adjust-
ment within our electronics.

Recent interest' ' has also been directed towards the
magnitude of the fluctuations of the fluorescence intensi-
ty scattered by an ensemble of atoms irradiated with a
fluctuating field. The fluctuating field induces fluctua-
tions in the fluorescence, potentially limiting the pre-
cision with which spectroscopic measurements can be
made. The magnitude of these fluctuations is surprisingly
large. Quantitative measurements of these effects, as in-
duced by the phase-diffusion field, have recently been
completed. ' Calculations of the intensity fluctuations of
the light transmitted by a Fabry-Perot interferometer
have also been carried out. ' These results are similar to
the fluorescence intensity fluctuations except that the
Fabry-Perot does not become nonlinear with increasing
intensity.

The remainder of this paper is organized as follows.
We first discuss in detail the technique we use of generat-
ing the real Gaussian field. We then present a description
of some of the statistical properties of this field, as well as
those of the thermal field, by way of comparison. A dis-
cussion of measurements of the power spectrum of the
field, and of the intensity autocorrelation function ap-
pears last.

FIELD GENERATION TECHNIQUE

In order to generate the real Gaussian field, an
acousto-optic modulator (AOM) is used to randomly am-
plitude modulate the output of a cw stabilized dye laser.
The signal used to drive the acousto-optic modulator
must therefore be randomly amplitude modulated as well.
The AOM then transfers the randomly modulated ampli-
tude to the diffracted laser beam.

The circuit used to modulate the amplitude of the drive
signal is based upon an rf mixer, which can be used as a
variable attenuator by applying a bias to the X port.
Modulation of this bias signal results in modulation of
the amplitude of the transmitted signal. This application
of the mixer differs from the standard use of a mixer in
which the L and R ports are used as input ports. We
show in Fig. 1 that the transmission by the mixer from
the L port to the R port is linearly dependent upon the
bias voltage over a wide range of applied bias voltage.
Bias voltages close to zero must be avoided where the
transmission factor cannot be completely cancelled, as
well as those for transmissions approaching unity where
the response is nonlinear due to saturation. We have
chosen an average bias voltage of about 1 V (see arrow in
Fig. 1) and a maximum average amplitude (rms) of about
10 mV so that modulation of the amplitude of the
transmitted voltage is linear. The range indicated in Fig.
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FIG. 1. The transfer function of the rf mixer used as a vari-
able attenuator. The arrow indicates a typical dc bias level ap-
plied while the range of the fluctuating voltage (10 times the rms
values) is shown by the pair of vertical bars.

1 is actually ten times this rms value since these large
fluctuations of the Gaussian voltage must lie within the
linear regime of the mixer. The signal which we apply to
the X port of the mixer is of the form V [ao+s(t)],
where V ao and V s(t ) represent the dc and fluctuating
components of the bias voltage, respectively. This leads
to an amplitude modulated signal appearing in the R port
of the mixer of the form

V(t) = Vo[ao+s(t)]e (3)

V(t)= V, E(t)e (4)

Microstrip techniques are used throughout. The path
lengths of the two lines between the hybrid junctions are

where the input to the mixer is at frequency coo/2m (200
MHz to match the drive requirements of our AOM). Vo
is the product of V, the slope of the mixer response (Fig.
1) and the amplitude of the 200-MHz input signal. As
will be discussed in Sec. III, the spectrum of this signal,
as observed on a spectrum analyzer, consists of a carrier
(5 function) at frequency coo, and the spectrum of e(t)
shifted up by the carrier frequency.

In order to represent the real Gaussian field, it is im-
portant to eliminate the carrier [i.e., the dc amplitude
Voao in Eq. (3)] from the signal generated by the tech-
nique described thus far. This is done by producing a
second signal of the same frequency, phase, and average
amplitude of the form Voaoexp(itoot ) and subtracting the
two signals. A schematic of the rf circuit which accom-
plishes this cancellation is shown in Fig. 2. To ensure
that the cancellation remains constant, a single source at
frequency 200 MHz is used, and divided into two by a hy-
brid junction (HJl). Half is directed to one mixer (Ml)
to produce the signal of Eq. (3). The other half is direct-
ed to a second mixer (M2) whose bias can be adjusted to
precisely trim the amplitude to Voao ~ The two signals
are subtracted in a second hybrid junction (HJ2) yielding
a signal of the form
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laid out to match the phase of the two signals as closely
as is possible. Phase shifts which differ between the two
halves of the circuit can still lead to incomplete cancella-
tion of the carrier, however, and very fine tuning using a
pair of high-Q adjustable capacitors (-5 pF) to ground

at the input to each of the mixers is also required. Using
this method, typical car.cellation of the carrier to less
than —90 dB m is attainable when —25 dB m total power
is contained in the modulation signal. This translates
into a ratio of the dc amplitude to the ac amplitude of Eq.
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FIG. 2. Schematic of rf circuit which modulates the amplitude and suppresses the carrier of the AOM drive signal. The first hy-
brid junction (HJ1) splits the 200 MHz signal produced by the oscillator into two parts. Half is amplitude modulated by waveform 1

in mixer (M1) to produce waveform 2. The other half is attenuated in (M2) producing waveform 3. Hybrid junction (HJ2) subtracts
these two waveforms to suppress the carrier, producing waveform 4.
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(3) of about one part in 2000. Cancellation of the carrier
is subject to drifts on a time scale of about 5 min, necessi-
tating constant readjustment. The signal produced by
this amphtude modulation circuit is amplified in a linear
power amplifier which has a gain of 40 dB, an output
power of 5 W, and a frequency range from 10-1000MHz.

Generation of the modulation signal V s(t) is a very
important aspect of this work as well, as the statistical
properties of the real Gaussian field depend directly on
the characteristics of s(t ). The random noise signal is de-
rived from a commercially obtainable noise source based
on an avalanche noise diode. Pulses of electrons are gen-
erated through cascade collisions as they cross the p-n
junction, following Poisson statistics which, in the limit
of large average currents, approach Gaussian statistics.
Extensive tests' on similar models of noise sources from
the same manufacturer have been carried out to verify
their statistical properties. We have not executed the
same tests on these sources, but tests to be described later
on the intensity correlations infer that the statistics of the
noise sources are indeed very close to Gaussian. The
noise source produces a flat spectrum from less than 50
kHz to greater than 1 GHz with a spectral density of
—20 dBm/MHz. Frequencies greater than 80 MHz are
filtered out in a pair of low-pass filters separated by coaxi-
al at tenuators.

The noise is next passed through an RC filter so that
the power spectrum of the modulation signal assumes a
Lorentzian shape:

S (co)= V S,(co},

where

so
S,(co)= (6)

l+(co/P)'

and SO=2( ~e(t)~ ) /P represents the spectral density of
the modulation signal at low frequencies (m«P). The
correlation function of the fiuctuation variable s(t ) corre-
sponding to his power spectrum can be easily obtained by
the inverse Fourier transformation

R(r)=(e(t+r)c'(t)) =(~e(t)~ )e

the average output power, the gain of the amplifier will
be constant for voltage fluctuations as large as five times
the rms value of the Gaussian voltage distribution. This
excess gain factor is also important for the mixers and
hybrid junctions in the amplitude modulation circuit, and
for the power amplifier which drives the acousto-optic
modulator. For these three components the excess power
capabilities are a minimum of 38, 55, and 20 dB, respec-
tively, so saturation is very effectively avoided here.

Saturation does become a problem, however, in the
acousto-optic modulator. The acousto-optic modulator
saturates at an input power close to one watt with a
diffraction efficiency of about 60% at this power. We find
that saturation effects start to become evident when the
input power exceeds 15 dB m, as described later. At this
power the diffraction efficiency is limited to about 4%.
Since the optical power of the incident laser beam must
be kept below 250 mW to avoid damage to the crystal,
the power in the real Gaussian field is less than 10 mW.
The transfer function of the AOM falls off by 3 dB at
about 50 MHz to either side of the 200 MHz maximum
response point.

An undesirable feature of the AOM is the dependence
of the diffraction angle on the acoustic frequency. The
diffraction angle in the acousto-optic crystal is given by
A, /A„where A. is the optical wavelength in the crystal,
and A, is the wavelength of the acoustic wave. An
amplitude-modulated signal therefore results in a spatial-
ly broadened laser beam, since the amplitude modulation
power spectrum is spread in frequency about the carrier.
The effect of this can be minimized, however, by using a
lens to form the image of the diffracted beam in the in-
teraction region where the effect of the real Gaussian
beam is to be tested. In this way the Fourier components
of the beam which exit the AOM at different angles are
brought back together in the interaction region to recon-
struct the whole beam.

Using the technique described in this section, we have
achieved random amplitude modulation, with the carrier
suppressed, of a stabilized laser beam. In the following
section we will discuss the statistical properties of the real
Gaussian field.

We have constructed RC filters with the following half
width at half maximum values P/2m". 0.80, 2.4, 4.5, 6.2,
and 7.0 MHz. These filters are constructed on copper
clad printed circuit boards using general purpose rf
preamplifiers (10-dB gain, 50-Q input-output impedance)
as input and output buffers to eliminate reflections back
to the noise source and reflections from the load. These
amplifiers have low noise figure ( & 4 dB) and wide band-
width (30 kHz-400 MHz). The filters produce spectra
which are described by Eq. (6) to within 0.5 dB for all fre-
quencies in the range 50 KHz —70 MHz. The saturation
power level of the input and output buffers is +15 dB m,
a minimum of 40 dB above the actual output power lev-
els. Excess power capability of amplifiers and other rf de-
vices must be available throughout the circuit to avoid
clipping the voltage peaks, which would result in
modification of the statistics of the noise. For example, if
the saturation point of an amplifier is 13 dB higher than

STATISTICAL PROPERTIES

We now turn our discussion to some of the statistical
properties of the real Gaussian field. These are interest-
ing because of their influence on nonlinear interactions,
and their use in verification of the field-generation tech-
nique. In addition, this is a nontraditional field with
unusual statistical properties and thus is interesting in its
own right. Of particular importance to this work are the
power spectra and correlation functions of the modula-
tion signal, the rf drive signal, the laser field, and the
laser intensity. The relationship between these various
spectra, illustrated in Fig. 3, is discussed in this section,
as well as the autocorrelation function of the intensity.

Because of the linear relationship between the modu-
lating signal V e(t } and the amplitude of the rf drive sig-
nal (see Eq. 4), the power spectrum and correlation func-
tion given in Eqs. (6) and (7), respectively, apply to each
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In other words, the spectrum of the rf drive signal is the
same as the spectrum of the amplitude fluctuations, but
shifted up in frequency by the carrier frequency No. An
example of the spectrum of the amplitude modulated rf
drive signal is shown in Fig. 4.

The AOM is also a linear device, with the amplitude of
the diffracted optical beam varying with the amplitude of
the drive signal. Using the same logic as that used to
derive Eq. (8), it is shown that the power spectrum of the
real Gaussian field is given by

SRGF(~) EPE(~ ~L ) '

Measurement of the rf power spectrum is useful for
monitoring the generation of the real Gaussian field. For
instance, if the carrier is not suppressed sufficiently, the
power spectrum has an extremely narrow band spike at
the carrier frequency. In this case the amplitude has a
nonzero dc component, as in Eq. (3). The spectral densi-

ty of the laser is therefore

S,t(co) = Vo[2Ira05(co —coo)+S,(co —a)0)] . (10)

of these variables.
The power spectrum of the rf drive signal can be calcu-

lated from the autocorrelation function using Eq. (4).

S„t(co)=f & V(t+r)V'(t))e '"'d~

=V t+ t

= VOS, (co—c00) . (8)

FIG. 3. Relationship between the power spectra of the
modulation process. The plots show examples of the power
spectra of the modulating signal S,(co), the rf drive signal

S,f(co), the optical signal S«F(co), and the intensity fluctuations
Sl(co), respectively.

The ratio of the average power in the carrier to that in
the incoherent part of the spectrum is ao& ls(t)l ). As
we remarked in the preceding section, the carrier is typi-
cally suppressed to a power level 65 dB below the in-

tegrated incoherent power level, so that
ao-=[& ls(t)l )]' /2000. This level of suppression is
considered sufficient for all purposes for which this field
is intended.

An additional test of the statistical properties of the
field generated by this technique is afforded by measure-
ment of the intensity autocorrelation function,

& I(t+~)I(t ) )
&I(t))'

& E(t+~)E'(t+ ~)E(t )E'(t ) )
& lE(t)l')'

& s(t+~)e'(t+~)s(t )s"(t ) )

Since the field amplitude is a Gaussian process, the
fourth-order field correlation function can be written' as
the sum of the product of all pairings of second-order
correlation functions of the field

4
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Rt(r) = [ & s(t+~)E'(t+ r) ) & s(t )s*(t ) )
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The first of these terms is unity, since the numerator can
be seen to be the square of the average intensity. Using
Eq. (7), the second and third terms for the real Gaussian
field each yield (e ~~'~), leading to an auto-correlation
function of the form

FIG. 4. Example of the power spectrum of the rf drive signal.
The dashed line is the measured spectrum, the solid line is a
6tted curve with width 4.5 MHz.

R (i)=1+2e (13)

This function decreases from a value of 3 to a value of 1
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with a correlation time one-half that of the field correla-
tion function.

It is interesting to compare the autocorrelation func-
tion of the real Gaussian field to that of the thermal field.
When the amplitude is a complex variable such that the
real and imaginary parts are statistically independent of
each other and have the same correlation function, the
second term in the expression for Rl(r), Eq. (12), be-
comes zero. The thermal field satisfies these conditions,
and thus its intensity autocorrelation function becomes

R,(r) = I+, -»~~~ (14)

having a maximum value of only 2. This comparison is
the basis of the previous claims that the real Gaussian
field was characterized by stronger fluctuations than the
thermal field. The physical reason for this is based on the
frequency of the occurrence of low instantaneous intensi-
ties for the two fields. The real Gaussian field has deep
minima, since the field amplitude has zero as its most
likely value. (It is a Gaussian distribution with a zero
mean value. ) The thermal field, on the other hand, sel-
dom has a zero instantaneous intensity, since this re-
quires that both quadratures of the amplitude be zero.
The real Gaussian field therefore has deeper minima,
leading to stronger intensity fluctuations.

Another illustration of how the deep minima of the in-
stantaneous intensity can affect the intensity autocorrela-
tion function can be found in the example of the incom-
plete suppression of the carrier. In this case the field am-
plitude becomes ao+e(t ) and the maximum value of the
intensity autocorrelation function can be shown to be

RI (0)=3 —2[1+(!E( t )! ) l!a 0!) (15}

It can be seen that if the power in the carrier equals that
of the incoherent part of the spectrum, the maximum
value of the intensity autocorrelation function is reduced
to a value of 2.5. In the coherent field limit [e(t ) «ao]
this function reduces to 1, as expected. For the suppres-
sion of the carrier which we can typically attain, Rt(0) is
reduced by only 2X10 '3, a value which is completely
unobservable. When suppression of the carrier is not so
complete, however, measurement of Rt(r) is sensitive to
this factor.

Comparison of measurements of our field statistics
with the properties of the real Gaussian field described in
this section provides an important test of our field gen-
eration technique. In the final section of this paper, we
discuss measurement of the statistical properties of the
field generated with our technique, and compare the re-
sults of these measurements with those expected for the
real Gaussian field.
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The first test of the field is a measurement of the laser
power spectrum, accomplished by either of two means.
One method employs a scanning Fabry-Perot interferom-
eter, whose transmission as a function of cavity length
yields the laser spectral density directly. The major
disadvantage of the Fabry-Perot interferometer for this
application is one of alignment. Since the diffracted
beam is spatially spread out due to the broadband drive
signal, coupling into the cavity is not straightforward,
and the measured spectrum of the laser is not without
ambiguity. We have found heterodyne detection of the
laser spectrum to be preferable because of these
difficulties. In this case, the real Gaussian field and a
monochromatic "local oscillator" are combined and
focussed onto a photodiode. The local oscillator beam is
produced by the same laser, and separated from the laser
output before it passes through the AOM. It is therefore
narrow band (-200 kHz), and differs in frequency from
the real Gaussian field by 200 MHz. The current pro-
duced by the photodiode at the beat frequency can be
spectrally analyzed to produce the spectrum of the modu-
lated laser field. The power spectra of the heterodyne sig-
nals typically match the power spectra of the rf drive sig-
nal quite well close to line center, but drop off at frequen-
cies farther away from line center due to the limited fre-
quency response of the AOM. The symmetry of these
curves again help verify the low level of any phase modu-
lation which might be present. The heterodyne signal
can also be displayed directly on an oscilloscope, an ex-
ample of which is shown in Fig. 5. In this case, the laser
was modulated with a single frequency signal at 5 MHz.
The amplitude can clearly be seen to change sign every
100 nsec. The tic marks help guide the eye by marking
every period of the 200-MHz carrier, initially hning up
with the negative peaks, then the positive peaks, and
finally the negative peaks again. No residual phase
modulation is observable in the figure.

The second test of the field statistics is provided by

CORRELATION MEASUREMENTS

We use two tests of the final laser field in order to
demonstrate successful generation of the real Gaussian
field. Of greatest concern is the prevention of residual
phase shifts induced by any of the elements (they inay or
may not be correlated to the amplitude fiuctuations}, or
saturation of the signal leading to clipping of the peak
amplitudes.

0 50

t(ns)

100 150

FIG. 5. Time-dependent signal produced by beating the sin-

gle tone modulated (5 MHz) laser against a local oscillator field

produced from the same laser source. The heterodyne frequen-

cy is 200 MHz.
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FIG. 6. Example of the time-varying intensity of the real
Gaussian field.

measurement of the intensity autocorrelation function.
To make this measurement, the broadened laser beam is
directed onto a photodiode (no local oscillator beam is
present). The photocurrent is thus proportional to the
laser intensity integrated over the area of the photo-
cathode. Figure 6 shows a typical oscilloscope trace of
the intensity waveform when the laser amplitude is ran-
domly modulated. Intensity waveforms are repeatedly
digitized and stored using a charge-coupled-device (CCD)
camera attachment to the oscilloscope interfaced to a lab-
oratory computer. The CCD array has 490 (vertical) by
384 (horizontal) pixels, but the resolution is somewhat
less than this due to the thickness of the oscilloscope
trace. The intensity autocorrelation is computed from a
compilation of 26 disjoint, digitized waveforms. The
finite duration of each individual waveform limits the
data set for calculation of Rl(r) for large r, so each
waveform must be many correlation times [(2P} '] long.
Conversely, the intensity correlation time must be much
larger than the resolution of the camera system so that

( psec)

FIG. 7. Example of the autocorrelation function of the real
Gaussian field. This data, shown by the dashed line, corre-
sponds to P/2s =0.8 MHz. The solid line represents the best fit

to the data.

the intensity fluctuations are not averaged away. By
keeping within these confines, we have been able to mea-
sure the intensity autocorrelation function for each of the
noise filters constructed, and a typical example is shown
in Fig. 7. This data is for the O.S-MHz filter, giving a
1.6-MHz laser width (full width at half maximum). The
dotted line is the measured function, while the solid is a
best fit approximation to the dotted line of the form

Rl ( r ) = 1+[RI(0)—1]e 6

Uncertainties in the measured function are typically
+0.05 (1cr standard deviation) as determined from the
scatter in the data. Ideally Rr(0} should be 3, while the
correlation time rc should be (2P) '. The fitted parame-
ters RI(0} and ~„are given in Table I for the maximum

TABLE I. Summary of results. Maximum value of the autocorrelation function of the intensity and
the correlation time for the five filters used. The fitted values of Rl(0) and the correlation time, deter-
mined for only one data set for each filter, are those values which minimize the deviation of Eq. (16)
from the data.

Filter width
P/2

(MHz)
Measured Fitted (2P)-'

Correlation time (nsec)

Fitted

0.8

2.4

4.5

6.2

7.0

2.57
2.65
2.64
2.57
2.58
2.61
2.46
2.47
2.24
2.27

2.81

2.74

2.56

2.38

99.0

33.0

17.0

12.8

11.3

97.2

32.7

13.9

11.0

13.4
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amplitude fields we consider to be usable for our applica-
tion. Larger amplitudes lead to saturation in the AOM
and an associated decrease in RI(0). The measured
values of RI(0) in Table I are obtained from the intensity
correlation data such as that shown in Fig. 7.

The most significant factor in the deviation of RI(0)
from 3 is, we believe, the averaging of the instantaneous
intensity provided by the AOM, the photodetection, and
the waveform digitizing system. The first of these is due
to the finite velocity of the acoustic wave in the acousto-
optic crystal and the nonzero size of focused laser beam
in the crystal. This results in a variation of the acoustic
wave amplitude from one side of the beam to the other.
We can estimate the magnitude of this effect by calculat-
ing in one dimension, the time-averaged square of the
beam power, normalized to the square of the average
power,

3.2

3.0-

2.8-

2.6-

2.4-

2.2-

6 .0

P /2 it (MHz)

2.0 I I

0,0 2.0 4 0 8 .0 10,0

(p2) ( f I(x')dx'f I(x")dx")

(P )' ( f I(x')dx'&'

where x is the spatial variable in the direction of propaga-
tion of the acoustic wave, i.e., across the laser beam cross
section. Exchanging the order of multiplication, integra-
tion, and time averaging in the numerator allows us to
write the numerator of Eq. (17) in terms of the intensity
autocorrelation function given by Eq. (13). Evaluating
this expression for the case of a square profile of the laser
beam intensity yields an averaged square power

(18)

where T is the transit time of the acoustic wave across
the laser beam waist. We estimate the transit time as
v n/2 wo/.v, where w&& is the beam radius (e intensity
point) and v, is the acoustic velocity in the crystal. For
our geometry wo =60 pm, and v, =4.26 pm/nsec for the
AOM crystal (Te02), yielding an estimated transit time
of 18 nsec. Equation (18) is shown as the solid line in Fig.
8. The data points represent the measured values of the
RI(0) for the five filters. The estimate of this effect is cer-
tainly not expected to be precise, as we have not account-
ed for the Gaussian beam profile. It does appear however
that signal averaging in the AOM, as estimated here, and
in the detection system, is sufficient to account for the de-
viation of RI(0) from 3. We also remark that this factor
may have only a minimal effect when this field is applied
to an atomic vapor for testing of the laser bandwidth
effects. The atom will not be responsive to the variation
in intensity across the beam but rather to the local inten-
sity and its temporal coherence. For this reason we be-
lieve this factor will not seriously affect our ability to ap-
ply this field to nonlinear interactions.

CONCLUSION

Generation of the real Gaussian field will now allow
laboratory testing of laser bandwidth effects in a variety

FIG. 8. RI(0) vs P/2m for the five filters. The data points are
the results of the measurements computed from the time-
dependent intensity waveforms. The solid line is the function
given by Eq. (18).

of nonlinear optical interactions. Measurements per-
formed on this field have confirmed the unique properties
of the real Gaussian field. Two tests of laser bandwidth
effects are now being set up. The first is Doppler-free
two-photon absorption, where it will be of interest to ob-
serve the enhancement of the absorption rate when the
laser width is narrower than the atomic linewidth. The
enhancement is expected to be a factor of three, due to
the large intensity fluctuations of the field. The total
bandwidth of the absorption line and its dependence on
laser bandwidth will also be measured. Another experi-
ment in the works is to measure the intensity fluctuations
on the light transmitted by a Fabry-Perot interferometer
when excited by the real Gaussian field. Future plans
also include extension of this technique to generating the
thermal field.

In closing, we remark that this field has a resemblance
to a squeezed optical state. One quadrature of the light
field has a much larger uncertainty than the other. A
very important distinction between the real Gaussian
field (as we have generated it) and a squeezed field is that
our field is not a minimum uncertainty state, and that the
uncertainty of the small field quadrature component has
not been reduced in any way. The other quadrature has
simply been increased through the random modulation
process.
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