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Absorptive, dispersive, and diffractive effects are studied in a nonlinear ring-cavity configuration
containing an intrinsically bistable medium modeled generically by a nonlinear oscillator. The out-
put intensity is shown to exhibit steady-state and periodic characteristics for constant input intensi-
ty, but no chaotic solutions are found. We find that the plane-wave analysis is inconsistent with the
inclusion of diffraction effects and that periodic output characteristics are affected even for Fresnel
numbers of order 1000. Our results are contrasted with previously reported experimental and

theoretical work.

I. INTRODUCTION

Under suitable conditions, electromagnetic waves
propagating through a ring cavity containing a nonlinear
medium can cause the output from the cavity to exhibit
bistable behavior. For a given nonlinear medium the
bistable characteristics can be controlled by the input in-
tensity, the laser detuning from a resonance in the non-
linear material and by the cavity detuning. Thorough
theoretical investigations have been carried out both in
the plane-wave limit and for waves propagating with
diffractive coupling.!”® The numerical studies have
shown that diffraction significantly changes the bistable
characteristics; in fact, diffraction coupling will lower the
contrast between the two stable output intensities and
will change the input intensity threshold value for switch-
ing between the two output intensities.> Moreover,
diffraction can introduce a rich variety of periodic and
chaotic instabilities in the transverse structure of the out-
put intensity.> When mirrors and feedback are required
for the observed optical bistable characteristics, we call
this manifestation of the phenomenon extrinsic optical bi-
stability.

The nonlinear oscillator model has been investigated
by Goldstone and Garmire* and, extensively, by Haus
et al.> The authors show that this medium exhibits opti-
cal bistability without a cavity due to increased absorp-
tion. This phenomenon has been called intrinsic optical
bistability because it is intrinsic and local to the material
and does not require an external feedback. A study of
transverse effects in this system® shows that bistability is
not significantly altered by varying the Fresnel number
down to order unity but that an interesting redistribution
of the electromagnetic energy takes place due to in-
creased diffraction and high absorption at the center of
the input intensity profile. As shown in Ref. 5 the sudden
absorption at some point inside the medium amounts to
changing the rate at which the intensity is dissipated in
the longitudinal direction. This means that a boundary
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has been created at that point with respect to the non-
linear index, and that, for continuity, a backward wave
originates there, orders of magnitude smaller than the
forward component, but nevertheless, counter propaga-
ting. This amounts to saying that the index of refraction
suffers an abrupt change and that depending on the laser
detuning from the atomic resonance, it may be consider-
able.

In this paper we will investigate wave propagation
through an intrinsically bistable nonlinear medium, in-
side a ring cavity with plane mirrors, modeled generically
by a collection of anharmonic oscillators, and will also
present new results for low Fresnel numbers by propa-
gating a Gaussian beam in the cavity. The
treatment of diffraction effects in intrinsic optical bista-
bility has not yet been the focus of extensive study for
this configuration, which is required if results of future
experimental observation are to be fully understood. Ear-
lier theoretical studies of intrinsic bistable media in a cav-
ity by Lindberg, Koch, and Haug’ have introduced a
mean-field approximation with respect to the propagation
of the field in the nonlinear medium. They have also
neglected dispersive effects, and have predicted unusual
periodic structures, which has been qualitatively
confirmed in a hybrid experiment.® The hybrid experi-
ment has an electronic feedback to simulate a cavity and
does not, therefore, include diffractive coupling or disper-
sive effects.

We stress here that the appearance of the periodic
structures in Ref. 7 for a cavity with optical feedback re-
quires that a complete description of bistability include
diffraction effects, since the transverse profile can simul-
taneously have several periods of oscillation. That is,
each intensity will correspond to a specific oscillatory re-
gime. The question which shall be taken up later, and
which is the main point addressed by the article, is then
how will the beam behave due to the interaction of the
rays from a Gaussian beam, where many different oscilla-
tory periods are present at the same time. Any sharp
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demarcation between the transverse oscillatory regimes
will be smoothed through diffractive coupling. Further,
there are quantitative aspects of the theory that are not in
agreement with the hybrid experiment, which we ascribe
to propagation effects; the hybrid experiment does not
have the transverse instabilities that we discuss here,
since they do not mix the output field with the input.

As discussed in Ref. 5, the position of the boundary in
the medium which separates the two states of absorption
depends on the incident intensity. This means that in a
ring cavity, as the feedback is returned to the input mir-
ror, the boundary between the high and low absorption
state may shift in and out of the medium at both the en-
try and exit boundaries of the material. Therefore, if
sharp discontinuities occur inside the medium, one can-
not altogether ignore dispersive effects since the phase of
the field, which intrinsically depends on the polarization,
also suffers such a discontinuity.

In Ref. 7 the authors have investigated the plane-wave
limit of a ring cavity with a semiconductor medium in-
serted into it. Although they treat a different model than
in this work, both materials exhibit intrinsic optical bista-
bility. However, there are several significant assumptions
that they have introduced that we examine in this paper.
We retain dispersion, diffraction, and propagation effects.
Even though the bistability mechanism is induced ab-
sorption, in view of a discontinuity of the index of refrac-
tion within the medium, it is too drastic to assume a
dispersion-free medium a priori. Further, as diffraction
becomes increasingly important, coupling of the rays in
the transverse direction together with possible phase
discontinuity at the internal boundary, may cause effects
that would otherwise go unnoticed. Even though disper-
sion is not as important as absorption in this system, a
somewhat dispersive medium can exhibit quite different
characteristic curves. For this reason we perform a de-
tailed analysis by considering both absorptive and disper-
sive effects.

II. FORMALISM

The polarization of the medium is composed of two
parts: the nonlinear part coming from the local response
of the oscillator, and the linear part, which will contain
both background modes of the polarization and a possible
linear response of the oscillator at the local level. There-
fore we may write for the total polarization with a consti-
tutive relation:

Ptotal:PNL+PL=XE s (1)

where P will contain P, =(e, —1)E /4, the background
modes. The coefficient y(|E|) is a function of the field.
For intrinsic optical bistability, the field dependence is a
multivalued function.

If a set of nonlinear oscillators is considered, the non-
linear susceptibility can be obtained from a constitutive
relation between P, the macroscopic polarization, and E,
the local oscillating field. A quartic Duffing potential is
assumed, and the equation of motion for the polarization
is
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where y is the damping coefficient, k/m =w?3 is the reso-
nant frequency, and n is the dipole density. Equation (2)
gives the total response of the oscillator and as mentioned
previously, it will contain both a linear and nonlinear
part. Assuming that the field and the polarization are
aligned along the same direction, the fields are separated
into slowly varying amplitudes which have a space and
time dependence of the type

X(r,)=Y(r,n)e! kT tcc. (3)

where Y (r,t) is the slowly varying amplitude; to simplify
our equations further, we use the following scaling of the
functions:
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We assume that the wave is propagating along the z axis.

We write Maxwell’s equation in the slowly varying en-

velope approximation with retarded time coordinates as
g i

acETF

VE=i(1+A?% |P— El; (5)

AZ+1

¢ is the retarded-time coordinate z —vt scaled by the
linear absorption coefficient of the material a so that
{=alz—uvt), v is the group velocity of the wave;
F =2akd? is the absorption Fresnel number, also scaled
by the width of the input beam waist d; and k is the wave
number [see Eq. (9) below]. This scaling is most con-
venient since it leaves only one atomic parameter in Eq.
(5), i.e., A. For similar reasons an analogous gain length
Fresnel number is defined in superfluorescence.” The par-
axial approximation has been assumed'® and V? is the
transverse Laplacian that includes the coupling to x and
y coordinates. In our numerical results in Sec. IV we use
only one transverse dimension. This can be justified by
using a cavity with side walls,!! but the use of two trans-
verse dimensions, or cylindrical symmetry should not
qualitatively alter the results. Applying the slowly vary-
ing envelope approximation to Eq. (2), and assuming
steady-state conditions, Eq. (5) is then solved together
with the scaled steady-state polarization equation

E=P(A—i+|P]?), (6)

where A=(w3—®?)/(y®). In obtaining Eq. (6), it has
been assumed that the material relaxation rate y in Eq.
(2) is much more rapid than the time scale on which the
field in the cavity responds, which is governed by the cav-
ity round-trip time T4, i.e, y7g >>1. The susceptibility
used in Eq. (1) is a useful definition for integrating
Maxwell’s equation in the form

E _ i
& F

and y is obtained from a constitutive relation which is

V:E=—x(|E|,6)E , @)
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identified from Egs. (6) and (7): 1 -1

- - . - ~ [8)=¢ (L) +tan™ ' | —— (14)
x=—i(1+AH{1/[(A—i)+]|P|*)]—A/(1+4?)} . (8) 0:(6)=6,(% A+|P|?

The wave number has been chosen so that the linear part
of the field is completely removed,

2 wlA
K== e+ 52— 9)
c A+ (yw)
and the linear absorption is
3 2
[oX0)
) (10)

T ke A+ ()]

with A=wj—w’, o, =4mne’/m being the plasma fre-

quency in SI units and €, the linear part of the dielectric
constant due to the ever present background modes.

In a ring cavity configuration with plane mirrors, then,
the propagation equation [Eq. (7)] is supplemented by the
usual boundary condition

E(0,x,0)=VTE, (x)+Re *E(Lx,t —7),  (11)

where E; (x) is the input field outside the cavity, T and R
are entry and exit mirror transmission and reflection
coefficients, T =1—R =0.1, ¢, the cavity detuning,'? L
the length of the nonlinear medium, which is taken to be
10% of the total length of the cavity throughout our dis-
cussion (in our scaling of the length L =0.1), and 7 the
time required for the field to propagate around in the cav-
ity free space T=7x —L /v. Since we are using the consti-
tutive relations, the relaxation time of the material medi-
um is assumed to be very small with respect to 7. The
role that 7 plays in the boundary condition is then to re-
mind us that the input field must be combined with the
field that left the output mirror a time 7 earlier. This is
properly accounted for by propagating the field at L by
the remaining amount in the empty part of the cavity (L
is 10% of the ring-cavity length in all our results). There-
fore, our numerical solution will use Eq. (7) together with
Eq. (11) in order to calculate the output field in terms of
the input field. The split operator method is used to
propagate a Gaussian beam, and is extensively discussed
in the literature.!>

In order to test our algorithm, we compare our numer-
ical results for infinite Fresnel numbers with analytical
results. The solutions for the polarization and its phase
inside the medium from Ref. 5 are

[P
|Pol?

(1+A2)In +3(|P[*=|P, %)

+4A(|P|2—|Py|H)=—2(1+A ¢ (12)
and
¢P(g)=¢0—zg—lln|f;|—%(lﬁlz—IPOH, (13)
[Py
o b ()
where we ?%ve taken P=|Ple ?°. If we then define
E= IEle‘d"’ ¢ , from Eq. (6) we determine

In order to determine @, in Eq. (13), it is useful to
define the steady-state input field at the input to the
medium as the complex number

E,=E, +iE, . (15)
Combining (14) and (15) we find
E —1
A+|P,|?

—1

¢p(0)5¢0=tan_‘ —tan (16)

or

All the elements necessary for the solution are now in
place, namely, Eqgs. (12)—(16); these together with the
boundary condition Eq. (11) define an iterative map of the
complex electric field. Our integrations of Eq. (5)
(F = o0 ) will match the analytical solution to any desired
accuracy, depending on the size of our integration step
A¢ along the longitudinal coordinate.

III. RESULTSI: PLANE WAVE

In Fig. 1 we plot the local field intensity inside the
medium as a function of the polarization density. The
turning points are determined by A, the laser detuning
from atomic resonance, see Eq. (6), all other parameters
being held fixed. As the intensity is increased above point
A, the high absorption branch is suddenly reached, caus-
ing a discontinuous decrease in the output intensity from
the medium. As the wave propagates inside the medium,
it may be reduced below the second turning point B,
which means a sudden return to the low absorption
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FIG. 1. Field intensity vs polarization density with A= —4
inside the medium at steady state.
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branch. If the input beam intensity is chosen between A4
and B, so that it may be closer to B, then the feedback
may not be strong enough to raise the output above 4; a
steady-state output intensity from the cavity may quickly
be achieved at some intermediate value. This is shown
for two different input intensities in Figs. 2(a) and 2(b)
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where the output intensity is plotted as a function of
time in units of the cavity round-trip time 74; in our
integration in the medium we used 3000 steps (i.e.,
AE=1X107%).

As the input beam intensity is increased further, the
turning point A4 of Fig. 1 can be reached. In Fig. 2(c) the
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FIG. 2. Output intensity vs number of round-trips with A= —4 and (a) I,, =S5, (b) I;, =10, (c) I,,= 13, (d) I,, =13.7. Cavity detun-

ingis ¢; =0.4, T=0.1,and F = .
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input intensity is I,, =13. After the fourth pass around
the cavity (each pass is denoted by a cross) there is a sud-
den drop in the output intensity and we find that for suc-
cessive passes in the cavity the absorption is too strong
for the system to climb above the turning point a second
time, and again a steady state is eventually achieved.

As the input intensity is raised further, in Fig. 2(d)
where I;,,=13.7, a periodic instability develops in the
output intensity. In this case ten round-trips are neces-
sary for a complete cycle to repeat itself. Further in-
crease of the input intensity, will, for this detuning, result
in a decrease of the oscillation period. The period
changes by unity at critical input field values until a
steady state output is reached. For instance, we set
I,,=20 in Fig. 3, and we find that this self-induced oscil-
lation is now of period 4. We find that the range of inten-
sities over which a certain period is stable increases with
increasing intensity. Figure 4 summarizes the situation
for a large range of intensities and one detuning from the
oscillator resonance.

We find that over a limited range of intensities, each
period of oscillation is stable. As the intensity is in-
creased, the number of round-trips necessary to complete
the loop must now be smaller due to the increased feed-
back. This stepping down of the period by one unit then
makes sense, if we simply insure that the input intensity
is varied smoothly and that the feedback adds a little to
the wave each time it comes around. For this purpose, it
then becomes important to preserve information on the
phase of the field, and this is accomplished by a full con-
sideration of propagation effects. A larger detuning
(A= —38) is shown in Fig. 5; we find overlap regions be-
tween period N and (N —1), which has been interpreted
as a Farey tree. This is discussed below.
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FIG. 3. Same as Fig. 2, but with I,, =20.
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FIG. 4. Output intensity vs input intensity with A=—4 and
F=oc.

Our results are consistent with the experimental results
of Wegener and Klingshirn® ' and qualitatively different
from what is theoretically predicted in Ref. 7. In Ref. 7,
contrary to experimental results, the maximum output in-
tensity increases as the intensity is increased, due to the
neglect of propagation effects. Our model does not allow
for this increase of the maximum intensity since the low
absorption branch turning point determines the largest
intensity that the field can have before absorption be-
comes high. Therefore the uppermost point can be the
value of the intensity at the point B, before the medium is
precipitated to the high absorption branch.

The nature of our nonlinearity, i.e., the multivalued
polarization as a function of the field, offers an explana-
tion as to why chaotic behavior has not been ob-
served.”®!> As can be seen from Eq. (6), or Fig. 1, in the
low absorption branch the intensity is well approximated
by a linear function of the polarization. In this regime,
then, nonlinear dispersive effects cannot be observed. In
the high absorption branch, far away from the turning
point denoted by B, the field can be expressed as
E=P|P|? so that the nonlinear susceptibility takes the

form
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FIG. 5. Output intensity vs input intensity with A= —8.
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x=—i[(1+A?)/|P|*-A]. (17)

But in this limit |P|*>>A since the second turning point
B has value of order A. Therefore, the first term in Eq.
(17) can be neglected, leaving only the linear term in the
approximation, and again no dispersive effects can be
seen. The only region where nonlinear effects can occur
is between the turning points 4 and B. But in that region
|P|2=A so that dispersion is automatically taken out,
leaving the absorption, i.e., the imaginary term, to dom-
inate. Even if an expansion were performed in order to
obtain a Kerr-medium nonlinearity, which is known to
display chaos in both the dispersive and absorptive re-
gimes,!? it would have to apply in the region between the
turning points. But contrary to a two-level atom, the os-
cillator dynamics gives, to lowest order, a field-dependent
dispersion coefficient proportional to L|E|?/A * where L
is the length of the medium, as opposed to the two-level
atom dispersive coefficient, which is proportional to
L|E|*/A%. The expansion breaks down for |E|=A;
therefore, even with large detuning values, the absorption
dominates. This is contrasted with two-level atomic
media, where dispersive effects regain dominance away
from the resonant frequency of the oscillator.

We now return to the Farey tree alluded to in Fig. 5.
A Farey series for the rational numbers p/q and r/s,
where p, g, r, and s are integers, is obtained by adding
numerators and denominators, respectively, so that the
series may be written as p/q, r/s, (p +r)/(q +s), etc.
The analysis in terms of a Farey tree is useful since it may
be used to describe the degree of stability of an oscillating
mode. This question arises when we consider an input in-
tensity which is at the threshold of a transition from a
mode of period N to one of period (N —1). For example,

10

Intensity

referring to Fig. 6, we find that an intensity I;,=110
gives a stable structure of period 5; more precisely, it
takes three passes to reach the higher turning point and
two passes to reach the lower. We denote this as a (3,2)
mode. Each period exhibits one maximum so that in this
language, we may refer to the (3,2) mode as a 5/1 mode,
where 5 is the period and 1 is the number of peaks
displayed within that cycle. Therefore we may take the
number of peaks as being an indicator of the degree of
stability of that mode.

If we apply the same analysis to Fig. 7, where I;,, =150,
we may denote this as a (2,2) mode or, equivalently, as a
4/1 mode. If an intermediate value of the intensity is
used, as in Fig. 8, we see that both the (2,2) and the (3,2)
modes can coexist, giving a total period of 9, and two
well-defined peaks, that is, a 9/2 mode. It is clear that 9,
the new period, is obtained by adding the individual
periods, and that 2 is now the total number of peaks
within one cycle. This is the basis for the Farey series,
and in principle, any period and number of maxima is al-
lowed. Using the same language as in Ref. 7, we find that
the structure only develops to second generation; that is,
there is an intensity range where two stable oscillating
modes coexist, as shown in Fig. 8.

We do not expect more than two modes to exist in
those regions, since this is a boundary region where the
transition takes place from oscillations of period N to
those of period N —1. This region allows only these two
modes to coexist. We note that this mode coexistence
does not occur for all values of A. In fact, since this dy-
namics is favored only by higher values of the detuning,
one might be led to the belief that the mode coexistence
might be a direct result of increased dispersion. As the
period and the number of peaks increases, that would in-
dicate a tendency of the dynamics toward a chaotic at-
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FIG. 6. Output intensity vs number of round-trips with
A=-—8,I,=110, F=x, ¢, =0.4. See Fig. 5.
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FIG. 7. Same as Fig. 6 with I;, =150.
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FIG. 8. Same as Fig. 6 with I,, =130.

tractor. On the contrary, we find that the dispersive
coefficient is always smaller than the absorption
coeflicient, as we pointed out earlier. In view of the fact
that the same effect of overlap between neighboring
periods is found in Refs. 7, 8, and 15, where dispersive
effects are not introduced, we can only attribute this
effect to the ability of the oscillator, at those intensities,
to respond in an ambivalent manner. That is, as the feed-
back pushes the input to higher values, sometimes it may
be just enough to clear the turning point 4 in Fig. 1, and
as the dynamics develops, it may have such magnitude as
to overshoot the turning point considerably, and induced
absorption would remain the dominant mechanism for
the bistability. Only if the rays are allowed to couple do
we have many periods that must coexist, as in the case of
a Gaussian input.

The behavior we have examined in this section cannot
completely reveal the complexity of the entire dynamics.
We have found a complicated periodic dynamics, but it is
not chaotic. We have only been able to explore a small
range of the parameter space, these include the laser-
atom detuning, cavity detuning, mirror reflectivity, and
sample length. All of these parameters are important;
the output intensity is sensitively dependent on the pre-
cise parameters that we use.

The higher periods in the output characteristics appear
for lower input intensities and for the transverse profile
this means that there will be sharp discontinuities in the
intensity profile. That is, a Gaussian input will contain
many intensities off the axis and if each such intensity
has a characteristic oscillation period, diffraction will
definitely play a major role in the determination of the
new profiles. The diffractive coupling will tend to smooth
the boundary regions. This brings up the question of
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whether or not the combination of transverse effects with
these coexisting periodic characteristics will lock togeth-
er to form a single period or a chaotic output. To answer
this query the transverse effects are discussed in Sec. IV.

IV. RESULTS II: TRANSVERSE EFFECTS

An important parameter from previous studies of ex-
trinsic optical bistability is the Fresnel number F which
was introduced in Eq. (5). It determines the transverse
coupling of the wave and will mix together plane-wave
solutions that would tend towards different periodic solu-
tions, as discussed in Sec. III. The numerical solution
of the propagation equation involves fast-Fourier-
Transform (FFT) methods and are extensively discussed
in previous references.!>'* The FFT algorithm includes
many plane-wave modes in a simple manner and is an
efficient algorithm. In our studies, we use a single trans-
verse dimension. We sampled 128 points along the trans-
verse coordinate, with a sampling interval Ax =0.1. We
remark that cylindrical symmetry with two transverse di-
mensions can be performed with a quasi-fast-Hankel-
transform.'® Because we treat only one transverse dimen-
sion, comparison with future experiment would have to
be qualitative. We draw from experience on two-
dimensional modeling of extrinsic optical bistable de-
vices.!” The thresholds are affected, but the qualitative
results are identical. Even an array of these devices can
be studied to obtain critical separation distances for in-
dependent operation of each device in the array.!”!®

The input beam is a Gaussian of unit width, where the
field is

E(x)=Ege ",
or equivalently, the intensity is
I(x)=(Eqe *')2. (18)

The oscillator dynamics becomes increasingly more
difficult to follow as the Fresnel number takes on finite
values. F essentially determines the diffraction angle for
each of the rays present on the Gaussian input. If F is
large, only adjacent rays will couple and, to some degree,
interfere with each other. If the rays are allowed to prop-
agate over larger distances, then, eventually more rays
are made to couple and the interference pattern will
change.

If the nonlinear medium is in a ring-cavity con-
figuration, the rays will couple in a substantially differ-
ent way for each subsequent pass after the input intensity
is turned on, since the phases change due to the interfer-
ence between the waves and their interaction with the
medium; the interference observed at the output side will
progressively change, until a steady state is achieved. In
order to illustrate this, we turn our attention to Fig. 9,
where we consider propagation of a Gaussian beam in
free space with its central part removed. This is
equivalent to placing an opaque object in front of the
beam, and letting the wave propagate beyond it. The re-
sult is that, unlike the full Gaussian beam, where degra-
dation of the intensity is spatially smooth, the sharp



INTRINSIC OPTICAL BISTABILITY IN A CAVITY

6327

é" " w0, ‘
& IRl(Y )
R l'l “\f NN ' N
OOOORr=oR R e ) 3
RN WAL N a4 “ R RN
T T R ’.'..s AT
AT I AR W MIA .. AL - Sy
A RNV A I PN ) O T T T
AR UV TR S WY SN, QAL R, A TRy
r’o \\\\\\\\\\g;t&t\\{}&&3{&\\\“\\\;\\\“ \\\&“0 \\'”.\ ,’"\\".‘e\..’e’\‘\\\\\\\\\\\\. ‘Q\‘\\b\\\\\\«‘ t\\t::\\i\\\ \\\\\

- MAMIMRTT I \ "" A ’s\\ NN N N
<= AW \\\\“ \\\ X \:‘\ AN \. \ AR Q \\\\\\ N\ }:K\\\\\\\\\\\\\\\
—A § TR R RR DR U TR RN AN N N AR T
R R R T T T H RN

= \m}&t\\\“{}%&&\ &{‘\\\\x\\:‘\\\&\\\\\\\\\\"\;\\\'\‘#&.\\ \‘..... \“’.’\‘\\\\\\ \\\\\:\\t\“\\ \\—\\\\\\\\\ 64
- W\ M W\ N NN
= R RN N Q\\\‘\ S
g R R RO 32
\\“\&\§§§\§§\\\\\§§§\\“‘\ N
MMM E
\\\\\\\\\\ AW S
W -32 ER

FIG. 9. Free space propagation of a Gaussian beam of unit width with F =1, and the central region blocked by an opaque strip at
z=0. In this case, F =2kd?, where k is the average wave vector of the packet, d is the width at half maximum, and the length is uni-

ty.

edges will produce much enhanced ray bending and a
characteristic diffraction pattern will appear, just as in
the Poisson spot case.

This in effect mimics the situation with the nonlinear
oscillator medium. In a noncavity case, if the on-axis in-
put intensity is set just above the turning point A4 in Fig.
1, then the central part of the beam is strongly absorbed,
creating those sharp edges that so much favor diffractive
coupling. In a cavity configuration, a slight change in the
diffraction angle will drastically change the view from the
output side, as pointed out earlier. Therefore one would
expect that the output intensity sensitivity to the Fresnel
number is drastically enhanced and completely
unpredictable. In addition, the sharp discontinuities in
the intensity present within the medium further enhance
diffraction, thus complicating the prediction process.
This in effect renders the plane-wave analysis incon-
sistent. A hybrid experiment such as the one outlined
above cannot adequately describe the dynamics of an in-
trinsically bistable system.

Since it is practically impossible to scan the Fresnel
number space in a continuous manner, we content our-
selves with a few values that will hopefully help to extract
the important physical characteristics of the system. In
what follows the on-axis intensity | Ey|>=20, the laser de-
tuning A= —4 and the Fresnel number will vary, so that
qualitative differences may be made to appear for the
same input parameters as diffraction becomes increasing-
ly important.

In Fig. 10 we plot the output intensity profile at a par-
ticular moment in the evolution for F = . The oscilla-
tions on the central axis of the beam are period 4. The
off-axis input intensity has higher periods of oscillation,
depending on the input intensity at each point according

to the input intensities shown in Fig. 4. They oscillate in-
dependently and each intensity has a period whose value
is the same as found by the plane-wave analysis of Sec.
ITII. Even though the rays oscillate independently of each
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FIG. 10. Output intensity vs transverse coordinate as viewed
at the output side with A=—4, F=o (no coupling case),
¢, =0.4; the 47th pass through the medium is chosen.
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other, we again point out that the threshold intensity is
unchanged, but that settling of the oscillations to a
specified period will take longer for off-axis rays, since
some intensities are closer to threshold values.

Figure 11 shows the on-axis output intensity as a func-
tion of the number of round trips in the cavity for
F=1000. Qualitative differences already begin to ap-
pear. As diffraction is not yet very important, it does
nevertheless affect the central part of the beam by remov-
ing enough energy from it to require eighteen round-trips
to complete a cycle, as opposed to four for F = . Even
though the central part of the beam has settled rather
quickly, we observed that at the output mirror the situa-
tion is rather complicated. As only adjacent rays begin
to couple, some parts of the beam will oscillate under
their mutual influence. The whole beam eventually set-
tles to a definite period of oscillation; again, we contrast
this with the behavior for F = «, where different trans-
verse regions have a different period. Figure 12 is an ex-
ample of the output intensity at a particular time.

In order to establish the importance of diffraction for a
specific Fresnel number we adopted the following cri-
teria. First we looked at the width of the beam at half
maximum at the output side and compared it to the origi-
nal input Gaussian; second we looked for secondary max-
ima in the wings, which are the trademark of a diffracting
beam. Even though only adjacent rays couple, we can
safely assume that the F =1000 case is relatively
diffraction-free, i.e, the input beam width is the same as
the output beam width (see Fig. 12). The numerous
peaks that appear in the center of the figure are due to
the oscillator dynamical instabilities; at the boundary be-
tween different periods in the transverse direction,
diffraction is important to synchronize all the periods to-
gether. We note that the outer wings of the beam are
smooth and unaffected by diffraction effects in the center.

For F =100 the whole beam is locked into an oscilla-
tion of period 2. We find that this is neither self-focusing
nor a waveguiding effect® on the electromagnetic energy.

- AR

ROUND-TRIPS

FIG. 11. On-axis output intensity vs number of round-trips
with F =1000.
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FIG. 12. Same as Fig. 10 with F =1000. Now pass number
58 has been chosen.

Diffraction at a sharp boundary is responsible for this, as
in Fig. 9. As diffraction may now be relatively important,
energy is redistributed to every part of the beam, even the
outer portion of the output intensity profile. Figure 13
displays the transverse intensity profiles at the exit mir-
ror. We find that the whole beam switches between these
two states, which means that diffraction has caused just
enough interference so that every part of the beam is
locked into this final state. This situation could not have
been predicted a priori for intermediate values of the
Fresnel number. In this case secondary diffraction maxi-
ma are clearly visible at the outer fringe of the intensity
profile.

For F =35 diffraction has definitely taken on a dom-
inant role for the whole beam. The time dependence of
the on-axis intensity, even though still periodic, has com-
pletely changed with respect to the plane-wave case. As
rays couple strongly along the transverse coordinate, the
whole beam tends towards a complex periodic structure.
The wings of the transverse intensity profile are now
forced to receive more energy from the center of the
beam, and vice versa. Since the coupling is strong it is
again difficult to make predictions, and the output will be
rather complicated, as Fig. 14 shows. Again we find that
the whole beam is locked into an oscillation period, in
this case period 8. This is an important observation,
since in this case it is clear that the presence of a large
number of periods for plane-wave amplitudes (Fig.4),
couple to give a completely stable profile at all Fresnel
numbers that we have studied and furthermore, the num-
ber of periods is sensitive to the value of F. For F =35, a
rudimentary ring structure is seen to appear and to ex-
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tend to relatively large radius off the axis.

For the F =1 case, not shown here, diffraction is the
dominant effect and steady state is quickly achieved
within only a few round trips. Transverse coupling redis-
tributes the energy and does not allow the system to build
up an intensity profile that would give rise to any of the
instabilities discussed above.
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FIG. 13. Output intensity vs transverse coordinate with
F =100. Pass numbers 45 and 46, labeled (a) and (b), respective-
ly.
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FIG. 14. Output intensity vs transverse coordinate with
F =5. Pass number 82.

V. CONCLUSION

In conclusion, a medium modeled by anharmonically
bound electrons has been analyzed. We find that the type
of instabilities that exist in the plane-wave limit persist in
the low Fresnel number regime, but the output beam
profile is considerably complicated by diffractive cou-
pling, allowing a time-dependent ring structure to devel-
op out to large radius. Absorption effectively suppresses
dispersive effects and chaos along with it, even far away
from resonance, as well as, close to resonance. For fixed
detuning, close to resonance, instabilities develop with a
definite period of oscillation.

Chaotic output could be achieved by introducing a
finite relaxation time of the material; the problem is then
similar to the classical driven nonlinear oscillator model.
It is also conceivable that chaotic behavior might be
stimulated if the right set of parameters is used. In scan-
ning Fresnel number space, we confirmed that the period
of the output intensity’s variations is very sensitive to this
parameter. We also found that for some periods, such as
250 or 500, the steady state is preceded by an unusually
long period of transients, which led us to believe that for
some combination of the medium length, Fresnel num-
ber, cavity and laser detunings, the medium might never
recover and display chaos.!” Yet, we were not able to
find such a window in parameter space.

As the detuning is increased, a Farey-tree-like struc-
ture appears, but only two oscillation modes are found to
coexist. For the same input intensity, the whole beam
locks onto a different period by simply changing the
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Fresnel number, so that no Farey tree can be deduced for
this case.

Finally we point out that, even though no originality is
claimed on the model, the nonlinear oscillator can be a
very useful generic model for the study of transverse
effects in intrinsically bistable media, which to our
knowledge have not been the object of a concentrated
effort to date. The model is applicable to molecules
which are driven near a vibrational resonance by a strong
laser field,?° and nanometer size metal particles that are
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driven near their surface plasmon resonance.?! The model
serves as a prototype for intrinsic optical bistability that
naturally lends itself to further investigation.
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