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Approximate model of soliton dynamics in all-optical couplers
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Using a variational method, we have developed an approximate model of the dynamics of soliton
coupling described by coupled nonlinear Schrodinger equations. The results are analytical and can
be recast into a suggestive particlelike description providing a physical insight into the problem.
The particular case of the nonlinear coherent coupler is emphasized, and an estimate of the soliton
switching peak power is obtained. A symmetry-breaking instability is also described, in a simple
way, with the potential-well picture.

I. INTRODUCTION

Because of their unique property of propagating
without distortion or spreading, optical solitons, ob-
served experimentally since 1980, offer the possibility to
achieve very high data transmission rates in optical-fiber
communication systems. They are considered as the fu-
ture optical bits. These prospects motivate important
research efforts towards the development of all-optical
components, such as the "all-optical switch. " For exam-
ple, the so-called nonlinear directional coupler
(NLDC) is a special device whose transmission charac-
teristics depend sensitively on the light intensity. By in-
creasing the power, one can pass from a high to a low
transmission regime, then realizing the all-optical switch.
The NLDC, as well as the nonlinear birefringent fiber
(NLBF), " then represent good candidates as building
blocks of future communication systems. For those con-
siderations, it appears important to investigate the dy-
namics of soliton coupling.

Generally speaking, soliton coupling also occurs in
many areas of nonlinear physics. ' A large class of phe-
nomena involving soliton interaction can be properly de-
scribed by a pair of coupled nonlinear Schrodinger equa-
tions (NLSE's) [see Eqs. (I), Sec. II]. Unfortunately, ex-
cept for a few particular cases, ' ' such as solitary
waves, there is no general analytical solution for coupled
NLSE's. The usual tendency is then to investigate the
dynamics by numerical simulations ro, i i, &9,2o But, besides
the problem of important computer time, the numerical
approach is not very appealing, in the sense that it does
not provide a global understanding of the underlying
physics. In other words, it is not a simple task to get a
physical insight from purely numerical experiments.

The idea is then to use approximate analytical methods
in order to compensate for the lack of exact results. Con-
siderable effort has been devoted, in the last few years, to
developing such approximate tools. For the NLSE in
general, this includes perturbation techniques, ' adia-
batic approximations, semiheuristic models, the
method of moments ' and invariants, and particlelike
descriptions. Among the last category, the Lagrang-
ian variational method has proven to be a successful ap-

proach for a variety of problems in nonlinear optics.
In this paper, it is shown how the variational method

can also be applied successfully to the system of coupled
NLSE's. We will see that the main features of the com-
plex dynamics can be anticipated by finding an equivalent
potential-well description. In particular, the transforma-
tion of the shape of the potential, induced by increasing
the nonlinearity above a characteristic parameter, is a
quite appealing description of "critical" switching.

The paper is organized as follows. First, in Sec. II, the
basic system of coupled NLSE's is briefly introduced.
Section III describes the variational method and the im-
portance of a suitable trial function is emphasized. The
partial differential equations are then transformed into a
set of coupled ordinary differential equations (ODE's), for
which exact solutions are presented. The equivalent po-
tential is then introduced. In Sec. IV we discuss the main
results and check out their validity by comparing with
exact numerical simulations. We indicate how the main
characteristics can be anticipated from the potential
description. Finally, in agreement with recent results of
Wright et a/. ,

' we, independently, also predict a
"symmetry-breaking" instability for the case of identical
solitonlike input pulses. The conclusions are given in the
last section.

II. SYSTEM OF COUPLED NLSE's

Since the main results of the paper are valid for
different problems of nonlinear physics, we will omit the
details of the derivation of the coupled NLSE's. Let us
simply mention that, in the context of nonlinear fiber op-
tics, their use implies that the transverse distribution of
the linear modes of the (identical) fibers is assumed to
remain unaffected by the nonlinearity. The main effect of
the nonlinearity is rather to induce phase shifts that will
detune the linear system and modify its transmission
characteristics. Such an approximation is always invoked
for the investigation of soliton dynamics in fibers. We
refer the reader to the literature for further details. ' '

Then, on a general level, we will consider the following
basic system of coupled NLSE's:
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where the complex functions g (z, r) (j=1,2) represent
the slowly varying light-field envelopes. The independent
variables z and v. correspond to propagation distance and
retarded time, respectively. The constant ~ stands for
linear coupling, whereas cross-phase modulation is in-
cluded through the parameter o. The system (1) encom-
passes the particular case of NLDC, ' where o. =O, as
well as the NLBF problem (crAO).

Here, we will be primarily concerned with the specific
case cr =0, leaving the general case o%0 for future work.
We also notice that the particular case cr = 1, x=O (no
linear coupling) has been treated with the variational
method by Anderson and Lisak for the analysis of
bandwidth limits in soliton-based communication sys-
tems.

III. THE VARIATIONAL MODEL

A. Lagrangian formulation

Our approximate analysis of soliton coupling involves
a Rayleigh-Ritz optimization procedure. Since the de-
tails of the general method can be found elsewhere, we
will be brief and summarize the main steps.

First, it can easily be shown that the system of coupled
NLSE's [Eqs. (1)] can be reformulated as a variational
problem, namely,

requirements. For example, the need of accuracy would
dictate an ansatz of the following form:

g, (r,z)=A, (z)f exp[i/ (r,z)],az
with f being a Gaussian or a hyperbolic secant function,
for example. The trial function (7) also includes the pos-
sibility of a chirp (time-varying phase Pj) resulting from
self-phase modulation.

The shortcoming of this —probably accurate —ansatz
is that it leads (after using Euler-Lagrange equations) to a
set of coupled nonlinear equations for the six real vari-
ables AJ, aj, and Pj, necessitating the recourse to numeri-
cal tools. Although less demanding in computer time
than the original system (1), we are not really satisfied by
this "achievement, " as we aim to a simpler and analytical
description. In other words, we prefer to sacrifice some
(but not too much) accuracy in order to get a more ap-
pealing result in terms of physical insight.

In this paper we are mostly concerned by two impor-
tant cases: switching and symmetry breaking. Then, as
will be seen below, we can get a satisfying model by using
the following simple trial function:

g, (r,z) =F (z)sech(p r)exp[i8 (z)],
where the real functions F and 8 depend only on z vari-
able, and p is constant. Obviously, the simplicity of this
ansatz calls for further justification. First, the trend in
all-optical communication systems is toward the use of
fundamental soliton pulses as optical bits. Under ap-

5f fLdzdr=O,

with the appropriate Lagrangian

L =L )+L2+L)2,

(2) 4.

2

where L (j=1,2) corresponds to the single NLSE La-
grangian:
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and L &2 represents the interaction Lagrangian:
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The original system (1) is then derived from Euler-
Lagrange equations:
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8. The trial functions

The Rayleigh-Ritz method is a constant-shape approxi-
mation. We have to choose an appropriate trial function
describing the temporal form of the pulses. This is cer-
tainly the crucial step of the analysis. Accuracy and sim-
plicity both depend on the ansatz and, therefore, a
compromise has to be made between those two opposite

-&5 o

6
4 z/z,

FIG. l. Typical evolution of the intensity profiles ~g ~
in a

NLDC (~=0.5, Fp, =1.8, Fp, =0). The distance z. is normal-
ized to the "multisoliton period" zp =w/2.
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propriate launching conditions, the pulse shape

p sech(p~) represents the asymptotic distribution inside a
single fiber and would correspond to the input of a cou-
pling device. Hereafter, we consider the interaction be-
tween input pulses corresponding to fundamental soliton
of a single NLSE. We then use the terms "soliton" and
"soliton coupling" in that sense, without meaning a soli-
ton solution of the coupled system (1).

However, on the basis of quasi-cw arguments, the
constant-shape approximation itself is apparently diScult
to defend. Such arguments would refer to the cw [when
$„=0in Eq. (1)] results ' and predict a pulse breakup3~

when time-varying inputs are considered. However, as
will be seen in Sec. III (Fig. 1) (and noticed before' ' ' },
when solitons are launched at the input, it appears that
the pulses are essentially unperturbed, in shape, during
the switching process and no pulse breakup occurs. Once
again, solitons prove to be robust entities. An appealing
explanation of that behavior has been given by Blow
et al. Basically a nonlinear coherent coupler is a phase-
sensitive device. The use of pulses yields nonconstant
phase distribution (chirp), as a result of self-phase modu-
lation, and a pulse breakup can be anticipated. For-
tunately, the soliton is a peculiar type of pulse as it is
characterized by a constant-phase distribution. This
comes from a perfect balance between dispersive and
nonlinear effects. Then, as numerical simulations indi-
cate, this inhibits the breakup phenomenon.

The proposed ansatz (7) implies that one also neglects
the possible appearance of a chirp as a result of the in-
teraction. A more sophisticated trial function would cer-
tainly improve our model but, again, this would be at the
expense of its simplicity and we then disregard this "im-
provement. "

Finally, we assume pulses of constant width. This is

certainly a crude approximation for our system. Howev-

er, it can be shown that the system (1) (with cr =1) has

an exact solution describing periodic soliton energy
transfer with such a constant width (that exact solution
has been a useful test for our computer code}. In our
case, the above solution does not remain valid. But, for
the variational model, it appears to be a quite fruitful ap-
proximation to neglect the width variation.

In spite of all those shortcomings, the present model
gives useful approximate analytical expressions for,
among others, the transmission properties of the NLDC
and the maximum energy transfer achievable. More gen-
erally, it provides a physically suggestive description of
the complex interplay between the nonlinear index, the
group velocity dispersion, and the linear coupling.

C. Euler-Lagrange equations

and

~ p ~ d 3 ~ 3p ~
(lob)

X &z =(41~/p)F, Fzcos(8, —Hz} .

The Euler-Lagrange equations

BJ d BX

By, dz B(dy, /dz)

(10c)

with y =F, 8, (j=1,2), then lead to a set of four cou-
pled nonlinear ODE's, n~ely,

d 8. & 2F~ F3
cos(8, —Hz),

dz 6 3 Fj
dFj

dz
=( —1)~aF sin(8 —8 ) .3 —j 1 2

Equation (13) satisfies the law of energy conservation

F~ +F2 =E=const

(12)

(13)

(14)

The system (12) and (13) is also consistent with the partic-
ular case of exact solitary-wave solution to Eq. (1}. The
reader can easily check that Eq. (1) admits the following
exact solutions

f (~,z) =g,psech(p~)exp[iP(z)],

with gj =+1 and

P(z) =( p'/2 q,—~/q, )z—.

(15)

(16)

This corresponds to 8&
—Hz=0 or km and F =p in (12)

and (13). To proceed, we define a new phase variable

P(z) =Hi(z) —Hz(z), (17)

and introduce another variable for the energy difference

U(z)=Fi(z) —Fz(z) . (18)

Using Eq. (14), the system (12) and (13) can then be re-
duced to only two coupled equations:

dP 2U 2~U
z 3 (E —U )'Iz (19)

dU z 2 i/z= —2a.(E —U )' sing .
dz

(20)

D. Analytic solution

We find that this new system has another constant of
motion, namely,

Using the ansatz (8) and the Lagrangian (3)—(6) (with
o =0), we can perform the r integration in (2) and reduce
the variational problem to a simpler form:

5fXdz=0, (9)

G =
—,
' U (z) +2~(E —U )

'i cosP(z) .

This allows us to derive a single equation for U:

=+[4~'(E' —U') —( U'/3 —G )']' '
dz

(21)

(22)

where

X =X,+Xz+X,z, (10a}

which can be solved exactly in terms of elliptic func-
tions. Here, we limit ourselves to the specific, but im-
portant, case of switching. The initial conditions then
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y =E /(6a ),
then, for y ~ 1,

u (z) =cn(2~z
~ y ),

and, for y&1,

(23)

(24a)

read F, (0)=Fo=&E and Fz(0) =0. If we define the pa-
rameter y, characterizing the importance of the non-
linearity, as

coupling. The vast parameter space associated with Eq.
(1) can be reduced significantly through a rescaling of the
equation. Defining z'=az and r'=&~r, it can be shown
that for input pulses with a width inversely proportional
to the amplitude (e.g., solitons), then the important pa-
rameters are y [Eq. (23)], the ratio of the input ampli-
tudes gz(0, 0) /g, (0,0), and the initial phase difference Po.

A. Switching case

u(z)=[1 —(I/y )sn (2yaz~l/y )]' (24b)
Since we were mostly interested in the switching prob-

lem, we used the fundamental soliton as input pulse:
where u (z) = U(z )/E and sn and cn are Jacobian elliptic
functions. "

In the limit of low intensities (y((1), we recover,
from (24a), the exact solution of the linear case, describ-
ing the sinusoidal variation of energy in each channel:

U(z) =cos(2zz) . (25)

Increasing the power does not affect the periodic nature
of the interaction (periodicity of elliptic functions), but
modifies the period. This will be discussed in more detail
in Sec. IV.

E. Particlelike description

d u BV(u)
Bu

where we have introduced the "time*' variable

)'rza.z,
and the anharmonic potential

(26)

The essential information concerning the switching
process is contained in Eqs. (23) and (24). However, as
was done by Anderson for the single NLSE, we find it
worthwhile to recast the general results into a suggestive
potential formulation. Then the evolution of the energy
distribution in each guide can be associated to the time-
varying position of a particle in an equivalent potential
well. Such an analogy is particularly appealing as it gives
a much better physical insight of the dynamics.

From Eq. (22), we then get, for arbitrary initial condi-
tions,

g, (r, z =0)=Fosech(F&t ),
$2(r, z =0)=0 .

(29)

Figure 1 illustrates a typical result indicating, as men-
tioned above, that the pulses do not suffer serious distor-
tion of their shape during the process. This observation
is the basis of our model. In the context of NLDC, a
practical device consists, for example, in a half-beat
length coupler, for which total energy transfer (from
channel 1 to channel 2) occurs in the linear regime. This
is when u(z=L, )= —1, i.e., [from (25)] at the exit of a
coupler of length I., given by

L, =m/(2~) . (30)

[1—cn(~~ r')]/2 r & 1

[1—[1—(I/y )sn (ye~i/y )]' ]/2, y) 1
(31)

where T=F
2 (L, ) /Fo = [1—u (L, ) ]/2. This function is

drawn in Fig. 2 (solid line). One can notice the similarity

1.0-

The nonlinear device is interesting for all-optical corn-
munications because an increase of the nonlinearity will
change the effective refractive index and then detune the
system. The transmission is reduced and can eventually
be nearly zero ("switched off").

From Eq. (24), a simple analytical expression can be
obtained for the peak-power dependence of the transmis-
sion characteristics:

V(u)=[1 —2y uo —2y(1 —uo)'~ cosPo]u +y u

(2&)

where uo =u (z =0) and $0= /(z =0).
In the next section, it will be shown how this potential

description can be useful for interpreting, and also for
predicting, the main features of the soliton dynamics.

0.8.

D 0.6.

0.4

0.2.

IV. DISCUSSION OF RESULTS

In order to assess the ability of our simplified model to
describe the essential characteristics of the soliton cou-
pling, we have also made a series of computer simula-
tions. The original system [Eq. (1) with o =0] has been
solved numerically by adapting the well-known standard
beam propagation method in order to include the linear

0.0 '
0 3

FIG. 2. Energy transmission characteristics of a half-beat
length coupler. The curves represent the exact numerical re-
sults ( —.—~ —~ ), the present model ( ), and the soliton-
.phase model ( ———).
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of the cw results ' and ours. The essential difference is
for the switching peak-power value (the value for which

y = 1). According to the cw results, this value should be

P,„=4~, whereas we predict [Eq. (23}] P,„=FO=6x.
This correction gives a much better estimate if we com-
pare with the exact numerical results sho~n by the
dashed-dotted line in Fig. 2. If we loosely define the
switching peak power as the one for which 50%
transmission is achieved [this corresponds to @

= 1 in Eq.
(31)], then from the numerics we infer P,„=6.7a.. This
represents an interesting result for the model.

Following the soliton-phase argument of Blow et al. ,
another model (hereafter called "soliton-phase model" ),
can be built. In the absence of coupling (1~=0), in con-
trast to the cw case for which self-phase modulation leads
to a nonlinear phase shift given by 8(z) =Fez [Eq. (1) with
$„=0, cr=a=0], a fundamental soliton will rather be
phase shifted by 8(z)= ,'Foz [E—q.(16) with ~=0]. Then,
in a first approximation (see Ref. 8 for more details), one
can assume that the cw results will remain valid as long
as one defines an effective intensity Fo,z =

—,'Fo, so that a
rough estimate of the switching peak power would be
P,„=8~. For completeness, we also present the transmis-
sion curve predicted by this other model (dashed line in
Fig. 2).

We will not insist on a detailed comparison of the two
approximate models. Each of them has its own advan-
tages, as well as inconveniences. We simply want to
stress the fact that in our model we have not included any
adjustable parameter which could be introduced in order
to get a better fit. The main advantage of the present
method is that the ingredients are there for improvement
(in terms of accuracy}: by choosing a different trial func-
tion and following the lines given in Sec. II.

The essential features of the dynamics are well de-
scribed by the present version. It comes out that, as in
the cw regime, there is a sharp transition from high to
low transmission as one goes from y & 1 to y & 1. This is
not so true when the input pulse is not a soliton.

The approximate formula (31) is useful, but the poten-
tial formulation appears more fruitful if the objective is to
improve our physical insight. For the case of switching,
the equivalent particle is subject to the following initial
conditions: u(t =0)=+1,du /dt ~„o=0,and the poten-
tial V(u) is such that [see Eq. (28)] V(u =0)=0,
dV/du ~„o=0, V(+l)=(1—

y ), and dV/du ~„+,
=+2. Thus the particle is initially at rest at u =+1, the
slope of the potential, there, is independent of y, and the
effect of increasing the input power is to reduce the initial
height of the particle inside the well (Fig. 3). Complete
energy transfer occurs when the particle reaches the posi-
tion u = —1. The essential features of the dynamics can
then be anticipated from the physical intuition provided
by classical mechanics.

The qualitative aspect of the potential (and then the
dynamics) is drastically different as we increase the non-
linearity from y(1 to y) 1, as depicted in Fig. 3. At
low input power [y «1, Fig. 3(a)], the potential is
quasiharmonic; a complete and periodic energy transfer
is then predicted [in agreement with Eq. (25)]. If we in-
crease the nonlinearity [e.g. , y =

—,', Fig. 3(b)], the anhar-

u)

(b) u)

FIG. 3. Transformation of the equivalent potential as the
nonlinearity is increased: (a) y' (& 1; (b) y' =O. 5; (c)
0.5(y~(1; (d) y &1. The particle () is initially at rest at
u =+1.

4.

3

2'
CL
O

0.
0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 4. Influence of the parameter y on the optimum cou-
pling length. The squares { ) represent exact numerical results
and the curves correspond to the predictions of the present
model { ) and the soliton-phase model {———).
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B. Symmetry-breaking instability

The particlelike description is interesting not only for
interpreting results, but also for predicting special behav-
iors. Here, we give an example by looking at the stability
of the solitary-wave solution [Eqs. (15) and (16)]. For
that case, F2(0)=F&(0)=Fo, u(0)=0, du/dt(t=0)=0,

(a) Fa& 1.5 Ic

where E is the complete elliptic integral of the first
kind. Figures 4 and 5 indicate that for y(1 and

y ~ 1.3 the simple model gives a reasonably good account
of the intensity dependence of T,„and L, , As for the
transmission curve (Fig. 2), the numerical results lie be-
tween the predictions of the two models.

The results of a few numerical simulations are also
presented in Fig. 6. For y(1 the optimum length is
greater when the amplitude of the input pulse Fo is in-

creased [Figs. 4, 6(a), and 6(b)]. This comes from the flat-
tening of the potential discussed above [Fig. 3(b}]. The
opposite occurs when y & l.3. Figures 6(c}and 6(d) show
the energy exchange is not really periodic but remains os-
cillatory and it is correct to predict a decrease of T,„ in

that region (Fig. 5} and shorter optimum lengths as well

(Fig. 4). This is associated with the more concave poten-
tial well depicted in Fig. 3(d).

As an approximate rule of thumb, the model fails when
it predicts an optimum length which is too large for the
restrictive basic assumptions of the present trial function
(Sec. II A} to remain valid. This is the case near y =1 (or,
more generally, near the switching peak power). Then,
reality turns out to be more complex than expected, as
seen in Fig. 7. A general ansatz of the form (7) would be
more appropriate for that region if we are interested in
propagation distances longer than the half-beat length of
the NLDC. As mentioned in Sec. II, this would require
the use of numerical techniques. Clearly, a detailed in-
vestigation of the complex behavior in the region
1 (y ~ 1.3 is beyond the scope of the present analysis.

1.0"

0.8.

0.6.

0.4.

I I I I
I I I I

I
I I

I
I

I I I
I \ I I

I I I I
I I /

I
I

I
I

0.2.

0.0.
0 6 9

KZ/Zo

15

FIG. 9. Quasiperiodic energy exchange following the
symmetry-breaking instability (y =0.61). The dashed (solid)
line represents the normalized energy of the pulse t(& (t(&).

and the potential is given by [Eq. (28)]

V(u ) = (1—2y cosPo)u +y u

with

y =E/(6a) =Fo/(3s. ),

(33)

(34)

and go=0 or n

At low intensities (y « 1), the equivalent particle is in-
itially at rest, at the bottom of the quasiharmonic poten-
tial well [Fig. 8(a)]. From the shape of the potential, we
expect a stable system. However, in the case go=0, there
is a topological transformation of the potential occurring
at y & —, [Fig. 8(b)], and a symmetry-breaking instability
can easily be anticipated. A small initial Auctuation in
power corresponds to a slight displacement of the parti-
cle from the origin and the particle will accelerate down
the bump. A periodic oscillation will follow, and the par-
ticle remains on one side. In terms of energy repartition,
this implies a periodic, but unequal, energy sharing be-

7

5

(b)
F',s & 1.5 Ic

4 ~

0
3.

CL

U

FIG. 8. Transformation of the shape of the potential leading
to a symmetry-breaking instability. The equivalent particle (~ )

is initially at rest at u =0 but becomes unstable when I'0 ) 1.5K

(y) 0.5).

0.00 0.25 0.50 0.75 1.00 1.25 1.50
7

FIG. 10. Period of the oscillations following the instability.
The squares refer to numerical results and the solid curve corre-
sponds to the predictions of the model [Eq. (37)].
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tween the pulses. This is we11 confirmed by the computer
simulations, as shown in Fig. 9.

We must point out that, independently, this instability
was also predicted by Wright et al. , in a recent paper. '

These authors used the linear stability analysis (LSA).
Quantitatively, both predictions are similar. From Eq.
(34) and the condition mentioned above (y & —,'), we pre-
dict instability when

Fo & 1.5~,

whereas linear stability analysis leads to'

Fo ) 1.33K

(35)

(36)

Let us also mention that the soliton-phase model would
predict Fo ~ 2~, which represents a too high estimate.

An advantage of the potential approach is that it can
predict the long-time behavior (the unequal and quasi-
periodic energy transfer) whereas the LSA implies a weak
perturbation and can then hardly predict what happens
once the instability has settled. Above threshold (y & —,

' ),
a simple expression for the oscillation period P can be ob-
tained by approximating the new local minimum of the
potential [Fig. 8(b)] as a parabola. From (33) and after
straightforward steps, we get

P=(y —
—,') ' el(21') . (37)

This formula turns out to be quite good, as illustrated in
Fig. 10. For y&1, the behavior is still oscillatory but
more complex and subharmonics appear. The detailed
scenario is not a simple period-doubling process and will
not be discussed here in further detail. For y close to 0.5,
the parabolic approximation is not valid and, then, the
agreement is less good. In addition, our estimate of the
threshold as y =0.5 is only approximative.

For Po=n. , the potential remains concave and our
model predicts stabihty against unequal initial intensities.
We cannot address the question of stability against
desynchronization (i.e., when the pulses are slightly de-
layed) on the basis of the present model. But this has

been done elsewhere ' by using perturbative methods and
the conclusions are that the system is then unstable
against this type of perturbation. Those remarks are also
in agreement with the results of Wright et al. '

V. CONCLUSIONS

Admittedly, the model of the dynamics of soliton cou-
pling presented in this paper is simplified. But the first
objective was to improve our physical insight. Then, by
insisting on preserving the simplicity at the expense of
some quantitative accuracy, we have been able to get
analytical results. Although approximate, the results are
satisfying and the analogy with classical mechanics is
particularly enlightening.

If more precision is desired, then the recipe consists of
choosing a more sophisticated trial function and follow-

ing the lines given here. This may be necessary when

long propagation distances are considered or for different
initial conditions. Numerical simulations are helpful
when the time comes to choose an appropriate ansatz for
describing the evolution of the pulses. Conversely, an ap-
proximate model can be of great help by locating the re-

gions of the vast parameter space which could be of par-
ticular interest and deserve further examination via nu-

merical simulations. This combination of both ap-
proaches could reduce significantly the otherwise prohibi-
tive computer time necessary.

In order to check the validity of the mode1, we have
presented the results in the particular context of non-
linear fiber optics. However, as mentioned at the begin-
ning, the system of coupled NLSE's is encountered in
other areas of nonlinear physics. The present approach is
then of general interest.
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