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A general theory is developed that describes continuous state reduction of two quantum-

mechanically correlated photon fields by continuous photodetection of one of the fields. The effects

of measurement back action and quantum correlation on the state reduction of the other field are

highlighted from the viewpoint of continuous photodetection. Nonunitary time evolutions of the
density operators and photon statistics are exactly described for both fields. The obtained formulas

are applied to parametrically generated photon twins, i.e., signal and idler fields. The continuous

state reduction of the signal field by photodetection of the idler field is examined. It is shown that
the Manley-Rowe relation can be generalized to the intermediate state under the photodetection
process; that is, the initial quantum correlation remains intact throughout the "destructive" photo-
detection process if we retain the information about the idler readout. The obtained results are
compared to the case in which the idler readout is discarded. In this case, the Manley-Rowe rela-

tion can no longer hold. This fact demonstrates that retaining the readout information is essential

for preserving the established quantum correlation.

I. INTRODUCTION

State reduction in quantum measurement process is
usually classified into two categories. One category
directly applies von Neumann's projection postulate to
the observed system. ' The other employs a model in
which quantum correlation is first established between
the observed system and measurement apparatus via a
unitary interaction, and then this process is followed by
the readout of the measurement apparatus using an
operation-valued measure; this measurement process
causes a nonunitary state reduction of the observed sys-
tem via the established quantum correlation. In either of
these descriptions, state reduction is assumed to occur
only at the last moment of the measurement process.

In photocounting experiments, however, the readout
consists of a real-tine sequence of photoelectric pulses,
each of which corresponds to a single photodetection. A
photocount registration indicates that one photon is an-
nihilated from the field and that the field therefore experi-
ences a nonunitary state evolution. Even when no photo-
count is registered, the field evolves in a nonunitary way
because no photocount registration is also a result of
measurement and requires a proper projection on the to-
tal system. Thus in the photodetection process, nonuni-
tary state reduction occurs continuously throughout the
measurement period. Von Neurnann's projection postu-
late cannot be applied to the photodetection process '

because it is not the first-kind measurement. In order to
treat this problem, a quantum theory of the continuous
photodetection process has been developed by many au-
thors. ' The theory enables us to trace the nonunitary
state evolution of the photon field in continuous photo-
detection process.

In the photodetection process the photon Geld eventu-

ally reduces to the vacuum state regardless of the initial
state because of the absorption of photons by a photo-
detector. However, if a certain quantum correlation has
been established between two photon fields, one of the
fields evolves differently when the other field is destruc-
tively measured by a photodetector and reduces towards
the vacuum state. For parametrically generated photon
twins, for example, it is known that the final state of the
signal field that is not directly measured will reduce to a
number state for each single-shot measurement, 10, 16

where a perfect correlation is assumed between initial sig-
nal and idler states.

The purpose of the present article is to keep track of
such a continuous state reduction of the correlated pho-
ton fields within the present framework of quantum
mechanics. For a detailed description of the continuous
state reduction, however, the conventional formalism
which presupposes instantaneous state reduction (diago-
nalization) due to quantum measurement must be extend-

ed; this extension is the main subject of this paper. In
particular, it is shown that the initial and final states
alone cannot uniquely specify the nonunitary state reduc-
tion. That is, there exists infinitely many different inter-
mediate paths which start from the same initial state and
reduce to the same final state. This fact has not been
manifest in the conventional framework of quantum mea-
surement theory. In the present paper it will be shown
that a path can be singled out by the real-time renormal-
ization of the density operator according to the readout
information. Next, we apply the general forrnalisrn to
parametrically generated photon twins. We will calculate
continuous state reduction for both signal and idler fields
when only the idler field is being measured by photon
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counting. In this case, the usual Manley-Rowe relation
no longer holds because the photon numbers become
different for the signal and idler fields. It is shown, how-
ever, that the "lost" information concerning the photon-
number correlation between the signal and idler fields is
actually transferred to the observer's side, and therefore
it can be completely recovered if the observer retains the
number of detected photons. A generalized Manley-
Rowe relation which incorporates this readout informa-
tion is presented. A natural question then arises: what
happens to the photon field if we discard the retained in-
formation? This question is answered by exactly describ-
ing nonunitary time evolution of the photon density
operator for such a case.

This paper is organized as follows. Section II develops
a general formalism that describes nonunitary state evo-
lution of correlated photon fields under continuous pho-
todetection of one of the fields for the referring measure-
ment process (RMP). By the RMP we mean that we read
out all available information concerning registrations of
photocounts. The effects of measurement back action
and quantum correlation on state reduction are highlight-
ed from the viewpoint of continuous photodetection. To
illustrate nonunitary time evolution of the photon field
general formulas are developed for photon-number mo-
ments and variances. Section III applies the obtained
general formulas to parametrically down-converted pho-
ton twins. The two correlated photon fields are referred
to as the signal and idler fields. Time developments of
signal and idler photon statistics are examined in detail
when we perform continuous measurement of the idler
photon number. In particular, the Manley-Rowe relation
is generalized such that it incorporates the renormaliza-
tion effect due to the real-time readout of registrations of
photocounts. Section IV develops a general formalism
for the nonreferring measurement process (NMP). By
the NMP we mean that we certainly know that the detec-
tor performs a continuous measurement of the idler pho-
ton number but we discard all available information con-
cerning the results of measurement. We develop general

formulas for time evolutions of moments and variance of
the signal field in the NMP and compare them with the
corresponding quantities in the RMP. It is pointed out
that the generalized Manley-Rowe relation cannot hold
in the NMP any longer because quantum correlation be-
tween the signal and idler fields becomes less than perfect
when we discard the readout information. It is shown
that the lost information concerning the quantum corre-
lation is precisely compensated by the readout informa-
tion for the idler field. This fact explains why the
Manley-Rowe relation holds in the RMP and why it does
not hold in the NMP where the "transferred" informa-
tion is discarded.

II. GENERAL FORMALISM OF THE REFERRING
MEASUREMENT PROCESS

Suppose that quantum-mechanically correlated photon
fields (signal and idler fields) are prepared and that the
photodetection process for the idler field starts at t=0, as
schematically illustrated in Fig. 1. Let us consider a reg-
ular point process in which the probability of more than
one photocount being registered in an infinitesimal time
interval is negligible. Then the one-count and no-count
processes' ' form an exclusive exhaustive set of events
in an infinitesima time interval. The idler photons are
destructively measured by a photodetector one by one.
Therefore, the idler field reduces towards the vacuum
state. The nonunitary state evolution of the idler field un-
der the photodetection process is exactly the same as that
described in a previous work; ' it depends strongly on the
initial photon statistics and the readout information con-
cerning registrations of photocounts. It is the nonunitary
state evolution of the signal field that is of interest here.
The signal state evolution is determined by the back ac-
tion of the idler measurement through the established
quantum correlation between the signal and idler fields,
as schematically illustrated in Fig. 2. That is, the density
operator of the idler field at a time t, determines the pho-
todetection probability p(t, ) at the same time (measure-
ment action). With this probability a photoelectric con-
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FIG. 1. Schematic illustration of continuous state reduction of quantum-mechanically correlated photon fields (signal and idler
fields). Only the idler field is measured by the photodetector. State reduction of the idler field is caused by the measurement back ac-
tion, while state reduction of the signal field is caused by the state reduction of the idler field via the established quantum correlation.



41 CONTINUOUS STATE REDUCTION OF CORRELATED PHOTON. . . 6333

version occurs stochastically owing to the quantum-
statistical nature of light. The actually obtained readout
0 or 1, where 0 stands for no count and 1 for one count,
exerts measurement back action on the idler photon field,
producing the density operator of the idler field at an
infinitesimally later time t2 via nonunitary state reduc-
tion. This measurement back action also causes a nonun-
itary state reduction of the signal field via the established
quantum correlation. The crucial observation here is
that the time-developed new density operator at time t2

determines the photodetection probability at the same
time p(t2) but that whether or not a photoelectric con-
version actually occurs is again uncertain owing to the
essentially quantum-statistical nature of light. Thus to
completely determine the time evolution of the photon
field we must specify the real-time readout 0 or 1

throughout a measurement period. In this section we de-
velop a general formalism that describes continuous state
reduction of the photon field and time development of
photon statistics for signal and idler fields. Section II A
describes the discontinuous evolution of the state at the
moment one photon is detected (one-count process). Sec-
tion IIB describes the continuous reduction of the state
when no photons are being detected (no-count process).
Section IIC describes state evolution in an arbitrary se-
quence of one-count and no-count processes (quantum
photodetection process of forward recurrence times).

A. One-count process

The one-count process for the idler field is described by
a superoperator J"as

J"p( t}—:A a;p( t)a;t, (2. l)

where p(t) is the total density operator of the signal and
idler photon fields just before the one-count process, a;

(a; ) is the annihilation (creation} operator of the idler
field, and A, is a parameter which represents the probabili-
ty of one idler photon being detected per unit time when
the initial idler field is in a single-photon state. The prob-
ability I'(J")dt that one idler photon is detected between
t and t+dt is given by

P(J")dt =Tr[J"p(t)]dt =A. ( n;(t) )dt, (2.2)

where

(n;(t})—:Tr[p(t)a; a;] (2.3)

is the average photon number of the idler field just before
the one-count process, and it is understood that the trace
is taken over both the signal and idler modes. When the
trace is taken only over the signal (or idler) mode, we at-
tach subscript s (or i) as Tr, (or Tr; ). The density opera-
tor of the postmeasurement state is related to the premea-
surement density operator by

J~~~p(t) a;p(t)a;
p(t )=

Tr[J' p(t)] (&;(&))
(2.4)

where the symbol t+ denotes a time infinitesimally later
than t. We observe that the superoperator J"plays two
distinct roles; it determines the photodetection probabili-
ty (measurement action} according to Eq. (2.2} and pro-
duces a postmeasurement state via nonunitary state
reduction (measurement back action) according to Eq.
(2.4). Photon statistics of the signal and idler fields im-
mediately after the one-count process is determined from
Eq. (2.4), as shown below.

I. Time deuelopment of idler photon statistics
in a one-count process

With respect to the idler field, all photon statistics such
as moments of the photon number are the same as those
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FIG. 2. Schematic illustration of nonunitary state evolution of the quantum-mechanically correlated photon field in continuous
photodetection process. The photodetection probability at a time is determined by the density operator of the idler field at the same
time (measurement action), while an actual readout, i.e., information concerning the no-count or one-count event, produces the densi-

ty operator of the idler photon field at an infinitesimally later time via nonunitary state reduction (measurement back action). The
state reduction of the idler field causes the state reduction of the signal field via the established quantum correlation.
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obtained in a previous paper. ' Here, however, we recap-
itulate them to compare the signal and idler state evolu-
tions and to make the present paper self-contained.

The average photon number of the idler field for the
postmeasurement state is obtained, from Eq. (2.4), as

(n;(t+)) =Tr[p(t )a,ta, ]

([an, (t)]')
=(n, (t)) —1+

n, (t
(2.5)

where bn;(t)—= n;(t) (n—, (t)). This result expresses the
average photon number of the postmeasurement idler
field in terms of the premeasurement photon statistics.
We find that the difference between the average photon
numbers before and after the one-count process does not
exactly equal 1 but it has an additional term which is
sometimes called the Fano factor:

([bn, (t)] &

(n, (t) &

(2.6)

k =1,2, 3, . . . . (2.7)

From this result we find that the one-count process, in
general, changes the statistics of the original photon field,
which reflects the fact that continuous photon counting is
a second-kind unsharp measurement of photon number.

2. Time development ofsignal photon statistics
in a one-count process

The average photon number of the signal mode just
after the one-count process is given by

where the subscript i in F; (t) refers to the idler mode. It
is well known that the Pano factor takes values greater
than unity for super-Poissonian states, less than unity for
sub-Poissonian states, or equal to unity for Poissonian
states. Thus we find that the average photon number of
the idler field immediately after the one-count process in-
creases, decreases, or remains unchanged according to
whether the premeasurement idler photon statistics are
super-Poissonian, sub-Poissonian, or Poissonian, respec-
tively. In particular, for the thermal state the average
photon number will be doubled by extracting one photon
from the idler field. A physical interpretation of such a
counterintuitive increase can be explained as follows. '

The thermal state has a large probability of being in a
vacuum state. However, as soon as one photon is detect-
ed, the probability of the vacuum state suddenly vanishes.
Therefore by the renormalization according to Eq. (2.4)
this vanishing probability is redistributed over the other
number states, causing an increase in the average photon
number.

In a similar way, it can be shown that the kth moment
of the postmeasurement state is expressed in terms of up
to the (k + 1)th moments of the premeasurement state as

Tr[p(t)a;(a; a;)"a;](t+)k)—
Tr[p(t)a, a, ]

k
(
—1)" (n;(t) +'),

(n, (t)&

( n, (t)n;(t) )
(n, (t+})=—Tr[p(t+)a, a, ]=

n; t

where

( n, (t)n;(t) ) =Tr[p(t)a,ta, a; a; ] .

(2.8)

(2.9)

B. No-count process

The no-count process of photodetection of the idler
field is described by a superoperator S,"as

Y wS,"p(t)=e 'p(t)e (2.11)

The generator Y of this superoperator should be deter-
mined to meet the following two requirements: (i) the
no-count process and one-count process form an ex-
clusive exhaustive set of events in an infinitesimal time in-
terval, and (ii) the operator S,"describes the free motion
of the total field when the detector is switched off (A, =O).
Therefore we obtain

Y= — ice;+ —a; a; —im, a, a, , (2.12}

where co; and co, refer to the frequencies of the idler and
signal modes, respectively. The probability, P(S", ), that
no photons are detected between t and t +~ is given by

P (S,") =Tr[S,"p(t)]
=Tr[p( t)exp( Aa; a; r) ] . — (2.13)

The density operator of the postmeasurement state is re-
lated to that of the premeasurement state by

S',"p(t)
p(t+r)= (2.14)

Tr[S,"p( t ) ]

We observe that the superoperator S", plays two distinct
roles; it determines the probability of no photocount be-
ing registered during ~ (measurement action) according
to Eq. (2.13) and produces a postmeasurement state via
nonunitary state reduction (measurement back action) ac-
cording to Eq. (2.14). Photon statistics of the signal and
idler fields immediately after the no-count process is
determined from Eq. (2.14), as shown below.

Equation (2.8) shows that the time development of the
signal photon number depends on the quantum correla-
tion between the signal and idler photon numbers of the
premeasurement state. In general, the kth moment of the
postmeasurement signal photon number is given by

( [n, (t)]"n;(t) )([.,(t')]"&
=

(n, (t))
(2.10)

%hen there is no correlation between signal and
idler photon numbers, then Eq. (2.10) reduces to
([n, (t+)]")=([n, (t)]"), that is, signal photon statistics
do not change at all. This fact clearly demonstrates that
the signal photon statistics is changed only through quan-
turn correlation.
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1. Time development ofidler photon statistics
in a no-count process

—(n, (t)) = —A([hn, (t)] ) .d
(2.16)

k =1,2, 3, . . . . (2.15)

We consider the time development of the average photon
number as an example. Using Eq. (2.15), we find that the
average photon number of the postmeasurement idler
state, ( n;(t +r) ), satisfies the following differential equa-
tion:

With respect to the idler field, photon statistics are the
same as those obtained in a previous paper. ' Here,
again, we review the main results. With the help of Eq.
(2.14), we can evaluate the photon-number moments of
the idler field immediately after the no-count process:

([n;(t+r)]")=Tr[p(t+~)(a; a;)"]

Tr[p(t)exp( 1(a—, a;r)(a; a; )"]
Tr[p(t)exp( —A,a; a;r}]

This equation can be immediately integrated to give

(n;(t+r)) =(n;(t}) —A f ([bn;(t')] )dt' . (2.17)
t

In the no-count process the detector absorbs no photons
from the photon field. Nevertheless, Eq. (2.16) shows
that the average photon number of the idler field de-
creases monotonically at a rate proportional to the
photon-number variance. This is because the readout in-
formation of no photocount being registered requires us
to modify the knowledge about the original photon statis-

12, 14

2. Time development ofsignal photon statistics
in a no-count process

The photon-number moments of the postmeasurement
signal state are given by

( [n, (t +r)]") =Tr[p(t +~)(a, a, )"]=
Tr[p(t)exp( Aa, a;—r)(a, a, )"]

Tr[p( t )exp( Aa; a; r—) ]
= ( [n, (t)]")—A f '[( [n, (t')]"n;(t') ) —( [n, (t')]")(n;(t') ) ]dt', (2.18)

where k =1,2, 3, . . . . For the first moment (the average
photon number), we have

(2.19)

This equation can be immediately integrated to give

(n, (t+r)) =(n, (t)) 1(,f —'(hn;(t')hn, (t'))dt' .

(2.20)

In contrast to Eq. (2.17), the time development of the sig-
nal photon number depends on the covariance between
the signal and idler photon numbers. When there is no
correlation between signal and idler photon numbers,
then Eq. (2.20) reduces ( n, (t +r) ) = ( n, (t) ), that is, sig-
nal photon statistics does not change at all. This fact
again demonstrates that the signal photon statistics is
changed only through quantum correlation.

Tr[Sz~ ( J(i)S( ~—

. J(l)S(l)p(0)
T]

. J(~(S(()p(0) ]
1

7 ]

(2.21)

The denominator on the right-hand side (rhs) of Eq.
(2.21} is called the probability distribution of forward re-
currence times (PDF}

I

turn photodetection process of forward recurrence times
(QPF). ' Suppose that the measurement process starts at
t=0 and ends at t =T, and that m idler photons were
registered at times r (j=1,2, . . . , m, O~r, ~T) with
no further photons registered in the measurement period.
The density operator of the total photon field immediate-
ly after the QPF is given by

p~ "(~„rp, . . . , r~, 0, T)

C. Quantum photodetection process
of forward recurrence times

Suppose we read out all information concerning regis-
trations of photocounts in real time throughout the mea-
surement period. We refer to such a process as the quan-

I

=Tr[ST", J"S", , . J"S,"p(0)], (2.22)

which gives the probability per (unit time) that m idler
photons are registered at e distinct times ~'1 72 ~ ~ 7

with no further photons detected between 0 and T. It can
be shown that

. J"S",p(0)=A, exp —A. g rj exp
j=1

iso;+ —a, a, +iso, a, a, T
2

Xa; p(0)(a, ) exp i~, ——a,'a, +~a,a,'a, T (2.23)
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Substituting Eq. (2.23) into Eq. (2.22) yields

mP'""" '(r„r2, . . . , r, O, T)=A. exp —A, g rj Tr[p(0)(a, } exp( —ka; a; T)a, ]..
j=1

Substituting Eq. (2.23}into Eq. (2.21) yields

(2.24)

expI —[(ico;+A, /2)a; a;+ice, a, a, ]T]a; p(0)(a; ) exp] [(ice; —A, /2)a; a;+ice,a, a, ]TI
pm (rl&r2»' rm)0) T}

Tr[p(0)(a; ) exp( —Aa,~a, T)a, ].
(2.25)

/

It is interesting to note that the rhs of this equation no
longer depends on the times of photodetection
(j =1,2, . . . , m) (henceforth we denote this quantity as
p'q "(T) for simplicity). This is because the prefactor,
exp( —

A, g~-, rJ), which indicates the times of photo-
count registrations, is canceled out between the denomi-
nator and the numerator of the rhs in Eq. (2.21). This
means that any two different paths to time T give the
same final state so long as the numbers of photocount re-
gistrations are the same. Thus we find that the initial and
final states alone do not uniquely specify the continuous
state reduction, and that there exist infinitely many
different intermediate paths which start from the same in-
itial state and reduce to the same final state. Investigat-
ing such an intermediate time development in quantum
photodetection processes was the main subject of our pre-
vious paper. ' There we found that it is uniquely deter-
mined by the readout information concerning registra-
tions of photocounts. This complete predictability is re-
markable if we recall that photocounting experiments are
second-kind measurements. In the photodetection pro-
cess, nevertheless, it is predictable because the readout in-
formation and the associated nonunitary state evolution
are uniquely related by the measurement action and back
action. ' Our motivation in the present paper is to
answer the following question: How does the real-time
readout information cause the continuous state reduction
of the correlated photon fields via the established quan-
tum correlation?

The kth moment of the signal photon number immedi-
ately after the QPF is defined by

Using the identity

(a ta )ka m a m(a 1'a ~)k (2.29)

Equations (2.25), (2.27), (2.30), and (2.32) express the
postmeasurernent photon statistics and photon-number
correlation between the signal and idler fields in terms of
the initial density operator and the readout information
(results of measurement).

Eq. (2.28) is rewritten as

& [;(T)]")
Tr[p(0)(a; ) exp( —Aa; a; T)a, (a, a,.—m)" ]

Tr[p(0)(a; ) exp( —Aa; a; T)a; ]

(2.30)

The rhs of this equation has a functional form similar to
Eq. (2.27) except for a term —m in the numerator. This
term arises from the fact that m idler photons are ab-
sorbed by time T. The photon-number correlation be-
tween the signal and idler fields is defined by

& n, ( T)n, ( T) ) —=Tr[pO~"( T)a, a, a, a, ] .

Substituting Eq. (2.25) into the rhs of Eq. (2.31) yields

& n, (T)n; ( T) )

Tr[p(0)(a; ) exp( —Aa; a; T)a; (a; a; —m) ,a]a
Tr[p(0) ( a; ) exp( Aa, a, T)a; ]—

(2.32)

& [n,(T)]"):—[pO "(T)(a,a, )"], k =1,2, 3, . . . (2.26)

where the subscript m in &n, (T)") denotes the number
of detected idler photons in the QPF. Substituting Eq.
(2.25) into the rhs of Eq. (2.26) yields

& [n, (T)]")

Tr[p( )0( ,a}texp( —Aa;a; T)a; (a, a, )"]

Tr[p(0)(a,t) exp( —Aa;a; T)a; ]
(2.27)

& [., (T}]").
Tr[p(0)(a,. ) exp( Aa; a; T)(a;~a; )"a; ]-

Tr[p(0)(a,. ) exp( —Aa, a, T)a, ]
(2.28)

In a similar way, the moments of the idler photon num-
ber immediately after the QPF are given by

III. APPLICATION TO PHOTON FIELDS GENERATED
BY PARAMETRIC DOWN-CONVERSION

%e now apply the general formalism developed in Sec.
II to discuss the nonunitarity time evolution of two
quantum-mechanically correlated photon fields generated
by parametric frequency down conversion. In the present
analysis, two fields in the optical cavities, namely the sig-
nal field and the idler field, are assumed to be generated
from the vacuum state via the parametric amplification.
These two fields satisfy the Manley-Rowe relation, i.e.,
there is a complete correlation in photon numbers for the
two fields. This complete correlation is gradually
deteriorated as the photodetection process for the idler
field proceeds because idler photons are absorbed one by
one. The Manley-Rowe relation, however, can be gen-



CONTINUOUS STATE REDUCTION OF CORRELATED PHOTON. . . 6337

eralized so that it is always satisfied during the measure-
ment process by renormalizing the density operator of
the photon field according to the real-time readout infor-
mation.

A. Preparation of quantum mechanically
correlated photon fields

A nondegenerate parametric process can establish
quantum-mechanical correlation between signal and idler
fields via the interaction Hamiltonian'

K;„,=A(Ka, a; +K'a, a;)=fuco(e' a, a; +e ' a,a;),
(3.1)

1
00

P(t() ) = g [—ie' tanh(K(, to )]"
cosh (Koto) k ( —()

X [ie '
tanh(K()t() )]'

X Ik &, , & ilN) Ik );;& il (3.6)

This equation shows that the output signal and idler
fields are perfectly correlated including the off-diagonal
elements. If we take the trace of Eq. (3.6) only over the
idler mode, we obtain the density operator of the signal
field before the measurement process starts:

!().(to}=—Tr [P(to}]
1

1+sinh (Koto)
where K=~K~e' —=Koe' and fi is the Planck constant di-
vided by 2m. The time development operator U(t, O)

obeys the equation 1+sinh (Koto)

'k

(3.7)

fi ' =H,„,U(t, 0) (3.2)

with the initial condition U(0,0) =1. The solution of this
equation is given by'

which represents a thermal state with average photon
number sinh (Koto). Similarly the premeasurement densi-

ty operator of the idler field is obtained by taking the par-
tial trace for the signal mode as

U(t, 0)=exp[ ie' ta—nh(Kot)a; a, ]

Xexp[ —(a, a, +a, a, +1}lncosh(Kot)]

XexP[ie ' tanh(Kpt)a;a, ] . (3.3)

p;(to) —=Tr, [p(to)]

1 sinh (Kptp)
2 'k

X 2 k;; k,
1+sinh (Kptp} k=p 1+sinh (Kpto)

(3.&)

P(t)=U(t, O) ()00)U(O, t) . (3.4)

Suppose that input signal and idler fields are in the vacu-
um states, i.e.,

p(0)=~0), , (0~8~0), ;(0~ . (3.5)

Then the total density operator of the signal and idler
fields at t = to is given by

The time development of the density operator in a nonde-
generate parametric process is given by which is also in the thermal state with the same average

photon number as the signal field.

B. Nonunitary time evolution of the photon fields
by continuous measurement of idler photon number

Suppose that the continuous photodetection process
for the idler field starts at t =to and ends at t = T. Sub-
stituting Eq. (3.6} into the rhs of Eq. (2.23), we obtain the
unnormalized density operator after the QPF:

(utillo~malized)( T) g(i) J(i)g(i) . . . J(i)g( ')
(t )T 7' 1 7 tpP 0

t), (k —() t1, (k —)) —(k/2)(T —to)(k+))

k, l =0

where

(k+m)!(1+m)!
k II I

' 1/2

1k+m )„&i+mls lk ), , (&I, (3.9)

and

a —= —ie' tanh(Koto),

P, —= i tp, ( T t—
() ), —

P, :— iso;( T ——
t() ),

(3.10)

(3.11)

(3.12)

A, exP A, g (~ to)—
j=1

cosh (Kptp )
(3.13)
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From Eq. (3.9) we can calculate the total density operator immediately after the QPF as

(unnormalized )( T)QPF( T)— P
Tr[ ( unnormalized)( T)]

=[1—e ' tanh (Koto)]
k, l =0

k+m l+m
k 1

1/2

k( e )l

1k+m &, , &i+ml Ik &;;&II .

We note that before the QPF there is a perfect quantum correlation between the signal and idler fields, as evident from
Eq. (3.6). A remarkable feature is that such a perfect correlation remains intact during the QPF. After this process, the
matrix elements of the signal state are shifted relatively to those of the idler state exactly by the number of detected
photons m. Since we know the precise value of this number in the RMP, we can uniquely determine the signal field
from the knowledge about the idler field by shifting the matrix element by this value.

The reduced density operator of the signal field is given by

pQ "'(T}=Tr,[pQ "(T)]=[1—e ' tanh (Koto)] +' g k ~a~ "e ' ~k+m &, , &k+m~ . (3 15)
k=0

Sitnilarly, the reduced density operator of the idler field is
given by

p "'(T)=Tr [p "(T)]

=[1—e ' tanh (Koto)]

C. Time development of signal photon statistics in QPF

&n, (T)"&—:Tr[pQ "(T)(a,a, ) ], T)rm . (3.17)

Next let us evaluate the moments for the postmeasure-
ment signal photon number after the QPF. They are
defined by

k=0

(3.16) (1—x)

where

Substituting Eq. (3.14) into Eq. (3.17), we obtain
'k

X

dx
(3.18)

Thus we find that the density operator of the signal field
is exactly the same as that of the idler field except that
the matrix elements are shifted by m. We also note that
the reduced density operators are both diagonalized. It
can be shown that the photocount distribution for the
idler field retains the Bose-Einstein character, even
though the photon statistics develops into different statis-
tics as shown in Eq. (3.16).

& t), (T) &

—A,( T —to)
m +e ' tanh (Koto)

—
A, ( T —to)

1 —e ' tanh (Koto)

and

A( T —to)x—:e ' tanh (K()t()) .

The first two moments are written down as

(3.19)

(3.20)

[m +e ' tanh (Koto)] +(m +1)e ' tanh (Koto)

[1—e ' tanh (Koto)]
(3.21)

Hence we obtain the photon-number variance of the sig-
nal field as

&[b,n, (T}] &

—A, ( T —to)(m+1)e tanh (Koto)

[1—e ' tanh (Koto)]
(3.22)

Figure 3(a) schematically illustrates the time development
of the average photon number of the signal fields, where
one-count processes are assumed to occur at ~„~2,. . . .
This figure shows that the average photon number mono-

tonically decreases during the no-count process, while it
jumps upwards when the detector registers one photo-
count. The upward jump is a result of the super-
Poissonian character of the observed field as discussed in
Ref. 14. A new feature, however, arises here due to quan-
tum correlation; that is, if some idler photons are detect-
ed, the signal photon number no longer reduces to zero
but to the number state whose eigenstate is the same as
the number of detected idler photons. The dashed curves
show the time development of the average photon nurn-
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ber if no further photons are registered. This fact can
also be seen from Eqs. (3.20) and (3.22) by taking the limit
7 ~oo.

The time development of photon statistics can be most

conveniently characterized with the Fano factor, which is
defined as the ratio of the variance to the average value.
The Fano factor of the signal photon number is given,
from Eq. (3.20) and Eq. (3.22), as

& [&,(T)]'& (m +1)e ' tanh (trptp)
F,(T)= —

A,( T —to) A( T fo)
[m +e 0 tanh (trptp)][1 —e tanh (Kptp)]

(3.23)

The signal Fano factor F, depends on the number of pho-
tocounts m. Therefore, it yields discontinuous jumps in
the one-count (J") process at times r as shown in Fig.
4(a). In addition, it is easily shown that F, always de-
creases in the one-count process. It is interesting to note
that

0 if mAO
lim F, ( T) = '

1
0

(3.24)

The physical interpretation of this equation is as follows.
When some (nonzero) idler photons are detected (m%0)
in the RMP, the signal state reduces to the number state
p, (T»1/A, )=~m ), , (m~ owing to both the quantum
correlation (the Manley-Rowe relation) and the field at-
tenuation (measurement back action). When no idler
photons are detected, the signal state reduces to the Pois-
sonian (vacuum) state, since in this case only the effect of
field attenuation works.

D. Time development of idler photon statistics in QPF

{,n;( T)") =Tr[pO "(T)(a; a; )"], T & r

Substituting Eq. (3.14) into Eq. (3.25) yields

(n;(T)") =(1—x) +' x+i
(1 )m+1

(3.25)

(3.26)

where x is defined in Eq. (3.19). For the first two mo-
ments we have

and

(n, (T) )

A( T 10)
( m + 1 )e ' tanh ( trpt p )

A( T Eo)
1 —e ' tanh (~ptp )

(3.27)

The moments for the postmeasurement idler photon
number are the same as those for the thermal state ob-
tained in a previous paper. ' The moments are defined
by

(a)

(n, (t)) 3

F,(t)

0
6 (b)

F;(t)

I I

to 7I 72 73 74

0 I I

tP 7I 72

TI M E

74

TIME

FIG. 3. Time development of the average photon number in
the referring measurement process (RMP): (a) signal field
(n, (t) ), and (b) idler field (n;(t) ). One-count processes are as-
sumed to occur at ~l, ~„.. . . The dashed curves show that the
signal field approaches the number state if no further counts are
registered and that the idler field approaches the vacuum state.

FIG. 4. Time evolution of the Fano factor in the referring
measurement process (RMP): (a) signal field F,(t), and (b) idler
field F; ( t). One-count processes are assumed to occur at
~„v2, ~. . . In the RMP, the idler photon statistics approach the
Poissonian F, (t)~1, but the signal photon statistics become the
sub-Poissonian and finally the number state F,(t)~0. If no
photons are registered, the signal field, however, approaches the
Poissonian F,(t)~1 [see dash-dotted curve and Eq. (3.24)].
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[(m +1)e ' tanh (moto)] +(m +1)e ' tanh (~oto)

[1—e ' tanh (voto)]
(3.28)

Hence we obtain the photon number variance of the idler
field as

—A(T —lo)
(m + 1)e ' tanh (voto)

[1—e ' tanh'(~oto ) ]'
(3.29)

From Eqs. (3.20) and (3.27), we find that

(n, (T)& —(n;(T}& =m, (3.30}

(3.31)

that is, the average photon number in the signal field is
larger than that in the idler field by m because we know
that m idler photons were absorbed by the detector.
Nevertheless, the variances in the signal and idler photon
numbers remain the same. In fact, from Eqs. (3.22) and
(3.29},we find

F(T)=F;(to)=cosh (moto)

=1+(n;(to)) for A. =O, (3.33)

which is characteristic of the thermal state. Lastly we
mention that if there is no photocount, the signal and
idler Fano factors coincide with each other for example,
for t E [tp '7, ) in Fig. 4. Information on whether or not at
least one idler photon is detected plays a crucial role in

the state reduction of the signal field.

E. Generalized Manley-Rome relation

An operator Manley-Rowe relation is usually ex-
pressed as

n, (to) —n;(to)=n, (0)—n;(0) . (3.34)

When both input signal and idler fields are in the vacuum
states, we obtain

1
—

A.(T —to)
1 —e ' tanh (moto)

(3.32)

Time evolution of the average idler photon number is
shown in Fig. 3(b). The Fano factor for the idler photon
number F,(T)=([hn, (T}] ) /(n;(T)) is given from

Eqs. (3.27) and (3.29) as

n, (to) —n;(to)=0 .

This operator equation leads to

(n, (t )) —(n, (t ))=0,
and

(3.35}

(3.36)

Here we note that E; does not depend on m in contrast to
the signal Fano factor [see Eq. (3.23)]. The time develop-
ment of the Fano factor for the idler field shown in Fig.
4(b) decreases monotonically and has no discontinuities,
although both the average and variance of the photon
number change discontinuously in the one-count process.
This is a special feature of the state reduction of an ini-
tially thermal state. ' The idler Fano factor always de-
cays and approaches unity as time progresses, as shown
in Fig. 4(b). This is caused by the measurement back ac-
tion on the idler photon field; if we neglect this effect
(A, =O), the Fano factor remains constant:

( [b,[n, (to) —n, (to)]] ) =0 . (3.37)

That is, the signal and idler photon fields generated in the
process of parametric down conversion have a perfect
photon number correlation if the input signal and idler
fields are in the vacuum state. A question arises whether
or not this perfect correlation is deteriorated by the mea-
surement back action of the idler photon number. In the
QPF, Eq. (3.36) corresponds to Eq. (3.30}. On the other
hand, how is Eq. (3.37) modified in the QPF? To obtain
the corresponding equation to Eq. (3.37}, we must calcu-
late the cross-correlation function (n, (T)n;(T)) . This
can be obtained by substituting Eq. (3.14) into Eq. (2.31):

(n, (T)n;(T})
A(T fo) A( T fo)(m+1)e tanh (voto)[m +1+e tanh (voto)]

[1—e ' tanh (voto)]
(3.38)

([b,[n, (T) n;(T)]j ) =0—,

where

(3.39)

b, [n, ( T)—n, ( T)]—:n, ( T) n, (T)—
—[(n, (T)) —(n, (T)) ] .

Using Eqs. (3.20), (3.21), (3.27), (3.28), and (3.38), we ob-
tain

bers in the signal and idler modes differ by exactly the
number of detected idler photons in this process. Never-
theless, the photon-number noises are still correlated per-
fectly. In other words, the Manley-Rowe relation is
preserved in the QPF if we retain the information about
the number of detected idler photons. Thus a new opera-
tor representation of the Manley-Rowe relation which
applies to the QPF can be written as

Thus we find that in the QPF the average photon num- n, (T) n, (T)—m =n, (—0)—. n, (0), (3.40)
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where m is the number of detected photons in an observa-
tion time T.

IV. GENERAL FORMALISM OF THE NONREFERRING
MEASUREMENT PROCESS

Thus far we have examined the nonunitary time evolu-
tion of the total system when we read out all available in-
formation concerning registrations of photocounts. In an
actual photocount experiment, however, some of the
available information is usually discarded. In photoelec-
tric correlation experiments, for example, only photo-
counts which occur at some fixed time points are regis-
tered and all the other information is discarded. In this
section we will investigate the effect of discarding photo-
counting information on state reduction. To simplify
matters, we would like to examine the simplest case in
which we discard all available information concerning
the registrations of photocounts. This process is referred
to as the nonreferring measurement process since we do
not refer to the results of measurement. Let us introduce
a superoperator T" that gives the time development of

Tr[ T,"p( t) ]= 1 . (4.1)

The action of T," is determined as follows. Since the
one-count and no-count processes form an exclusive ex-
haustive set of events, we have

Td', p(t) =J p(t)cit +SO, p(t) . (4 2)

Using Eqs. (2.1), (2.11), and (2.12), we obtain the follow-
ing differential equation for p(t):

dp(t) t . A,=Aa, p( t)a; — i co; +—a, a;p(t)

+ ico, ——p(t)a; a; —ico, a, a,p{

+ice,p(t)a, a, .

This differential equation can be solved to give '

(4.3)

the total density operator in the NMP. Since we do not
refer to the results of measurement, it must satisfy

[1—eTr' t P(t() )=-
m=0

A( T t0) ]ttt
exp — ict);+ —a, a, +ico, a, a, (T —to)

Xa; p(to)(a; ) exp ict); ——a; a;+ict), a, a, (T —to) (4.4)

From Eqs. (4.1) and (4.4), we obtain the density operator after the NMP as

Tr' p(to)-
NMP( T)

Tr[T,",p(t, )]

m=0

[1—e
—k( T —

t() )

expm!
i ct); +—a; a; +i co,a, a, ( T —

t() )

Xa, p(to)(a, ) exp i'; ——a,. a;+ict), a, a, (T to)— (4.5)

By taking trace of Eq. (4.5) over the idler Hilbert space, we obtain the density operator for the signal field after the
NMP as

[1—e

m!m=0

p (T)—=Tr [p (T)]
—k( T t)—0 ttt

Tr;[p(to)(a; ) exp[ —A,a; a;(T to)]a;—

m=0

[1—e
—k(T —t0)

g;(kip(to)ik ); ', em!
—A(k —m)(T —t )0 (4.6)

where
~
k ); denotes the number state for the idler mode. Exchanging the order of summations we find

oo k

p, (T)= g, (k~p(to)~k), g [e ' ]" [1—e
k=0 m=0

—k(T t0)—
y;(k~p(t }~k);=Tr;[p(t )]=p,(t ) .

k=0
(4.7)

Thus we find that the density operator for the signal state after the NMP is the same as that of the initial state. In other
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words, the density operator for the signal field is not changed by the measurement process as long as we discard all in-
forrnation which can be read out from the photodetector. This result presents a sharp contrast to that for the RMP,
where the signal photon field reduces to a number state whose eigenvalue is the same as the number of detected idler
photon number.

On the other hand, the idler field suffers a substantial change by the NMP. In fact, taking the trace of Eq. (4.5) over
the signal field, we find the density operator for the idler field after the NMP.

pNMP( T) =Tr [pNMP( T)]

1 —e '
A,

exp —i', +—a ta, a; p; (to)(a t) exp
m=0

~ AgiN. ata (4.8)

where we set

p;(to) =Tr,—[p(to)] . (4.9)

(n, (to+ T) ) =e (n, (to) ),
([bn, (to+T)] )=e ([bn, (to)] )

(4.10)

It follows from Eq. (4.8) that the average photon number
and photon number variance of the idler field changes in
time as

I

original field, which is represented by F, (to), lose their
characteristics and approach the Poissonian statistics
F;(t)~1 as shown in Fig. 7(b). The corresponding time
development of the Fano factor in the RMP is superim-
posed. We observed that the Fano factor approaches uni-

ty more rapidly in the RMP than in the NMP owing to
the real-time renormalization of the density operator ac-
cording to the readout information.

—
AT(1 —kT)( (t ) ) (4.11) V. DISCUSSION AND CONCLUSIONS

as shown in Figs. 5(b) and 6(b), respectively. This is how
the Fano factor is obtained:

F(to+ T)=e F, (to)+1 —e (4.12)

Thus we find that the average photon number decreases
exponentially in time, and the statistical properties of the

In photocounting experiments, we usually prepare the
experimental situation so that photoelectric conversion
occurs one by one. Therefore state reduction of the ob-
served system occurs continuously, and the associated

6—
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(b)
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FIG. 5. Time development of the average photon number in
the nonrefernng measurement process (NMP): (a) signal field

(n, (t) ), and (b) idler field ( n, (t) ). One-count processes are as-
sumed to occur at ~„~„.. . . The dashed curves corresponding
to the RMP are superimposed for comparison.

FIG. 6. Time development of the photon-number variance in
the referring (RMP, dashed curves) and nonreferring (NMP,
solid curves) measurement processes: (a) signal field
([hn, (t)]'), and (b) idler field ([hn, (t)]'). One-count process-
es are assumed to occur at ~],w2, . . . . The dashed curves show
the corresponding time developments of the signal and idler
variances in the RMP.
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NMP

RMP

p I I

0 I I

4p 7y 1-g 73

T I M E

FIG. 7. Time evolution of the Fano factor in the nonrefer-

ring measurement process (NMP): (a) signal field F,{t),and (b)
idler field F, (t). One-count processes are assumed to occur at
7),72, . . . . The dashed curves corresponding to the RMP are

superimposed for comparison.

state evolution of the system becomes nonunitary. This
nonunitary state evolution is uniquely determined by the
readout information concerning registrations of photo-
counts. ' ' When some other system is quantum-
mechanically correlated to the observed system, the mea-
surement back action will extend to the other system,
causing state reduction of this system. The conventional
treatment of this problem assumes the instantaneous state
reduction and uses an operation-valued measure to calcu-
late the postmeasurement state. We have discussed this
problem in continuous photodetection context by extend-
ing the conventional quantum theory of measurement to
continuous measurement in which state reduction occurs
continuously according to the readout information, and
the operation-valued measure is replaced by superopera-
tors J",S",and T".

We have shown in Eq. (2.25) that in the general case,
the density operator after the QPF no longer depends on
the times of photocount registrations; it depends only on
the measurement time interval and on the total number
of detected photons. It implies that the initial and final
states alone cannot uniquely specify the quantum mea-
surement process. That is, there exist infinitely many
different intermediate paths which start from the same in-
itial state and reduce to the same final state. We have
demonstrated some examples of the intermediate state
evolution by giving specific readout information.

The parametric frequency down-conversion process
has been employed here as a typical example in order to
clarify the nonunitary state evolution of signal and idler

fields due to continuous readout of the idler photocounts.
Measurement back action and quantum correlation have
been shown to play crucial roles in the continuous state
reduction of the signal field. In particular, the Manley-
Rowe relation in a quantum-mechanically correlated sys-
tem have been extended to apply during the continuous
measurement process. Here we note that the generalized
Manley-Rowe relation (3.40) is a particular characteristic
of the quantum-mechanically correlated fields prepared
by the parametric process which yields a complete corre-
lation in the photon number (i.e., diagonal elements of
the density matrices). If we consider another quantum-
mechanically correlated system, correlation between di-
agonal matrix elements is not always preserved. For ex-
ample, the signal photon number and the idler photon
phase are correlated in the optical Kerr effect. It can be
shown that the method developed in the present method
is generalized also to such a case.

Recently, a theory of continuous measurement of pho-
ton number has been applied to the system of parametri-
cally down-converted photon twins' focusing on the
postmeasurement signal state which depends on the re-
sult of the measurement of idler photon number. In the
present paper, on the other hand, we focused on the
nonunitary, intermediate time development of the fields
during the continuous measurement process. We have
demonstrated how the initial wave function of the
quantum-mechanically correlated systems collapses to
the number (sub-Poissonian) or the vacuum states owing
to the real-time readout information. The Manley-Rowe
relation has been generalized in the referring measure-
ment process (RMP). Furthermore, we have examined
the nonunitary state evolution in the nonreferring mea-
surement process (NMP) and clarified the effect of dis-
carding the readout information on the continuous state
reduction. We find that the NMP does nothing for the
signal field, while for the idler field it plays the simple
role as a linear loss. In other words, if we do not use the
readout information concerning registrations of photo-
counts to renormalize the initial density operator, there is
no difference between photon counting (nonunitary pro-
cess even if the detector is included) and linear dissipa-
tion (unitary if the reservoir is included). Although the
measurement back action of the idler photon counting
does not directly act on the signal field, it changes the sig-
nal state via quantum correlation. Accordingly, the sig-
nal state changes in the RMP but not in the NMP.

It is pointed out that the Manley-Rowe relation cannot
hold in the NMP any longer because perfect quantum
correlation between the signal and idler fields is
deteriorated by our discarding the readout information.
It is shown that the lost information concerning the
quantum correlation is precisely compensated by the
readout information for the idler field during the photo-
detection process. This fact explains why the generalized
Manley-Rowe relation holds in the RMP and why it does
not hold in the NMP where the "transferred" informa-
tion is discarded.
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