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A low-temperature expansion of an isotropic, spatially frustrated lattice model with nearest-

neighbor, second-, and third-nearest-neighbor interactions is presented. The zero-temperature

states of this model are known exactly. For some regions of parameter space there is an infinity of
zero-temperature states, although the ground-state entropy per spin is zero at zero temperature. In

general one expects fluctuations at finite temperature to break the degeneracy on the zero-

ternperature-state manifold. When the zero-temperature states are regular or periodic, it is possible

to characterize them and to apply the low-temperature expansion to break this degeneracy in a

rigorous way. In the present paper we carry out such a calculation. However, we also have exam-

ined regions of parameter space where the degenerate states are irregular. A method is proposed
that permits one to resolve between degenerate irregular states. It consists of low-temperature ex-

pansion in successively larger local clusters or fragments of the allowed zero-temperature states. In

principle one need have no a priori knowledge of the symmetry of the zero-temperature state. How-

ever, there results a packing problem that involves maximizing the number of clusters with optimal

free-energy density. In some cases we have been able to solve this problem, while for other parts of
the phase diagram we have made conjectures that have yet to be confirmed by rigorous calculations.

I. INTRODUCTION

The technique of low-temperature expansion is a gen-
eral and rather powerful technique that can be used to re-
liably construct the low-temperature phase diagram of an
Ising lattice model. Although it remains an open prob-
lem to establish the conditions for convergence of the
low-temperature expansion of arbitrary Ising models,
some progress has been made in this direction. ' In par-
ticular, wherever the Pirogov-Sinai theory applies, we are
assured that, providing there is only a finite number of
zero-temperature states, the low-temperature expansion
converges and produces as many phases at finite tempera-
ture as there were ground states. For much of the phase
diagram for the present model, we are at present unable
to prove one of the conditions which would render the
Pirogov-Sinai theory applicable to our study. This
remains an open and interesting problem for a number of
Ising models which possess an infinite number of ground
states.

In fact, we have not been able to make very general
statements about the applicability of the Peierls-Pirogov-
Sinai condition to certain regions of the zero-temperature
phase diagram of the present model. This condition
would bound the number of low-energy excitations of the
zero-temperature states of the model by requiring that
the excitation energy scale with the extent of the surface
dividing that excitation from the remainder of the zero-
temperature state. For such situations one can develop a
contour model with convergent low-temperature expan-
sions. The essential content of this procedure is that fluc-
tuations around the zero-temperature state can be de-
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where the three sums are, respectively, over nearest-,
second-nearest-(diagonal), and third-nearest-(axial or
linear) neighbor sites on a simple cubic lattice. Notice
that the couplings are spatially isotropic so the Hamil-
tonian transforms according to the full symmetry group
of the cubic lattice. This distinguishes it from the
ANNNI model which has anisotropic interactions. We
mention this important distinction because, although for

scribed as a dilute gas of contours of sufficiently low ac-
tivity that fluctuations cannot destroy the order of the
underlying ground state. In these cases it is appropriate
to derive the low-temperature expansions for each of the
degenerate zero-temperature states, and then to construct
the phase diagram by comparing the free energies of each
such state.

An early work on the axial-next-nearest-neighbor in-
teraction (ANNNI) model due to Fisher and Selke re-
sulted in a rather complete picture of the low-
ternperature phase diagram of that model. In their work
it was argued that the low-temperature expansion was
likely to converge, and later Dinaburg and Sinai were
able to rigorously establish convergence for that part of
the parameter space studied by Fisher and Selke. The
complete low-temperature analysis in Ref. 5 is consistent
with results from numerous other studies.

The model we study is defined by the Hamiltonian,

(NN) (DN)
&=—J g o„o„—yM g cr„cr„
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some parts of parameter space the zero-temperature
states are the same as for the ANNNI model, one expects
the fluctuations to be quite different in the two cases.
Thus the high symmetry of the Isotropic Hamiltonian is
broken spontaneously and the degrees of freedom which
ultimately restore the symmetry at higher temperatures,
being different from that of the ANNNI model, place the
model in a different universality class from an anisotropic
model.

For these reasons one must exercise care in applying
techniques which have been successful in treating earlier
models. In particular, one does not have assurance that
the low-temperature series is convergent for all parts of
parameter space of the model defined in Eq. (1.1). In
what follows we shall assume that it does. Arguments
are given to support this proposition.

The plan of the paper is as follows. In Sec. II we
reiterate ' the zero-temperature phase diagram of the
lattice model and construct the zero-temperature energy
functional in a form appropriate for low-temperature-
series expansion. In Sec. III we derive the low-
temperature expansion around those parts of the parame-
ter space where the zero-temperature states are highly de-
generate. The low-temperature expansion is then used to
break this degeneracy, and to evolve the phase diagram
for low temperatures.

Finally, in our conclusions to this paper (Sec. IV) we
outline those areas of our work on this model which re-
quire further research or elucidation. In particular, we
discuss some of the weaknesses of present techniques in
statistical mechanics when applied to models of the
present type.

II. ZERO-TEMPERATURE STATES OF MODEL

The Hamiltonian defined in Eq. (1.1) can be analyzed
rather completely in terms of an octahedral cluster of
spins consisting of a central, and six surrounding spins.
Thus the sum over lattice sites in (1.1) can be replaced
with a sum over such clusters of spins. These are in-
dependent clusters, and it can be shown that each of
them, along with its image obtained by changing the sign
of each spin, completely fill a three-dimensional cubic lat-
tice. Thus, if the energy is minized by one or more of
these octahedral clusters of spins, one always has at least
one zero-temperature state. If more than one cluster
minimizes the energy then one can use a combination of
these clusters to completely fill the lattice. In some cases
we will see that it is easy to identify, enumerate, and
parametrize all such zero-temperature states. In each
case such states turn out to be regular or periodic.

As pointed out in Refs. 8—10, and discussed above, it is
possible to rewrite the Hamiltonian (1.1) as a sum over
the local energy due to octahedral fragments of the cubic
lattice. There are ten such independent arrangements of
Ising spins surrounding a central plus spin. We designate
these clusters and their images under inversion by the
symbol C„,where n is the number of spins of a given sign
surrounding a central spin of opposite sign and X is the
number of these surrounding spins that are coaxial pairs.
These spin clusters are shown in Fig. 1. The energy asso-
ciated with such an octahedral cluster is

e„=—J(3—n) —M [3 —2n +N(4 2—y )]
—yM(3 —n)(2 —n) . (2.1)

For each choice of J, M, and y the energy (2.1) is mini-
mized by one or more values of n and N. This informa-
tion can be presented in the form of a zero-temperature
phase diagram, Fig. 1.

The boundaries which appear in Fig. 1 represent the
surfaces upon which the energies of the octahedra that
are stable on either side are equal. They are given by the
formulas

J+2M[1+(3—n)y], m &0, 0&y &2

J+2M[ —1+(4 n)y], —y&2, n even

J+2M[1+(3—n)y], y) 2, n odd .

(2.2)

(2.3)

(2.4)
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FIG. 1. The zero-temperature phase diagram. In this dia-
gram we illustrate the topology of the zero-temperature-state di-
agram. Each portion of the diagram is labeled by one or more
of the octahedral clusters of spins. These clusters are drawn at
the bottom of the figure. Thus, for any choice of J, M and y one
can identify that local cluster, which minimizes the energy den-
sity. Typically, along certain surfaces of the zero-temperature-
state diagram one has a profound degeneracy in the zero-
temperature states. One must resolve this degeneracy using the
low-temperature expansion described in the present paper.
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J=—2M(1+2y) . (2.5)

Along this surface Co and C, are degenerate and one
can show that from these local configurations it is possi-
ble to construct only layered states or the two ferromag-
netic ground states. To describe these lamellar states we
define s bands, a terminology first introduced by Fisher
and Selke in connection with the ANNNI model. An s
band is a sequence of s layers comprised of spins of a
given sign, terminated at either end by at least one plane
of spins of the opposite sign. Upon examining the ground
states along the surface R (y, T =0) one sees that only
those layered states without 1 bands are present. If one
defines that number of the spins of a given zero-
temperature state which belong to s bands to be L„then
the fraction of such planes will be

Consequently, at any point of the J,M, y parameter space
one can deduce which octahedra minimize the energy
and the zero-temperature states can then be constructed
by filling the lattice with these and their images under in-
version. We now give a description of those regions of
the zero-temperature-state diagrams where an infinite
number of states is degenerate.

We begin with the surface R (y, T =0) defined by

and C, occur in zero-temperature states along R(y, O),
we need only know the numbers of both types of spin in
order to write down the ground-state energy. We define
¹(C„)to be the number of sites of type C„present in
the zero-temperature state r. One can then show

N"(Co)=L g (s —2)L,",
$3

N"(Co)=2L' y L".
s&2

(2.10)

(2.1 1)

5=J +2(1+2y )M (2.13)

Now, using Eq. (2.1) and Eqs. (2.10) and (2.11), we can
write the total energy per spin for a zero-temperature
state containing no 1 bands as

E
I 33 [I,",J,M, y]

= —3[J + (1+2y )M]+2[J +2(1+2y )M] g l," .
s 2

(2.12)

Later on we shall find that a useful parameter in the low-
temperature expansion will be

L,'
1
f'—

which must satisfy the constraints

(2.6)
so Eq. (2.12) can be rewritten,

EO

3
= —35+3(1+2y)M+25 g l„'.

L s~z
(2. 14)

L

g sl, =l, l,"~0 . (2.7)

Clearly one can define classes of zero-temperature
states by assigning a complete set of structural
coefficients, [I,']. This assignment is, of course, not
structurally unique unless only one type of s band appears
in the structure, or one has more nonlocal information on
the sequences of layers in the state. For example, many
zero-temperature states have the same fractions of 2
bands and 3 bands. To differentiate between these one
would have to assign more complex structural variables
such as 123 1223 and so on. However, if any one of these
structural variables is unity, then the structure is unique.

It is also clear that in this extended space, the structur-
al variables are no longer independent. Thus the fraction
of 23-band sequences, Iz3, is clearly dependent on the
fraction of 2- and 3-band sequences, which satisfy the re-
lation

21, +31,=} . (2.8)

22 12 23~ 32 23~ 33 3 3 2 23 (2.9)

Now, since only the local octahedral environments Co

One can write down such relations for general-band-
structural variables. However, it will transpire (Sec. III)
that, in the vicinity of R (y, T=O) one need consider only
the structural variables 12, 13, lzz, lz3, 13z 133 in order to
resolve the degeneracy between the zero-temperature
states. The equations which relate these are, along with
Eq. (2.8), given by

J = —2M( —1+2y), (2.15)

along which the local octahedra Co and Cz are degen-
erate. Again, by inspection one can see that the zero-
temperature states are lamellar, and must contain only 1

bands or 2 bands. The structural variables which we re-
quire to describe these states are thus I„lz, l,z, lz„and
so forth. Again, to carry out the low-temperature
analysis of Sec. III, we shall need only the following rela-
tions:

1, =1—212, 122 —I2
—12, ,

12, =1,2,
lz]z liz 1}]z ~

1~ &2 12

These variables are subject to the constraints

(2.16)

As mentioned earlier, if 5=0 one finds that any state
which contains no 1 bands is degenerate. If 5 is negative,
we find L,"=0 for sWL and lz= —,'. This corresponds to
the period-4 layered state or (2) phase. If 5 is positive
we find I,"=0 for sWL and li = 1/L. This solution corre-
sponds to the ferromagnetic phases ( m ). This is all the
zero-temperature information we need to perform the
low-temperature expansion around R (y, 0). This
analysis is given beneath Eq. (3.3).

We now return to Eqs. (2.2) —(2.4) and study another
degenerate zero-temperature-state manifold. Thus, for
y &2 and n=2, we obtain from Eq. (2.3) the multistate
sheet,
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0 11,2 4, 0 I I 2

0~1—2l~ l ~ 1, 0 lq
—l)q ~

—,', 0 l)q l)qq 3 7

—z i~ izz --' 0- lz iz»z—
(2.17)

We can also show that

N"(Co, }=L~L~,

N"(Ci )=L Li,
(2.18}

(2.19) g=J+2M(1+y)=0 (0&y &2) . (2.22}

We now turn to the sheet P~(y &2,0), y &0, along
which C& and Cz have equal energies. From Eq. (2.2) we

obtain the equation of this surface to be

and so, using these equations along with Eq. (2.1) and
(2.16) we can write the energy for a state r which is con-
structed only from 1 bands and 2 bands as

[(5—6y)J +(2y —3)b'+(4 —8y)b l~],L3 2(2y 1}

y & 2 (2.20}

b, '=J+(4y —2)M . (2.21)

Note that, as with Eq. (2.14), we have introduced the pa-
rameter 6 which will be important in deriving the low-

temperature expansion. We now observe that if 6'&0
(y & 2) then Eq.(2. 20) is minimized by the choice 1&

=
—,'.

If b' &0 we obtain lz =0 which, from Eq. (2.16), implies
l ]

= 1 ~ These situations correspond, respectively, to the
period-4 ( ( 2 ) ) and period-2 ( ( 1 ) ) phases. This result is
consistent with the zero-temperature-state diagram. We
have now succeeded in parametrizing the energy of any
state which contains only C& and Cz spins.

Now, these local configurations have the property that
they can be combined to construct an infinite number of
zero-temperature states, many of which have no penodi-
city. It is easiest to visualize these states if one defines an
interface as the surface which bisects adjacent +,—
bonds in a given zero-temperature state. All of the states
on Pz(y &2,0), have translational invariance in one spa-
tial direction. Thus one can treat their construction as
the two-dimensional task of piecing together the projec-
tions of the Cz and Cz clusters onto the plane. Now, the
local octahedron Cz can be used to form flat pieces of in-

terface (or lines in two dimensions} while Cz causes
right-angle bends in the interface. The manifold of zero-
temperature states is thus comprised of some
configurations which have interfaces with right-angle
bends at irregular intervals. This makes it remarkably
diScult to globally parametrize the manifold using
structural variables. However, the energy can still be
written as

L

r

N'(C, ) 2 — +N "(C' ) 1—
2(l+y) 2(1+2y)

J—N"(C )
( + } +¹(C~ )2(1+y) 2(1+y)

(2.23)

III. BREAKING THE DEGENERACY
USING LOW-TEMPERATURE EXPANSIONS

From the previous section it is evident that there are
portions of the parameter space of the Hamiltonian (1.1)
where there is an infinity of zero-temperature-states. Our
task is to study the fate of these zero-temperature states
as the temperature is increased. As mentioned earlier,
one expects one of two possible situations. Either this de-
generacy will be broken at finite temperature, and then
many of the possible states fail to grow into finite temper-
ature phases while the surviving states will evolve to have
some finite region of stability in the phase diagram. Al-
ternatively, fluctuations might be so strong that none of
the zero-temperature states survives at finite temperature
and one then expects the paramagnetic phase to be
present in the limit of low temperature. The surface of
such points of degeneracy in parameter space would then
be a surface of zero-temperature critical points. Howev-
er, providing one can prove, or perhaps argue, that some
sort of Peierls condition exists, we expect the first of these
two situations to be applicable.

We now discuss the problems which can arise as a re-
sult of having a highly degenerate set of zero-temperature

I

states. Recall that along the multiphase line R (y, T=O)
one can form only layered states. In other parts of the
phase diagram two or more octahedral spin clusters are
degenerate, and one is then free to compose zero-
temperature states with any mixture of them. This again
leads to an infinity of states many of them lacking any
periodicity. Where the zero-temperature states are lay-
ered we can use a low-temperature expansion technique,
introduced in Ref. 5, which is based on structural vari-
ables, I,'. In essence this means that we rewrite the free-
energy density as a functional of the fraction of short-
period sequences occurring in the ground states. One
may then seek the global minima of this function for each
choice of the coupling parameters. In the absence of un-
derlying periodic structure in the zero-temperature state
there appears to be no general procedure for generating
the expansion for each such state. In these cases we have
chosen to approach the problem differently. Thus we
perform low-temperature expansion on small clusters of
spins, systematically increasing their size and at each
stage removing those which have a higher free-energy
density than the rest. This is achieved by first removing
those clusters which have higher single-spin-flip energies
than the minimal ones. If a number of clusters at the
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single-spin excitation level have the same excitation ener-

gy then the free energy must be optimized by filling the
lattice using the largest concentration of such sites. If
there is any remaining degeneracy then one must examine
all two-spin-flip clusters occurring in the degenerate man-
ifold and the state which contains the most favorable
ones is selected. In principle, one might have to continue
this process until the whole lattice is filled. However, in
practice one often finds that structural constraints exist
on the zero temperature and one-spin-flip manifolds
which prevent us from forming arbitrarily large and com-
plicated clusters. One way of seeing this is to recognize
that if zero-temperature states are to be built only from
two local octahedra then as one builds larger clusters
comprised of these two spin configurations, one finds that
many avenues are blocked at some cluster size because
one would require another type of octahedral spin cluster
to continue expanding them. Given the applicability of a
Peierls condition we believe this to be a rigorous way to
resolve the degeneracy between all types of state existing
at zero temperature. In practice, however, it may be
difficult to apply because we have no simple systematic
way, except by explicit construction, of determining
those states which maximize the number of favorable
clusters. This is an interesting problem to which, at the
minute, we are unable to find a general solution. Never-
theless, one can by laborious construction deduce fairly
tight structural constraints on the possible minimal free-
energy phases. It is important to note that at least we
have replaced the problem of determining finite-
temperature phases by a clearly defined packing problem.

A. Curve of degenerate states R ( y, T=O)

We begin our calculations by constructing the phase
diagram in the vicinity of the degeneracy curve
R (y, T=O). This study is the least complicated we shall

I

""=aj+p5,
s(2) —atj+pt5

(3.1)

(3.2)

These tables contain all the raw data needed to perform
any type of thermodynamic calculation in the vicinity of
the curve R. ' It would probably be worth exploring the
rather complete information we have about the zero-
temperature states and low-order-expansion coefficients
to carefully study such issues as wetting and wetting tran-
sitions at finite temperature. These results will be
presented in a later paper, but we have taken this oppor-
tunity to present all of the data required for such studies.

We begin our present analysis by examining the free-
energy density to first order. We have

undertake since the zero-temperature manifold is corn-
pletely parametrized by structural variables. We have al-
ready published a brief description of this calculation
but a fuller account is now given and the calculation ex-
tended to higher order.

In Sec. II we showed that, along the curve R (y, O), one
has all layered states which do not contain any 1 bands.
This permits us to enumerate all the local environments
which can be experienced by a spin in any of the zero-
temperature states. These inequivalent sites are labeled

y, o, ~, n.,p and each of them has a distinct excitation en-

ergy cz". The numbers of each type of spin which occur
in a zero-temperature state r defined by the set of
structural variables [I, ) are denoted Nz. These quanti-
ties, along with resulting coefficients of the expansion,a" 'P', are collected in Table I. In Table II we collect
the same information, but this time for all thirty indepen-
dent two-spin-flip excitations. Reference 11 contains all
the appropriate information for three-spin-flip excitations
at y =2. The excitation energies c'"c.' ' are given for gen-
eral y since these two orders are required to completely
break the degeneracy. They are calculated in the form

f = = lnZ-35 —3(1+2y)m+( —25 —2e '+2e ')I +( —25+2e —3e '+e ')1
kTL L 2 3

+( —25+2e '—4e '+2e ') g I, +e
s&4

(3.3)

TABLE I. Excitation energy, degeneracy, and coefficients of expansion for the inequivalent spin sites.

Spin

type Local configuration Excitation energy Degeneracy ao(l, a,P) a, (l,a,P)

(l+2y)a (1+2y)P
4(1+3y ) 4(1+y )

6(1+2y ) 6(1+2y )

6(1+2y ) 2(1+2y )

4(2+ 3y) 4(3y+ 1)

2(5+6y ) 2(6y+ 1)

N

2L'gL,
s~3

L $ (S 4)L, —
s&5

2L Lq
2L'g L,

s&4

L L3

—2
3

1

3
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TABLE II. Energy and coe5cients of expansion for the 30 independent two-spin-flip excitations.

Two-spin flip Excitation energy (1+2y)a' (1+ 2y)P' g (2, a', P)ao g (2, a', P')
02 (2, a', P')

1. Separated

2. in-layer NN

3. in-layer NNN

4. in-layer DN

8[3j+ ( 6y+ 1)m]

4[5j + (12y+2)m]

4[6j +(12y+1)m]

4[6j + (11y+2)m]

pp pairs

20+24y

16+16y

22+ 24y

20+ 26y

4+24y

4+24y

2+24y

4+22y

13
6

—2
3

—2
3

—2
3

26
6

1. Separated

2. in-layer NN

3. in-layer DN

4. in-layer NNN

5. in-plane NN

cross band

6. in-plane NNN

in-band

7. in-plane DN

cross band

16[j+ ( y+ 1)m]

4[3j+ (4y +4)m]

4[4j+ (3y+ 4)m]

4[4j + (4y+ 3)m]

4[5j+ (4y+4)m]

4[4j + (5y+ 3)m ]

4[4j+ (5y+4)m]

ocr pairs

8+24y

4+ 16y

8+26y

10+24y

12+32y

10+24y

8+22y

8+ Sy

8+ 8y

8+6y

6+ Sy

8+8y

6+8y

8+ 10y

19
3

4
3

4
3

4
3

1

3

1

3

4
3

38
3

1. Separated

2. in-layer NN

3. in-layer NNN

4. in-layer DN

5. in-plane NN

in-band

6. in-plane NN

7. in-plane NNN

8. in-plane DN
in-band

9. in plane DN

cross-band

8[2j+(2y+1)m]

4[3j+ (4y+2)m]

4[4j+ (4y+ 1)m]

4[4j+(3y+2)m]

4[3j+(4y+2)m]

4[5j +(4y+2)m]

4[4j+(4y+3)m]

4[4j +(3y+2)m]

4[4j+ (5y+ 2)m]

~~ pairs

12+24y

8+ 16y

14+24y

12+26y

8+16y

16+32y

10+24y

12+26y

12+22y

4+ 8y

4+ 8y

2+8y

4+ 6y

4+ Sy

4+ 8y

4+6y

4+ 10y

1. Separated

2. in plane NN

in-band

3. in-plane NNN

cross-band

4[5j+ (8y+ 3)m)

4[4j+ (8y+ 3)m]

4[5j+(8y+4)m]

po pair

14+24y

10+16y

12+24y

6+ 16y

6+ 16y

8+ 16y

12
3

—2
3

—2
3

24
3
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TABLE II. {Continued).

Two-spin flip

4. in-plane DN

Excitation energy

4[5j+(7y+3)m]

{1+2y)a'

14+26y

{1+2y )P'

6+ 14y

g (2,a', P)ao'

8
3

g (2, a', P')02'

16
3

g (2, a', P')

1. Separated

2. in plane NNN

cross band

4[5j+(8y+2)m]

4[5j+(8y+3)m]

p~ pair

16+24y

14+24y

4+16y

6+ 16y

1. Separated

2. in plane NN

cross-band

4[4j + (4y+ 3)m]

4[5j +(4y+3)m]

u~ pair

10+24y

14+32y

6+8y

6+ 8y

12

3. in plane NNN

cross-band

6[j+(y+1)m] 8+24y 8+8y

4. in-plane DN 4[4j+(5y+3)m] 10+22y 6+ 10y

By examining column 3 of Table I we can see that, in
the limit of low temperature, and along the curve
R (y, T=O), one can always neglect s~ and s4 compared to
the other terms. One then need consider only the three
coefficients of the structural variables,

of first-order phase transitions between ( 3 ) and ( ao )
phases. However, if 5&0 the situation is more compli-
cated. By examining Eqs. (3.4) and (3.5) one can see that
there is a locus where the free-energy-density of 2 bands
and 3 bands is equal:

—2(5—e '+e ')Iz, (3.4)
F() E,4

52 3
—2e +3e ' —e (3.8)

—2(5 —e '+ —,'e ')I &,

—2(5 —e '+2e ') g I, ,
s~4

(3.5)

(3.6)

g(1) 0
3q QO

(3.7)

One can see that it is not possible to mix L sequences and
3 sequences to make a new phase which is stable along
this boundary. In addition (see Sec. IV), the surface ten-
sion between ( ao ) and ( 3 ) can be shown to be positive
along the curve (3.7}. Clearly Eq. (3.7) represents a curve

by expanding the exponentials in Eq. (3.3) one can see
that for 5&0, the coefficients of I& and g, &41, are dom-
inant. Furthermore, from Eqs. (3.5) and (3.6) one can de-
cide whether the coefficients of the structural variables
are positive or negative. If the coefficient of /& is positive
then the coefficient of g, 41, will be less positive. Con-
sequently it is more favorable to maximize I~.

On the other hand, if the coefficient of the 3-band
structural variable is negative (for 5&0) then it is more
favorable to minimize the sum g, &41, . In a large cubic
system of side L the coefficient l =1/L is the minimal
structural variable. Thus, for 6&0 and infinite system
size (L~ ao ), we find the period -6 or ( 3 ) phases to be in
equilibrium with the ( 00 ) phase along the coexistence
curve,

Now it is possible to construct an infinite number of
phases comprised only of 2 bands and 3 bands which,
along the curve (3.8), have degenerate free-energy densi-
ty. Clearly we must proceed to higher order in the spin-
flip calculation in order to resolve this degeneracy. How-
ever, our task is now somewhat easier since we now need
to consider those states which contain only 2 bands and 3
bands. Thus, in Table II, we have presented all the infor-
mation required to write the free-energy functional to
second order. As pointed out in Sec. II, we are able to
eliminate all but the structural variables of 2- and 3-band
sequences in the free-energy density contributions, b,f'"',
arising from the nth-order spin-flip analysis,

gf (n) gf (0) +gf ())+ I( f(2) (3 9)
I

LkT „0
hf' '= —3(1+2y)m +2—,'5 ——', 512,

gf (f) y y &(l,a, p)I &a p

a, P p

I( f ( — g g +(2,a p)1 xayp.
a', P' p

(3.10)

(3.11)

(3.12}

where the coefficients a'"' '~' can be read from Tables I
and II. One now has the free-energy-density for any J, y,
and 5 as a linear functional only of l2 and l2& subject to
the constraints [see Eqs. (2.8) and (2.9)]
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12 0, 13=—,
' ——31' 0 or 12

23 & 22 2 23

l =—' ——'I —I 0.33 3 3 2 23—

(3.13)

As Fisher and Selke pointed out, the task of minimizing
(3.9) subject to constraints (3.13) is a standard linear pro-
gramming task. Indeed, at each order of the low-
temperature expansion one will find that one has a
higher-dimensional linear programming problem. The
appropriate extensions of the inequalities (3.13} forin a
convex polytope P„in the space of the structural vari-
ables. Generally one expects to find that the extremum of
the functional lies on a unique vertex of the convex po-
lytope P„.However, the location of the vertices of a con-
vex polytope may in itself be a nontrivial problem. For
the structural space defined in (3.13) the polytope is two
dimensional and Fisher and Selke have found the vertices
to be

=(—,', —,'), (23)

=(-,',0), (»

(3.14)

(3.15)

(3.16)

where, using the definitions in (2.16), we have also
marked the thermodynamic phase corresponding to that
vertex of the polytope.

We must now check explicitly to see whether the free
energy is optimized at these vertices and to do this we
again appeal to an argument given in Ref. 5. One of the
vertices of the polytope, Eq. (3.15), represents a new
phase, ((23)), which was not resolved in the first-order
calculation. We are now interested in the possibility that
it can appear along the curve which defines the equality
of free-energy density between ( 3 ) and ( 2 ) phases. By
using the values of lz and l23 for the (2) and (3) phases
in the equation for free-energy-density, Eq. (3.9), we find
the condition that the coefticient of the 2-band structural
variable must vanish. Consequently, along the curve
defined by this condition, the free-energy-density will be
optimized by that choice which maximizes the term in
the 23-band structural variable.

The reader may now make reference to Table II, where
one sees that the coefficient of the leading 123 term is posi-
tive. This means that its contribution to the functional
(3.9) is negative. Consequently, the functional (3.9) is op-
timized when 123 =0, that is, it is never favorable to have
23 bands present in a thermodynamic phase along curve

(3.8). ~e conclude that only three distinct thermo-
dynamic phases arise from the curve R (y, O). Note that
there are a number of potential weaknesses in the argu-
ments above. For example, it is expected, but not certain,
that the extremae of the linear functional defined on the
convex polytope are simply the vertices of that polytope.
We have attempted to check our conclusions numerically
and have obtained the same answer as above. However,
given the rather unfamiliar nature of the model and the
rather remarkable conclusions implied by the above
analysis it is probably worth seeking more rigorous
justification of the linear programming analysis.

The above results for the surfaces of infinitely degen-
erate zero-temperature states R (y, O}, (y, 0) (y) 2) are
remarkable. They indicate that in each case only one out
of a large number of degenerate zero-temperature states
is stable at finite temperature. In the ANNNI model one
has the same zero-temperature manifold as at R (y, O). In
that case, however, an infinite number of phases spring
from the degeneracy and one then speaks of a multiphase
point. Furthermore, the mean-field theory is known to
break the degeneracy at the ANNNI multiphase point
correctly. In the present isotropic model this is not the
case. The ferromagnetic and (3) phases are well de-
scribed by mean-field theory, but one predicts in addition
many other layered phases which are precluded by a
second-order low-temperature analysis.

The conclusions of our present analysis are clear. In
the region defined by R (y, T), with T small, we have only
four phases. There are the positive and negative magnet-
ized ferromagnetic phases (which are in first-order coex-
istence with the (3) phase) and the (2) phase which also
has a first-order boundary with the (3)-phase. In Ref.
11 we extend the above analysis to third order in spin
flips.

We now turn to a calculation which elucidates the
phase structure around P&(y, T=O}. Although the calcu-
lation is different from the one above, the basic strategy is
the same as we have already used.

B. Curve of degenerate states P2(y, O); y &2

The curve Pz(y, 0) is another of the iinportant regions
of parameter space where there is a high degree of degen-
eracy of the zero-temperature states. The situation at
y =2, that is at the point P2(2,0), is complicated and we
return to this matter later in this section (Sec. III C). For
y & 2 the zero-temperature states are composed only of

TABLE III. Single-spin-fiip excitation energies for the curve Pz(y )2,0).

Type of excitation

a: + —+ —+
b ——++—
c —++—+
d' ++ +
e. ++—++

Ep

61

E2

E,4

Excitation energy
(2y —1)a

12y —10
12y —10
12y —12
12y —8

12y —6

(2y —1)P

6—4y
2+4y
4+4y
4—4y
2 —4y

Degeneracy
N

2L 12L

2L21]L
Lz&2L
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TABLE IV. Data for two-spin-Rip calculation.

ao Q2 &12 0122 al»2 a»22 &1212 a1222 »112 (2y —1)a (2y —1)P

1. Separated

2. NN in layer

3. 2NN in layer

4. diag. in layer

5. NN, IP,CB
6. NN, IP,C2BS
7. diag, IP,CB

25
2

+4
+4
+4
+1
+2
+8

+2
+2
+1
+1
+4

+2
+2
+1
+1
+4

25
2

+2 +2

aa pair
—6

+1
+1
+4

—20+ 24y
—16+16y
—18+24y
—20+ 26y
—24+ 32y
—18+24y
—20+ 22y

12—8y

12—Sy
10-Sy
12—10y

12—8y
1O—Sy

12—6y

1. Separated

2. NN, IL
3. 2NN, IL
4. diag, IL
5. NN, IP,IB
6. NN, IP,CB
7. 2NN, IP,CB
8. diag, IP,IB
9. diag, IP,CB

25 —25

+4
+4
+4
+1
+1
+2
+4
+4

bb pair
—20+ 24y
—16+16y
—18+24y
—20+ 26y
—16+16y
—24+ 32y
—22+ 24y
—20+ 26y
—20+ 22y

4+ 8y
4+ 8y
2+ 8y

4+6y
4+ 8y
4+ 8y
6+ 8y

4+6y
4+ 1Oy

1 ~ Separated

2. NN IL
3. 2NN IL
4. diag, IL
5. NN, IP,IB
6. diag, IP,IB

+1
+4

cc pair
—24+ 24y
—20+ 16y
—22+ 24y
—24+ 26y
—2O+ 16y
—24+ 26y

8+8y
8+ 8y
6+ 8y

8+6y
8+8y
8+6y

1. Separated

2. NN, IL
3. 2 NN, IL
4. diag, IL
5. NN, IP,CB
6. NN, IP,C2BS
7. diag, IP,CB

dd pair
—6

+1
+1
+4

—16+24y
—12+ 16y
—14+24y
—16+26y
—20+ 32y
—14+24y
—16+22y

8 —8y
8 —8y
6—sy
8- 10y
8—8y
6—8y
8 —6y

1 ~ Separated

2. NN, IL
3. 2NN IL
4. diag, IL

13
2

13
2

+2
+2

ee pair
—12+24y
—8+ 16y

—10+24y
—12+26y

4 —8y

4 —8y
2 —Sy

4—10y

1. Separated

ab pair
—20+ 24y

1 ~ Separated

2. NN IL

a, c pair

2 —22+ 24y 10

—20+ 24y
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TABLE IV. (Continued).

Qo Q2 Q)2 Q»z Q iz2 Q»&z Q»22 Q&2&z Q &zz2 Q»»2 (2y —1)a (2y —1)P

1. Separated

2. NN, IP,CD
3. 2NN, IP,C2BS

4. diag, IL

Qd pair

10 —18+24y
22+ 32y

—16+24y
—18+22y

10—8y
10—Sy

8 —8y
10—6y

1. Separated

Qe pair
—16+24y 8 —8y

1. Separated

2. NN, IP,IB
3. NN, IP,CB
4. diag, IP,IB

12

bc pair
—22+ 24y
—18+ 16y
—24+ 24y
—22+ 26y

6+ 8y
6+ 8y

8+8y
6+6y

1 ~ Separated

2. 2NN, IP,CB

bd pair
—18+24y
—20+ 24

1. Separated

2. 2NN, IP,CB

be pair

+1 +1
—16+24y
—18+24y

1. Separated

2. NN, IP,CB
3. 2NN, IP,CB
4. 2NN, IP,C2BS

5. diag, IP,CB

13

cd pair
—2 —20+ 24y

—24+ 32y
—22+ 24y
—18+24y
—20+ 22y

8

8

10

6

8+2y

1. Separated

2. NN, IP,CB
3. 2NN, IP,CB
4. diag. ,IP,CB

—12

+2
+2
+8

ce pair
—18+24y
—22+ 32y
—20+ 24y
—18+22y

6

6

8

6+2y

1. Separated

de pair
—14+24y 6—8y

C& and Cz and we are free to make only layered phases
with 1 bands and 2 bands. This means that the method
of structural variables can be used to study the problem.
The only difference will be that our analysis is based on
different structural variables, I, , I, , I», 1»„l», , and so
on.

The single-spin-flip excitation energies for the curve
Pz(y )2,0) are given in Table III. Table IV contains all
the relevant data for the two-spin-flip calculation.

Note that the structural coefficients in column three of
Table III are not all independent. They are related by
Eq. (2.16}. There are, in fact, only three independent
structural coefficients at this order of the expansion.
Similarly, the structural coefficients in Table IV can be
reduced to a minimal set.

From Eq. (2.20) and the information in Table I we can
construct the free energy density up to the one-spin-flip
level. The result is
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f-bf '+6f "=[—I/(4y —2)][(5—6y}j +(2y —3)b, ]—e '+(26 2—e '+2e ')i2

+(2e ' —e ' —2e '+e ')I 2+( —e '+2e ' —e ')I»2

(y) 2 and b, =b'/kT) . (3.17)

Now, if 6 is positive it is clear that the functional is
maximized by the choice 12=—,

' and one obtains the (2)
phase. If 6 is negative we have 12 =0 which then implies
the ( 1 ) phase.

As for the previous analysis, to proceed to higher order
we must now construct the convex polytope from the
structural variables 12, 1&2,1&i2, l, z2, constrained by Eqs.
(2.17). The vertices of this polytope correspond to the
states which may be stabilized at second order in the
spin-flip calculation. The linear programming analysis
was carried out by taking all possible linear combinations
of the structural variables with coefficients 0,+1. This
procedure, while usually reliable, can result in vertices
being missed, but we have attempted to check our results
in various ways. The six vertices are given in Table V
and we have also marked the thermodynamic phase to
which they correspond.

Now consider the locus defined by the equality of the
free-energy-density of ( 1) and (2) phases,

b,"'-e "-e (3.18)

a'" =2e "+e
2, 12

and also curve (3.20),

(3.19)

TABLE V. Structural variables for the six vertices, including
the thermodynamic phase.

Vertex phase

&1)

&12&

(112)
(122)
( 1122)

We see that the coefficient of the structural variable for 2
bands vanishes and consequently the free-energy density
need be optimized only with respect to 1,2 and I„2.Now,
at low temperature the leading term in the coe%cients of
these variables is the exponential of c.o and, since this
gives a positive contribution, we can see that it is more
favorable to maximize l, 2 than l»2 ~ Thus along the
curve (3.18) the (21) phase is more stable than the
( 211 ) phase.

The two other pseudoequilibria which must be exam-
ined are as follows. The curve along with the (2) and
(21) phases have the same free-energy density [Eq.
(3.19)],

(3.20)

along which the ( 1 ) and ( 21 ) phases have equal free-
energy density. These are regions where new phases may
be stabilized at second order in our calculations.

Now along the curve (3.19) we find that the phase
(221) has equal free energy to the (2) and (21) phases.
Consequently one must proceed to higher order to
reso1ve this degeneracy.

However, along the curve (3.20) one finds that the
free-energy density of the (211) phase is higher than that
of the ( 1 ) or ( 21 ) phases. We therefore conclude that
no new phase can appear between the ( 1 ) and ( 21 )
phases when the temperature is very low.

Now, by an argument similar to that around Eqs.
(3.9)—(3.12) we can show that, along the locus defined by
the equality of the free energy density of (2) and (21)
phases, one need only consider the leading behavior of
the coefficient of the structural variable i&2, . By consult-

ing Table IV one finds that the excitation energy for the
nearest-neighbor, in-plane, in-band pair of spins is the
lowest for all y & 2.

The coefficient from Table IV is positive, so it is never
favorable to make l22, nonzero. We conclude, therefore,
that the (2 1) phase is not stable in the vicinity of
Pz(y, O) for y) 2.

The topology of the phase diagram in this region is
quite similar to that around R(y, O). Thus, at low tem-
peratures, one has the (2) phase for b positive while for
5 negative the (1) phase is favored. Between these two
phases there arises a third, the (21) phase, which it may
be shown, is separated from them by first-order phase
transitions.

C. Point of degenerate states P2(y, 0); y (2
We next turn to the low-temperature analysis along the

sheet P2(y, O) (0(y(2). Recall from Sec. II that the
zero-temperature states are complex, many being
aperiodic in two of the three lattice directions. The ener-
gy of these states depends only on the number of C, and
C2 spins and is given by Eq. (2.23). As pointed out at the
beginning of Sec. III, although we no longer have any
structural variables one can still solve that part of the
problem which involves resolving between different free-
energy densities. In principle, this involves the systemat-
ic construction of all one-spin-flip clusters' which can be
composed from the allowed local octahedra. One then
deduces which of these have the lowest one-spin-flip ener-
gy. This is a straightforward if tedious task. However,
the second part of the problem is more difficult to solve.
Using the optimal one-spin-flip cluster or clusters one
must construct that complete filling of the lattice which
maximizes the number of optimal clusters subject to the
constraint that the zero-temperature energy be minimal.
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Thus, the zero-temperature energy may be written as a
linear combination of terms from high-energy sites, these
having optimal one-spin-flip energies, and low-energy
sites which have the least favorable spin-flip energies.
For a fixed total ground-state energy this arrangement
yields the maximum number of favorable one-spin-flip ex-
citations in a structure. However, it may not be possible
to form a phase with these fractions of different sites and
the construction must be generalized somewhat. Alterna-
tively, it may be possible to make more than one phase
with the appropriate fraction of high- and low-energy
sites.

The first problem is in principle resolvable by introduc-
ing some sites which have the next highest site energy.
The introduction of such sites will also force us to reduce
the number of optimal one-spin-flip clusters, but if they
permit complete tiling of the lattice then providing the
state so formed is unique it will be the thermodynamic
phase.

If at any stage of this construction it is possible to form
more than one structure which conforms to the con-
straints implied by the ground-state energy then one must
examine each of these phases at the two-spin-flip level.
The procedure is analogous to the one described above,
that is, we maximize the number of optimal two-spin-flip
clusters subject to the fixed ratio of one-spin-flip clusters.

This procedure is in principle exact and would permit
us to resolve the degeneracy of the zero-temperature state
manifold of any regular Hamiltonian. In our experience
the main challenge in carrying out the construction is of
a geometrical nature since it may be difficult to find a
tiled lattice configuration with a fixed fraction of local
clusters.

In the present case, that is, along the sheet P2(y, O),

y &2, we have only C& and C2 local octahedra available
to us. However, there are infinitely many zero-
temperature states which can be formed from these sites,
so we begin constructing all possible one-spin-flip clusters
with these octahedra and decide which are optimal.

There may be shortcuts to the construction of the op-
timal one-spin-flip cluster.

In the present case one finds that the optimal one-
spin-flip clusters are those given below, in Figs. 2(a) and
2(b). Now the thermodynamically favored state in this
region is that phase which contains the maximal number

+ + +
+ +
+ + +

+ +
+ + +

+
+

A1

FIG. 3, Here we present the best solution we have been able
to find to the problem of maximizing the number of optimal
clusters [Dl and D2 of Figs. 2(a) and 2(b)] present in a phase.
The structure exhibited here has translational invariance in the
third direction.

EI = gN;E,„, (3.21)

where N; is the number of single-spin-flip cluster of type i
and E,

„

is the energy of extended cluster.
The total energy calculated from both equations must,

of course, be the same. Also we know that the extended
cluster with the highest site energy results in the lowest
single-spin-flip-excitation energy. Thus, since the optimal
thermodynamic state is constructed by using as many
low-energy-excitation clusters as possible, one expects
that it is more favorable to use these in conjunction with
the highest-energy-excitation (or lowest ground-state) en-

ergy clusters. Using only these extreme clusters one
hopes to optimize the number of favorable ones. The best
phase we have been able to construct ( A 1) is illustrated in
Fig. 3. In this instance it is possible that another phase
with a larger number of optimal single-spin-flip clusters
does exist.

of spin-flip clusters D1 and D2, and is comprised only of
local octahedra C, and Cz.

We first note that the zero-temperature energy can be
equally well described in terms of the clusters C„orthe
single-spin-flip clusters. For practical purposes we have
always chosen to construct the zero-temperature states
using the octahedral clusters, C„,since this is a simpler
task. However, the argument which follows shows that if
one is dealing with the problem of optimally packing
space with the clusters in Fig. 2 it may be helpful to con-
sider zero-temperature states as being comprised of the
more extended clusters D1 and D2.

Now to each of the clusters in Fig. 2, one can assign a
local energy, the total energy of the state being given by

(b) D2

FIG. 2. The x-y projections of the two optimal one-spin-flip
clusters (D1 and D2) in the region Pz(y, 0), y(2. All zero-
temperature states are transitionally invariant in one of the
three spatial directions so one need only present information on
the planar projections of the states and clusters.

D. Point of degeneracy, P2 ( y =2,0)

We next turn to the special point on the zero-
ternperature diagram, Pz(2,0). From Eq. (2.1) and (2.15)
one finds that there are three degenerate octahedral clus-
ters C„C2,and C2 at this point. Consequently, there are
many new zero-temperature states at P2(2,0) which could
not be formed along P2(y, O) for y) 2. We now analyze
the phase behavior at finite temperature using the same
argument as that given in the previous section. Thus the
local environment with the highest spin-site energy has
the lowest one-spin-flip energy. In the present case we
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find that there are six degenerate one-spin-flip energies
(E, =10/3j). The clusters D3 D—9 to which they corre-
spond are shown in Figs. 4(a) —4(f}. In Fig. 4(g) we illus-
trate that cluster which has the highest one-spin-flip ener-

gy (s= —20/3j) and consequently the lowest ground-
state site energy.

Now, as before, one expects that the thermodynamical-

ly favored phases are constructed by using as many of the
optimum clusters [Figs. 4(a)-4(e)] in conjunction with the
lowest site energy cluster [Fig. 4(g}]. We require that the
total energy per spin be —

—,
' j, a result which one can ob-

tain from Eqs. (2.1) and (2.15) with the value y =2. We
now wish to determine that largest fraction of optimal
spin-flip cluster, b, and lowest extended site energy clus-
ter which satisfies the equation for the zero-temperature
energy:

5 j +b( lo)j

1+b (3.22)

This equation has the solution b =—', . Consequently,
the favored thermodynamic phases will have three op-
timal one-spin-flip clusters to every two low-ground-
state-energy clusters. The maximal multiplicity that the
optimal spin-flip clusters can achieve is —,'L . Note, how-

ever, that we have no a priori reason to suppose that a
state with this multiplicity is unique, though we believe it
to be so.

If the phase was not unique then our present strategy
could still, in principle, be made exact. This would entail
collection of all those structures which are comprised of
—',L optimal spin-flip clusters and —', L minimal ground-
state-energy clusters. One would then check to see which
of these phases contain optimal two-spin-lip clusters. If
there is more than one such state then the degeneracy
would be resolved by establishing which state contains
the maximum number of optimal-two-spin-flip clusters.
As mentioned at the beginning of this section, this pro-
cedure could be continued until one reaches sufficiently
extended spin-flip clusters which remove all degeneracies
that are not rigorous consequences of the Hamiltonian it-
self.

However, in the present case we believe the phase ( A2)
shown in Fig. 5 to be an equilibrium one. The complete
resolution of such issues must await better understanding
of how to achieve optimal packing of a small number of
specified clusters.

We now pause to review what thus so far been
achieved by our analysis. The low-temperature phase di-
agram in the region of R {y,O), Pi{y,O), Pi{2,0) has been
constructed. In most of the other regions of the zero-
temperature-state diagram the zero-temperature states
are unique or the degeneracy is a fundamental conse-
quence of the symmetries of the Hamiltonian and persists
when fluctuations are included in the analysis. There is,
however, one rather difficult region of degeneracy found
between the lines J+6M=O and J+2M=O. y=2 in Eq.
(2.2}, where the clusters Cz and C2 have the same
ground-state energy. It transpires that this degeneracy is
never broken at finite temperature by mean-field (saddle-
point) calculations or even at the one-loop level. Thus

the low-temperature expansion may be the only practic-
able technique to rigorously study this part of the phase
diagram.

E. In the region of degeneracy P~ Qz(b, , r, T =0) for &&0

As a prelude to our study of the more difficult problem
[P2Q2(b„v.=O, T=0),r=y —2] we now construct the
low-temperature phase diagram near this line of degen-
eracy, but for y (2.

We shall again use Eq. (2.20} (with y=2) to define an
important parameter in the expansion. As before,

Ql
=j+6m .

kT

We also define the parameter

(3.23)

(3.24)

It is possible to examine the phase diagram in the vi-
cinity of P2Q2(4, r, T=O) which is defined as the strip in
zero-temperature phase diagram bounded by the lines

J+2M(1+y) =0,
J +2M =0,

(3.25)

(3.26)

when y & 2, and between the lines,

J +2M ( —1+2y ) (3.27)

E =4c' —4Jo. &o2 . (3.28)

Since the site energies of both the ( 2:2:~ ) and
( 2:2:~ )D phases are equal so are their one-spin-fiip ener-
gies. In turn this means that only the second term in Eq.
(3.28) can resolve between two-spin-fiip excitations in the
two phases. However, since the two phases are con-
structed from the same octahedral clusters, both must

and Eq. (3.26) when y ~ 2.
When y & 2 the unique zero-temperature state is the

( 1) phase. When y & 2 there are only two possible zero-
temperature states. These are the (2:2:~) phase and
(2:2:ao )D diagonal phase. We can resolve the degenera-
cy between these by the argument below.

In brief, the result of that argument will be that the
(2:2:00 ) and (2:2:~)D have equal free-energy-densities

up to three-spin-flip excitations. At fourth order the de-
generacy is broken, and we find that the ( 2:2:~ ) phase is
always favored.

We begin by recalling that the zero-temperature energy
can be calculated using either the octahedral clusters C„
or the extended (single-spin-fiip) clusters D When the.
extended clusters are used one usually finds a number of
inequivalent site energies in any phase. However, one
can show that in the present case both phases have only
one type of site energy. This introduces some simplifying
features into our arguments. In particular, we know that
spin-flip excitations of any order are given by n times the
disconnected single-spin-flip energy of a site, minus the
contributions from directly coupled bonds in the cluster.

For example, the two-spin-flip energy for nearest-
neighbor sites 1,2, is given by
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have the same number of nearest-neighbor bonds of
(+,+), (+,—), and ( —,—) types. In addition, they also
have the same number of diagonal-neighbor and linear-

next-nearest-neighbor bonds. The conclusion of this ob-
servation is that the two phases have equal numbers of
equal excitation energy two-spin-flip clusters. Clearly no
degeneracy in thermodynamic states can be resolved up
to and including two-spin-flip excitations. For three-
spin-flip clusters a similar argument holds. One can actu-
ally exhaustively construct all independent triples of
spins in the two phases but this is a lengthy task and we
merely report the conclusion that there are equal num-
bers of a given excitation cluster in both phases.

Now proceeding to fourth order in spin-flip excitations

we are able to break this degeneracy in favor of the
(2:2:~ ) phase. The argument is a little involved because
we do not wish to explicitly construct a table of the mul-
tiplicities of all four-spin-flip excitations. It is preferable
first to eliminate all clusters which can be seen to have
a priori equal multiplicities in both phases. The rules
which may be formulated to achieve this are as follows.

(a) If the xy projection of any four-spin cluster, or for
that matter any geometrical n-mer, has the same multi-
plicity in the plane of either of the phases (2:2:~) or
(2:2:~ )D, then this cluster will have the same multiplici-
ty in the full three-dimensional zero-temperature state.
This argument takes advantage of the translational sym-
metry found in the z direction. The number of dimen-

TABLE VI. Clusters and their excitation energies in terms ofj and h.

Cluster type

1 flip excitation energy
j+6m =5 j+2m =6
—2j & 6 &0 0& 6 &2/3j Cluster type

1 flip excitation energy
j+6m =5 j+2m =6
—2j &5&0 0&6&2/3j

4~ 40J 8g
3 3

4c—8j —8h 13. 4c—
3 J +

3
5 4e —10J +6h

00
4c—

3 j+ 3L 4c —12j+4L
14.

—0—
4Q

3 J +
3
5 4c—1Oj +6h

3. 4c —
3 j+ 3h 4e, —12j+4h 15. 4c——'8 j+ 3h 4c—10j+6h

4. 4c, —3'j +
3

b 4e —12j +4b,

16. +0+ —0+
—0 — or +0—

4c—'3 j+ '3 6 4e, —12j+125

5. ++
++

4~ 28J 8g
3 3

4c—4j —86 17. 4c, ——'j+ '3 6 4c —10j+106

6. 4g —26j+—b, 4e, —10J+26
18. + 4B—130J + 1305 4e —10J + 106

7. 46 —236 J + 23 6 46 10J +26
19. 4c —'3 j+ '3 5 4c—10j+105

4~ 24 J3
4c —8j

20. 4c —'3 j+ '3 5 4c—10j+106

9. 4~ 24 J 4c, —8j
21.

+0—
4c—2j —2h

10. 4C —230J + 83 d 4K —12J +8k

22.

0
++

4c, —2j —2h

12. +

4c ——,j+ 35 4c—12j+8L

4e, —3 j+ 3h 4c—12j+8L

0
++

23. +
0—
+0+

or 0—
—0+

4c—8j+—'6
3 3

4c, —8j +85
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(a) D3 {b} D4

{c} D5 {d) D6

{e) D7 (f) D8

(g) D9

FIG. 4. In (a)-(f) we present the x-y projections of the six op-
timal one-spin-flip clusters (D3-D8) for the point of degenera-

cy P2(2,0). Since all of the zero-temperature states under con-
sideration are translationally invariant in the third spatial direc-
tion one need consider only the x-y projections of the spin-Sip
clusters. In (g) we present the extended cluster (D9) which has a
highest one-spin-flip energy, and lowest ground-state site ener-

directions resulted in essentially a one-dimensional prob-
lem.

(b) Any connected four-spin cluster which lies along ei-
ther the principal x or y directions of the lattice has the
same multiplicity since the spin sequences are the same in
both phases ("++——++——").

(c) Any connected four-spin cluster which lies along
lattice diagonals in the xy plane has identical multiplici-
ties in both phases. The reason is similar to that for rule
(b).

(d) If to a given three-spin-flip cluster we add only
linear-next-nearest-neighbor (LNNN) bonds, then the
multiplicities of that composite cluster must be the same
in both phases. This results from the observation that
only unlike LNNN bonds exist on the xy plane.

(e) Any cluster with only LNNN bonds, or at most one
nearest-neighbor (NN) or diagonal-neighbor (DN) bond,
has the same multiplicity in both phases.

(I) A connected three-spin cluster which lies along an x
or y direction and which is terminated with a spin pro-
ducing a NN and DN bond has the same multiplicity in
both phases.

We must now explicitly construct all remaining four-
spin clusters which are not rendered irrelevant by these
rules. In Table VI we collect these clusters and their ex-
citation energies in terms of the variables j, and b, of Eq.
(3.23).

Now, for small values of 6 it is clear that the dominant
fourth-order spin-flip cluster is given in entry 1 in Table
VI. One can readily see that the multiplicity of this clus-
ter is different in the two phases. This means that al-
though the leading terms at fourth order in the free-
energy density of the two phases will have the same ex-
ponential behavior, their coeScients are different. Now,
the difference in free-energy densities at 5 is

sions in which translational symmetry exists reduces the
number of dimensions in which the problem must be
solved. This simplification occurred once before at the
degeneracy point R where translational symmetry in two

f (2:2:~)D f(2:2:~}——
—,'e—'+

where the ellipsis represents higher-order terms, and

=4& 13—J
28 .E= J 3

(3.29)

FIG. 5. That phase {A2) which is optimal or equilibrium at
the point P2{2,0). The phase is translationally invariant in the
third spatial direction.

and one expects the {2:2:ao) phase to be favored. We
have shown that this result holds for the entire region,
rather that just small A. The argument is not trivial but
follows from careful examination of Table VI. Actually,
to our knowledge there exists no rigorous proof that one
can resolve between free-energy densities only on the
basis of prefactors of exponentially small quantities. In
most low-temperature analysis one is able to resolve on
the basis of different exponents arising from different
spin-Rip energies. Since the Pirogov-Sinai theory does
not apply at the present degeneracy region we merely as-
sert the suSciency of (3.29) to establish that the equilibri-
um phase is ( 2:2:~ }.It seems very unlikely that this as-
sertion will turn out to be incorrect.

We have now shown that for ~&0 and ~(0 the equi-
librium phases are, respectively, the ( 1 ) and {2:2:~ )
phases. The situation at v=0 is more subtle since here
there is an infinite degenerate set of zero-temperature
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states. One might expect that, as before, one or more of
these phases spring from this zero-temperature-state
manifold and there would then be some stable phase in-
serted between the ( I) and (2:2:~) phase. We will
soon show this expectation to be incorrect. In fact, at
finite temperatures ( 1 ) and ( 2:2:ao ) phases are found to
be equilibrium on a sheet of first-order phase transitions.

The situation is now clear. Along the line
PzQ3(b„r,T=O) the clusters C2 and C2 are energetically
degenerate and an infinite number of ground states can be
constructed. For y & 2, that is, within the strip
P2Q2(b„r,T=O) one has only the ( I ) phase. For y &2,
that is within the strip P2Q2(b„~,T=O), the twofold de-

generacy is broken in favor of the (2:2:~) phase. Our
next task must therefore be the examination of the phase
structure which, at finite temperature, arises from the
line P2Qz(b, ~=0, T=O).

F. Region of degeneracy for P2Q2(h, r=o)
The following arguments are again based on the fact

that there is only one single-spin-flip excitation energy in
each of the zero-temperature states found along the line
P2Q2(b„r=O). This result can be checked by explicitly
constructing all single-spin excitation clusters. We ex-
pect the form of the free-energy density up to one-spin-
flip order to be

f = —JV2 ——',j+—+ )rh )rj———
( 1 ——JV2 )

——',j+—

(C2)
JV2=N

L

where a& and b& are some complicated configuration-
dependent functions of N ( C ~ ) and other variables g.
Note that the coeScients a& satisfy the relation

gai =1 . (3.31)

f = —JV, ——',j+ + (re, ,
'—rjl— ——

—(1—JV )
——'j+—+e

6
(3.32)

From formula (3.30) we can see that at zero tempera-
ture if N(C1)=1, we obtain the ground-state energy per
spin of the (2:2:~) phase while, if N(C2) =0, we obtain
the ground-state energy per spin for the ( 1) phase.

We now seek to minimize the free-energy function
(3.30) with respect to N(C2) for all —e '&r&e'(r —0).
Retaining only terms to 0 (E ') we find

+e E g (JV g) k. 2'

c= —4 ——j+-, ~

6 (3.30)

For rl )0 this is optimized by the choice JV2=1 which
implies that the ( 1) phase is stable. For i) & 0 JV2=0 and
the (2:2:oo ) phase is found to be favored. However,
when g=0 we find that the zero-temperature states are
still degenerate to one-spin-flip order. The two-spin-flip
analysis would yield a correction of form

b f' '=e '(2Az+2JVz)e ~g C))e ' +(3JV2+4JVz)e' "' 'g C2&e

(2~3)(j a) y c e 3~+(JV)+3JVo}e (2~3)(J a) y c e 4i

+(3JV)+2JVo) —(4/3)(J —a) y C 5k+( JVo+ JV1 )
—4J y C 6). + y f (3.33)

At ~=0 the dominant term which has a dependence on
the zero-temperature state is

const(3+ r12}e' (3.34}

This term is maximized (and hence the free-energy densi-
ty optimized) when JV2 = 1, which implies that the ( 1 )
phase is most stable. When ~ is a small positive number
of 0(e ') one again obtains the ( I ) phase as the equilib-
rium phase. When v is sufficiently negative the (2:2:~ )
phase is stable. We now conclude that no phase besides
the ( I ) and (2:2:Qo ) phases are stable in the vicinity of
the line PzQ3(h, r=O}. The ( I) and (2:2:&a ) phases are
in equilibrium and at finite temperatures P2Qz(b, , r, T) is
a sheet of first-order phase transitions which, near 6=0,
bends in the negative-~ direction.

G. Point of degeneracy P2 and phase behavior P2(h, , v, T)
as a function of h, , v, and temperature

The reader may recall from earlier descriptions in Sec.
III C that we were able to analyze the behavior in the vi-
cinity of the point P2(y =2,0) and showed that only three
phases, respectively, (2:2:ao ), A2, and ( 1) are found as

y passes from y &2 to y) 2 through the special value
@=2. In our earlier discussions we fixed 5=j +6m=0
so we did not consider the possibility that on the plane
y =2 other phases might be inserted between the ( 1 ) and
A2 phases or A2 and (2:2:oo ) phase as b, is varied. In
fact, we have examined P2(b„r=y—2, T) only as a func-
tion of 5 or ~ for fixed values of ~ or 6, but not in the vi-
cinity where ~ is very small and 6 is arbitrary. Actually,
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one can make an argument, similar to those of earlier sec-
tions, that no phase besides ( I ), ( 2:2:ao ), ( 2 ), and A2
are stable in this region. In this case we have not been
able to make our arguments rigorous.

However, we believe the phase A2 grows as a conelike
protrusion at r=0 (y=2) from the point Pz(0,0,0). In
this respect Pz(0,0,0) is a quite remarkable point in the
phase diagram. With further effort in our researches it
may be possible to prove the uniqueness of the phase A2
which springs from the degeneracy point Pz(0,0,0).

IV. GENERAL CONCLUSIONS

A low-temperature analysis was carried out to break
the degeneracy between periodic and aperiodic states on
an infinitely degenerate zero-temperature-state manifold.
We were reminded that there may be many degenerate
states of a Hamiltonian but that many never appear on
the finite-temperature phase diagram. The Hamiltonian
itself depended only on short-range forces, but when fluc-
tuations are introduced spins are effectively coupled
across longer-length scales. This is the reason that the
degeneracy between zero-temperature states breaks as
one includes more extended spin-flip excitations. For the
low-temperature analysis of aperiodic states it transpires
that, since the couplings in the Hamiltonians are fairly lo-
cal, the information needed to carry out spin-flip calcula-
tions is simply local information. Consequently, even if
one does not have the simplifying features of regularity
and, consequently, structural variables, it is still possible

to make progress. Indeed, one of the lessons one learns
from the study of this model is that degeneracy can be
completely resolved simply by considering successively
larger clusters in the zero-temperature states and decid-
ing which contribute the lowest free-energy density
terms. In this way one can, in principle, completely re-
move the degeneracy and provide a description of the
equilibrium low-temperature phase. The basic philoso-
phy underlying the analysis of aperiodic states is a little
different from the structural variable analysis of periodic
states. In the former case one does not know the symme-
try of the state prior to starting the analysis. Actually,
tighter constraints are placed on the phase structure at
each successive spin-flip order. However, it is sometimes
still not possible to explicitly construct the phase without
solving a rather diScult packing problem. This packing
problem can often be overcome by explicit construction.
It is, in any case, a task that is suSciently well formulat-
ed that it may be possible to make general progress in its
solution. Complete understanding of certain parts of our
phase diagram will probably have to await such progress.
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The tables which contain all information on the excitations of
spins in the layered phases use certain abbreviated notations
to describe the excitation cluster. Some of these contractions
are probably self-explanatory, for instance, NN, LNNN and
DN refer to bonds which are, respectively, nearest neighbors,
linear next-nearest-neighbors, and diagonal neighbors. In ad-
dition, these bonds between spins may lie either within the
same layer (in layer, IL) or in the plane of the paper (in plane
IP). Two spins may be separated by one or more boundaries
between bands, in which case we refer to them as cross-band
(CB) or cross-two-band {C2BS) types. Alternatively, they
may lie within a given band when they are referred to as in-
band spins (IB).

' As we pointed out in Sec. II, the zero-temperature states may
be determined by writing the energy of an arbitrary spin
configuration in terms of the octahedral clusters C„.This en-

ergy expression can then be minimized with respect to n and
X. Since at least one state can always be composed of a single
octahedral cluster and its image under inversion, we can be
sure that a global minimum of the energy is located. Certain-

ly this is the most convenient way of breaking up the energy.
However, if one examines Eq. (1.1) it is clear that one can also
write the energy in terms of clusters of 24 spins consisting of a
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centra1 and all connected or coupled spins. We refer to this
cluster as an extended or single-spin-flip cluster. We have
used this representation of the energy when spin-lip excita-
tion energies are being computed. Thus, to calculate single-
spin-flip excitation energies, one needs to know the spin states

of the central and all connected sites. If one is interested in

simultaneously minimizing the ground-state and excitation
energies then it may be more convenient to base one's calcula-
tions on the extended clusters.




