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Squeezing via mixing of two modes in a system of driven two-level atoms
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The squeezing in a mixutre of two high-Q cavity modes interacting with strongly driven two-level

atoms is discussed for the case in which these two modes are located near the two sidebands of col-
lective resonance fluorescence. The collective effects, cavity damping, and thermal field are ac-
counted for. For suitable values of the parameters of the system, as in recent experiments with ryd-

berg atoms, a large squeezing can be obtained.

I. INTRODUCTION

In the last decade the problem of generation of
squeezed light is the central one in quantum optics. ' 3 A
number of nonlinear optical systems capable of produc-
ing a squeezed state have been analyzed theoretically.
These include the parametric oscillator, four-wave
mixing, ' resonance fluorescence, ' optical bistabili-
ty, two-photon processes, etc. Recently,
squeezed light has been experimentally generated in vari-
ous laboratories.

In the works by Bogolubov, Shumovsky, and
Quang' and Lawande, ' a large amount of two-mode
squeezing in the mixture of the two sidebands of collec-
tive (Dicke model) resonance fluorescence has been pre-
dicted for the case of a strong driving field, while squeez-
ing is absent for all three spectrum components taken
separately. The influence of the cavity (which has the
resonant. frequencies near the sidebands) has been calcu-
lated in the paper. In all the works' ' the influence
of the black-body radiation has been omitted. The effects
of thermal fields are negligible for optical transitions at
normal temperature. However, when atoms are Rydberg
atoms and their transitions are microwave transitions
(where the Dicke model is justified), the effects of thermal
field become important at very low temperature (T 4
K). For example, the amount of squeezing in the
Rydberg atom maser is substantially reduced even for
the case of a few black-body photons (mean number
n -=1).

In this paper we consider squeezing in the mixture of
two high-Q cavity modes, interacting with strongly
driven two-level atoms. The cavity modes are assumed to
be located near two sidebands of resonance fluorescence.
The collective effects, cavity damping, and thermal field
are accounted for. It is shown that large squeezing can
be obtained for realistic experimental parameters of the
system.
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common thermal-field reservoir at temperature T. The
atoms are assumed to be concentrated in a region small
compared to the wavelength of all the relevant radiation
modes (Dicke model}. The cavity modes E, and Ez are
located near two sidebands of resonance fluorescence, i.e.,
they are in resonance with transitions between "dressed"
atomic states. Our aim is to study squeezing in a mixture
of the generated modes E, and Ez (steady-state limit).
Our scheme is similar to the correlated emission laser
with coherent pumping in a system of two-level atoms.

The coherence part of the Hamiltonian in the
rotating-wave approximation and interaction picture is
(the system is taken with i~i = 1)

II. THE BASIC EQUATION

The N two-level identical atoms interact with an in-
tense driving (pumping) classical field Et at frequency toL

and with two modes E, and E2 of double cavity at fre-
quencies co, and co& (Fig. 1). All N atoms are coupled to a FIG. 1. Level scheme of the atomic system.
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g, =(co,d2, /2eoV, ) and g2=(co2d2, /2eoV2) (2.4)

are the coupling constants where V„V2 are the cavity-
mode volumes, d2, is the atomic dipole matrix element
between states ~2) and ~1), and eo is the permeability of
free space. The operators

N

J;, = X ~1&kk&J~ (1 j=l»»

are the collective angular operators of the atoms. They
satisfy the commutation relation

(2.6)
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Using the Markov approximation we employ the master-
equation technique described in the works * ' for the
case of a vacuum-Seld reservoir and in the work for the
case of thermal-field rerservoir to derive the master equa-
tion for the reduced density operator p of the atom-field
system comprised of N atoms and two modes E

&
and E2.

p is obtained from the density operator of the entire sys-
tem by tracing over the thermal-field reservoirs at tem-
perature T. The equation of motion in the interaction
picture is given by

It can be shown that A, =—Ny; Af =y&, y2.,
L,f g12i N. Further, we shall consider only the case
of an intense pumping field so that

0=(—,'b, o2+G)'"»Ny, g, 2~/N .

We also assume that (for good cavities)

X),X2 &&Ny,

(2.12)

(2.13)

then Af can be neglected in the maser equation for the
reduced density matrix of the atomic system. Perform
the canonical (dressing) transformation

C& =S&cosy+S2siny,

C2 = S]sing+ S2cosy

where

(2.14)
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where

~3 =~22 —~ ii (2.16)

B= (no+1)sin q&cos q&,
2

(2.17)

tan(2y) =2G/ho .

In the case when conditions (2.12}and (2.13) are satisfied
one can use the secular approximation, i.e., neglect the
terms rapidly oscillating with frequencies 20,40 (Refs.
40, 19, and 20), and neglect Af. After that one can find
the master equation for the reduced density matrix p, of
the atomic system in the form

In Eqs. (2.9) and (2.10) y is Einstein A coefficient; Xi = (no+1)cos p+ +nosin y, (2.18)

X2=~(no+1)sin y++nocos qr . (2.19)

1
n, =n(oj, )=

exp(oi, /kT) —1

1n2=n(oj2)=
exp( o12/k T) —1

are the mean photon numbers at the frequencies co&„~,,
and oj2, respectively; X, =oi, /Q„X2=co2/Q2 are the cavi-
ty field decay constants of the modes E& and E2, respec-
tively. Following Refs. 19, 20, and 39 we introduce the
Schwinger representation for the collective angular
operators J,-'

J;,. =c, c (ij =1,2),
where C; obeys the boson commutation relation

[s, ,s,']=8,j
so that

(2.20)

[Rij Ri'j ]=RE 'fii'& R';
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The exact stationary solution of Eq. (2.15) takes the form
N

p. „=Z ' g X"'~n, )&n, ~,
nl =0

where

(2.22)

R;, =S;S (ij =1,2} are the collective operators of the
"dressed" atoms. The operators S; and S, satisfy the bo-
son commutation relation
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X, (no+1)cos y+nosin 1pX=
(n, +1)sin4q +n, cos4q

X +' —1Z=
X —1

(2.23)

(2.24)

then Eqs. (2.25) and (2.26) reduce to the linear, exact
solvable equations

—(R12(t) ) = —2iQ(R12(t) ) —y(R12(t) ), (2.29)
d

The state
~ n, ) is the eigenstate of the operators R» and

R»+R22. The solution (2.22) allows one to calculate all
the one-time stationary expectation values of the atomic
observable. The correlation functions such as
(R12(t)R21), and (R21(t)R,2)„where ( ), denotes an
expectation value over the steady-state (2.22), can be
found using the equations of motion for (R;~(t) ) and the
quantum regression theorem.

By using the master equation (2.15}one finds

—(R „(t)) = —2iQ(R „(t)) y(R „—(t) )
d

—(R„(t))= —(R„(t)&

d
(2.30)

The quantity y found according to Eq. (2.28) is the
linewidth of two sidebands of the single-atom fluores-
cence field.

For the case of exact resonance cos y= —,
' we have

X& =X& and the term with the products of operators van-

ish; then both Eqs. (2.25) and (2.26) reduce to the exact
solvable linear differential equations.

For the off-resonance case, analogously to the Refs. 20
and 41, we use the decorrelation scheme

(sin y —cos y)( t R 2(t), R12(t}I ), &(R„R„I&=2&R,&, &R,, ) . (2.31)

—(R2, (t)) = —(R,2(t))
d = d

where

I R;,R 3 I
=R~JR 3+R—3R J,

y=4++X, +X2=y(no+ —,')(1+2cos csin y) .

(2.25)
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By using the density matrix (2.22} one shows that in the
case of large N the decorrelation (2.31) yields a small er-
ror (of an order of N '~2} in the calculation of the corre-
lation functions (R,2(t)R21)„(R2,(t)R,2), and of the
steady-state fluorescent spectrum. ' ' With the approxi-
mation (2.31), Eqs. (2.25) and (2.26) have simple exponen-
tial solutions and applying the quantum regression
theorem one obtains the following expressions for the
correlation functions (R2, (t)R12 ), and (R 12(t)R21),:

Equations (2.25) and (2.26) are so far exact. They con-
tain, however, term with the products of operators which
make them unsolvable in the general case.

For the one-atom case one can use the operator rela-
tion

R„R,, =R, ,5,', (i j,i',j '= l, 2),

&R21(t R12 R21R12 &.exp(2i«

(R,2(t)R2, ), = (R,2R2, ),exp( 2i« i—I t), —

where
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(R 11 ), +(N —1)(R1,), +N,
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(2.38)
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The quantity I in Eq. (2.36) is the linewidth of the two
sidebands of collective resonance fluorescence in the
coherent and black-body radiation fields.

III. LIGHT SQUEEZING

a, (t) = ( i 6,—y, }a,—(t) —ig, J„(t)+F,(t),
a2(t) =( i 62 X2)a2—(t) ig—2J,2(t)+F—2(t),

where

(3.1)

(3.2)

In this section we investigate the squeezing in a mix-
ture of the two modes a, and a2. The Langevin equa-
tions for the operators a& and a2 have the following
terms:

J,2(t)=cos pR, 2(t) —sin yR2, (t)+sinycosyR3(t) .

(3.3)

The operators F~(t) (A, =1,2) are the noise operators for
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the modes E, and E2, respectively, and obey the relations
(A., A, '=1,2)

V, ,(t}= —iG, J R„(t')exp[( —i5, —y, )(t t—')]cit',

(F,(t)) =(F', (t) &„=0,
(FA(t}FA.-(t}&H

= (FA(t}FX-(t'}&H =0

(FA(t}FX"(t) &H nA2xk5(t t )5A, , A.
"

(FA(t}F~-(t}&H=(ttk.+1}2XA5(t t')5A. ~-

(3.4)

(3.12)

a2, (t) = —iG2 f R 2&(t' }exp[(—i52 —gq)(t t—')]cit' .

(3.13)

where ( )H indicates the thermal average over the state
of a heat bath.

It is easy to see that in the secular approximation the
operators R,2(t) and R2, (t) are rapidly oscillating terms
as exp( —2iQt) and exp(2iQt) where the operator R3(t)
is slowly varying in time. Further, we shall discuss only
the case when the cavity modes a& and a2 are located
near the two sidebands of the collective resonance
fiuorescence, i.e.,

(ala] ) =n]+Gt (R2tR)2),2 1

'&, (&,+I.}
' (3.14)

n2+G2 (R /pR2j )g
2 1

X2(X&+I }
(3.15)

In the steady-state limit t~ao by using Eqs. (2.32),
(2.33), and (3.4) one finds

where

5, =6,—2Q, 5,=b,,+2Q .

Under the transformation

a, (t)~exp( 2i Qt)—a, ( t),

a2(t) —+exp(2iQt)a2(t);

R „(t)~exp( 2i Qt )R „(—t),
R z, (t)~exp(2iQt)R 2, (t);
F, (t)~exp( 2i Qt )F—, (t),
F2(t)~exp(2iQt)F2(t)

(3.5)
1

(a, az ) = (a2a, ) = —G, G2(R, ~R2, ),
X1 X2

X +1 1

~,+r y, +r

(a,a] &
= (a )a 2 &

= —
G /G2(R2]R ]2 &s

Xl X2

1 1+
y, +r y, +r

where

(3.16)

(3.17)

and with the use of the secular approximation Eqs. (3.1)
and (3.2) reduce to

y if N=1
I if 1V»1. (3.18)

ct, (t) =( i5, —y—, )ct, (t) iG, R,2(t)+F—, (t),

a2(t) =( —i52 —y2)n2(t) —iG2R2, (t)+F2(t),
where

(3.6)

(3.7)

6] =g& cos p& 62 = g2 sin

The solutions of Eqs. (3.6) and (3.7) can be written in the
form

In Eqs. (3.14)—(3.18), for simplicity we take 5, =52=0,
i.e., co, =coL —2Q and coz=c0&+2Q. The symbol ( ) indi-
cates the expectation value over the states of thermal-
field reservoir and atomic steady state (2.22). The quanti-
ties y, (R2,R,2)„(R,zR2, ), and I can be found in the
Eqs. (2.28) and (2.34}—(2.36}, respectively. The quadra-
ture phase components of the mixture of the two modes
a, and a z are defined as

a, (t}=a, ,(t)+a, „(t),
(t)+a2,

where

(3.8)
b, = '(b+e "+-be '}-

8

(3 9)
where

b= —(a, +a2), b =
& (a, +a2) .

2 v'2

(3.19)

(3.20)

For 0=0 and 8= —,
' the quadrature phase components b z

coincide with the in-phase (b&) and out-of-phase (b2)
components, respectively.

By using Eqs. (3.14)—(3.17) one can find the normally
ordered variance of the phase quadrature components bz
in the form

(3.10)

(3.11)

a, „(t)=a, (0)exp[( i5, —g, )—t ]

+ f F, (t')exp[( —i5, —g, )(t t')]&t', —
0

az „(t)=a2(0)exp[( —i52 —g2)t]

+ f F2(t')exp[( —i5, —y, )(t t ') ]&t ', —
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1
(:(&b]]):) = n ] +nz+g ] (cos p)(R z] R ]2 )g +g 2 (s]n p) ( R ]2R p] )a

4 X](X]+I } X~(X2+I' }

+cos(28)g]gzsin q&cos ]p
1 1 1+ — ((R]2R2] )+(R2]R]2)}

X&+X2 ~,+r ~ +r (3.21)

For simplicity, we shall consider only the case of y]=yz=y, n, =n2—=n-o By using the condition (2.13), Eq. (3.21)
reduces to

2

(:(btbs):) =—2no+ (cos ]p)(R2]R]2),+ri (sin tp)(R]2R2] ),4. XI

+cos(28)ri sin ]icos ]p((R ]zRz] ),+ (Rq]R ]z ), ) (3.22}

where ri=g2/g]. It is clear from Eqs. (3.21) and (3.22)
that the largest amount of squeezing is present for the
case of 8=m. /2, i.e., in the out-of-phase component b2.

Further, we consider the degree of squeezing in the
out-of-phase component b2. By using Eqs. (3.14) and
(3.15}one finds the commutator of the operators b, and

bz in the form

2

~1+—(R ), '(

(3.23)

The factor of squeezing in the phase component b2 can
be defined as

(3.24)

Squeezing is present in the mixture of the two modes a,
and az if the factor pt is less than zero. For the exact res-
onance case cos q= ,' we have (R—z]R]2),=(R,2R2, ),
=N(N+2)/6 resulting in (:(Aber):) ~0; thus, squeez-

ing is absent in this case. One can also show that
(:(b,bz)2:) ~ 0 for the case of g] ~0 or g2~0; thus,
squeezing is absent for separate modes a

&
or a 2.

It can be seen from Eq. (3.22} that for the case
g ] /gy && 1 (bad cavity limit) squeezing will disappear for
a small value of the thermal Geld intensity no. For high-

Q cavity such that g2] /yy )& 1, a large amount of squeez-
ing may be present for suitable values of the parameters
of the system. The behavior of the factor of squeezing p2
as a function of the parameters cos y for g, /yy =10,
r}=0.68 and for various values of the thermal field inten-
sity no is plotted in Fig. 2 (for N =1) and Fig. 3 (for
N =1000). The behavior of the factor of squeezing p2 as
a function of the parameter ri for g, /yy = 10,
cos y=0.4 and for various values of the thermal field in-
tensity no is plotted in Fig. 4 (for N =1) and Fig. 5 (for
N =1000). In experiments, the value cos p may be al-
tered with alteration of the detuning b,o of a driving field

frequency coL from the atomic resonance frequency m2&

and the value j=gz/g] may be altered with the change
of optical path lengths [see Eq. (2.4}]of the modes E] and

E2 of the doubly cavity. It is seen from Figs. 2 and 4 that
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-1.00 a a a a a ~ a a ~ I a a a r ~ a a a a s a a a a ( a ~ a a I ~ ~ a a a a a a ~ I a a a ~ a a I a a l

0 0.20 O'.6 0.60 0.80 1.00

cos2 W

FIG. 2. Factor of squeezing Pz as a function of cos'p for
N =1, g, /yy=10', g=0.68; curves 1—4 correspond to no=0,
0.2, 0.5, and 1, respectively.

FIG. 3. Factor of squeezing Pz as a function of cos'y for
N = 10, g I /gy = 10', g =0.68; curves 1 —4 correspond to
no =0, 0.5, 1, and 2, respectively.
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-1.00
0.60 0.70 0.80 0.90 1.00 1.10

FIG. 4. Factor of squeezing P, as a function of ri for N =1,
g& /yy=10', cos y=0.4; curves 1-4 correspond to np =0, 0.2,
0.5, and 1, respectively.

FIG. 5. Factor of squeezing P, as a function of ri for N = 10',
g&/yy=10', cos'q=0. 4; curves 1-3 correspond to np=0, 1,
and 2, respectively.

a thermal field strongly reduces the degree of squeezing
in the one-atom case which vanishes for nz ~ 1. For the
many-atom case N = 1000 and for high-Q cavity
(g, lyy = 10 ) substantial squeezing is present for no =-1.
This value for nz is of direct experimental relevance
since temperature in experiments with Rydberg atoms
changes from 2 to 4 K. We note that the amount of
squeezing in the mixture of the two sidebands of collec-
tive resonance fluorescence strongly reduces in the pres-
ence of the thermal black-body field and vanishes for the
case of no ~0.5.

IV. CONCLUSION

damping as well as the collective effects on the degree of
squeezing. The frequencies of the cavity modes are as-
sumed to be located near two sidebands of the resonance
fluorescence. We have shown that in the presence of
thermal-field reservoir the cavity enhances the degree of
squeezing in the mixture of the two sidebands of collec-
tive resonance fluorescence. For the many atoms and
high-Q cavity case one can obtain large degree of squeez-
ing for the case of few black-body photons. This is of
direct experimental relevance with recent experiments us-

ing Rydberg atoms.

In this paper, we have studied the generation of
squeezing in the mixture of two high-Q cavity modes in-
teracting with a collection of N two-level atoms coherent-
ly driving by external classical field. We have investigat-
ed the influence of the thermal-field reservoir, cavity
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