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Linear canonical transformations of coherent and squeezed states
in the Wigner phase space. III. Two-mode states
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It is shown that the basic symmetry of two-mode squeezed states is governed by the group SP(4)
in the Wigner phase space which is locally isomorphic to the (3+2)-dimensional Lorentz group.
This symmetry, in the Schrodinger picture, appears as Dirac s two-oscillator representation of
O{3,2). It is shown that the SU(2) and SU(1,1) interferometers exhibit the symmetry of this higher-
dimensional Lorentz group. The mathematics of two-mode squeezed states is shown to be applic-
able to other branches of physics including thermally excited states in statistical mechanics and rel-
ativistic extended hadrons in the quark model.

I. INTRODUCTION

In our previous papers, ' we noted that the Wigner
phase-space picture of quantum mechanics is the natu-
ral language for squeezed states of light. The basic sym-
metry of the Wigner distribution function in phase space
consisting of one pair of canonical variables is governed
by the inhomogeneous symplectic group ISp(2). Its
homogeneous subgroup Sp(2) is locally isomorphic to the
(2+1)-dimensional Lorentz group. It was thus possible
to study some aspects of special relativity using squeezed
states of light. '

Since most of the squeezed states observed in labora-
tories are two-mode states, ' we study in this paper
canonical transformations of two-mode squeezed states
within the framework of the phase-space picture of quan-
tum mechanics. In this case, the basic symmetry of
linear canonical transformations is that of Sp(4) which is
locally isomorphic to the (3+2)-dimensional Lorentz
group. '

The groups SU(2) and SU(1,1) play important roles in

quantum optics. ' They are locally isomorphic to the
three-dimensional rotation group and the (2+1)-
dimensional Lorentz group, respectively. Both of these
groups have their respective generators of rotations.
However, the interferometers of Yurke, McCall, and
Klander' prove that the rotation generator of the
SU(1,1) group is not one of the three generators of the
SU(2) group. Thus there are four generators of rotations.
This is an indication that those SU(2) and SU(1,1) groups
cannot be isomorphic to subgroups of the familiar
(3+1)-dimensional Lorentz group which has only three
rotation generators.

We shall show in this paper that the above-mentioned
SU(2) and SU(1,1) groups are isomorphic to the O(3) and
O(1,2) subgroup of the ( 3+2 )-dimensional Lorentz

group. ' This group, together with the (4+1)-
dimensional Lorentz group, is often called the de Sitter
group. ' The de Sitter group has been extensively dis-
cussed in the literature as one of the post-Minkowskian
space-time symmetries in general relativity and elementa-
ry particle physics. ' While the de Sitter group is first in-
troduced in physics for describing a curved space in these
disciplines, ' it contains many interesting subgroups. '

Starting from this group, it is possible to construct repre-
sentations of the Poincare group for relativistic parti-
cles 18, 19

As in the case of one-mode squeezed states, the local
isomorphism between Sp(4) and 0 (3,2) allows us to
study space-time symmetries of the relativistic world in
terms of canonical transformations of the Wigner func-
tion for two-mode squeezed states. The correspondence
between these two groups is well known among group
theoreticians. However, in quantum optics, proving
theorems is not enough. In this paper, we shall construct
explicit representations suitable for studying the two-
photon system starting from canonical transformations in
classical mechanics. '

The squeezed state of light is relatively new in phys-
ics. However, its mathematical language is based on
the Lorentz group and the harmonic oscillator, ' '

which form the backbone for many other theories. For
this reason, in addition to the O(3,2) symmetry men-
tioned above, the two-mode squeezed state of light shares
many interesting mathematical properties with other
branches of physics. Of particular interest is the reduc-
tion of a two-mode squeezed state into a one-mode state
by integrating the Wigner function over one pair of
canonical variables. We shall study this reduction of
phase space in thermal excitations of the one-dimensional
harmonic oscillator and relativistic extended particles in
the quark model.
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In Sec. II, we construct a representation of the group
of homogeneous linear canonical transformations using
the Pauli spin matrices. It is shown in Sec. III that trans-
formations of Sp(4) consist of two pairs of rotations and
squeezes of the Wigner function in four-dimensional
phase space. Section IV is devoted to the discussion of
the O(3,2) de Sitter group and its correspondence to the
group of homogeneous linear canonical transformations
in four-dimensional phase space.

In Sec. V, Dirac's two-oscillator representation of the
O(3,2) de Sitter group is constructed from Sp(4) which is
the group of linear canonical transformations in four-
dimensional phase space. In Sec. VI, we study sym-
metries of the O(3,2) de Sitter group which may be ob-
served in optics laboratories. We discuss also how to ex-
tract measurable numbers from the Wigner function in
four-dimensional phase space.

In Sec. VII, we discuss the connection between the
density matrix and the Wigner distribution function. The
density matrix is the standard language for incoherent
thermal excitations. In Sec. VIII, it is shown that the
mathematics of Lorentz-boosted relativistic hadrons is
the same as the harmonic oscillator in a thermally excited
state. The conclusions of Secs. VII and VIII are that
there are physical processes which lead to a radial expan-
sion in phase space. Thus, in Sec. IX, we study group
theoretical implications of this noncanonical transforma-
tion in relation to canonical transformations.

II. CANONICAL TRANSFORMATIONS
IN CLASSICAL MECHANICS

For a dynamical system consisting of two pairs of
canonical variables x1,p1 and xz,pz, we can introduce
the four-dimensional coordinate system

where

and

M,~=
gj

0 0 1 0
0 0 0 1

—1 0 0 0
0 —1 0 0

(2.3)

where G represents a set of purely imaginary 4X4 ma-
trices. The symplectic condition of Eq. (2.2) dictates that
G be symmetric and anticommute with J or be antisym-
metric and commute with J.

In terms of the Pauli spin matrices and the 2 X 2 identi-
ty matrix, we can construct the following four antisym-
metric matrices which commute with J of Eq. (2.3):

0
J =—

1 2 —g

cT1
1

0'P 0

0 '
2 0 cr~

(2.5)

For linear canonical transformations, we can work
with the group of 4X4 real matrices satisfying the condi-
tion of Eq. (2.2). This group is called the four-
dimensional symplectic group or Sp(4). While there are
many physical applications of this group, ' we are in-
terested here in constructing the representations relevant
to the study of two-mode squeezed states.

It is more convenient to discuss this group in terms of
its generators G, defined as

(2.4)

(91& 92& l3& 94) (+I &+2&Pl&P2 (2.1)

Then the transformation of the variables from ri; to g, is
canonical if

lJ =—
2

0

Q s

lJ =—
0

0 I
—I 0

MJM= J, (2.2)
The following six symmetric generators anticommute
with J:

lK =—
1

l
Q =—

1

0 o3
K~=

J

cr3 0

o

0

l

2

—I
0 I

lK =—
3 2

I O ~ Q3=

0 01
0'1

l

2

Q

—cr 01

(2.6)

These generators satisfy the commutation relations

[J;,J ]=if; »J», [J,,JO]=0,

[J &,]= «r,»&» —[Jr Q)]= —«i,»Q»

[&; &, ]=[Q; Q, ]= i&;,»J»—
[K, , Q) ]= i 5~)Jo, —

[It.„JO]=iQ;, [Q, ,J ]=i'; .

(2.7)

The group of homogeneous linear transformations with
this closed set of generators is called the symplectic
group Sp(4).

The above generators will be useful in studying two-
mode squeezed states. This set of generators is not the
only solution of the commutation relations. As we shall
see in Sec. IV, the generators of the O(3,2) de Sitter group
also satisfy the same set of commutation relations. This
allows to study the space-time symmetry in terms of
modern optics and vice versa.
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III. LINEAR CANONICAL TRANSFORMATIONS
OF THE WIGNER FUNCTION

If P(x) is a wave function in the Schrodinger picture of
quantum mechanics, then the Wigner distribution func-
tion is

1
W(x&, xz,p&,pz) =— exp[2i(p&y&+pzyz)]

Xg (x&+y»x&+y&)

X1(j(x, +y»xz+yz)dy, dyz .

(3.7)

W(x,p)= —J e '~~/'(x +y)f(x —y)dy .1
(3.1)

The parameters x and p are c numbers. Therefore this
form is a distribution function de6ned over two-
dimensional phase space of x and p.

The basic properties of the Wigner function have been
exhaustively discussed in the literature. In quantum op-
tics, every coherent and squeezed state can be obtained
from the vacuum state through a canonical transforma-
tion of the vacuum state, whose Wigner function is'

r

W(x,p)= —exp[ —(x +p )] .1 (3.2)

N) = —l, %2= —l
ax ap

(3.3)

The role of translations is not essential in two-mode
squeezed states. Furthermore, it is very easy to deal with
translational symmetry in phase space. Thus, we shall re-
turn to these operators in Sec. IX where the thermal exci-
tation of one-mode states is discussed.

The squeezes along the x axis and along the direction
which makes an angle of 45' with the x axis are generated
by

l a a l a a
B& =—x —p, B2=—x +p

2 ax ap 2 ap ax
(3.4)

respectively, while rotations around the origin are gen-
erated by

The group of linear canonical transformations consists of
translations, rotations, and squeezes.

We can obtain a coherent state by translating this func-
tion, whose generators are

Let us then consider the ground-state wave function for
this two-oscillator system:

' 1/2

(3.8)
1 1

1((x,,x, ) = — exp — —(x f +x,')
r

Then the Wigner function will be
2

1
W(x],x~,p],p~ ) = — exp[ —(x ] +x ~+p ] +p ~ )] .

'2
1

exp[ —(x f +p~ )]exp[ —(x~+p f )]

'2
1

exp[ —(x f+xz)] exp[ —(p f+p', )] . (3.1O)

For the Wigner function, the generators of Sp(4) given in
Eqs. (2.5) and (2.6) can be written in diff'erential forms.
They can be written in terms of rotation or squeeze gen-
erators. There are four generators of rotations:

J =+ l
1 "'

ap, p'ax,

+ x~ —pi
Pi X2

(3.9}
We are now interested in performing rotations and

squeezes with respect to two pairs of variables. There are
three possible ways of choosing two pairs among the four
variables, and the above Wigner function can be written
in three different ways:

W(x&, x~,p, ,pz)
'2

exp[ —(x f +p f )]exp[ —(xz+p& )]
1

lL=—p —x
2 ax ap

(3.5) J =—
2

l

2 axe ax )

These operators satisfy the commutation relations for the
generators of the (2+ 1}-dimensional Lorentz group:

[B„B~]= iL, [L,B~]=——iB„[L,B, ]=iBz . (3.6)
lJ =+

3 2

8 8+ Pi
& P2&
P2

a a"a p' ax

(3.11)

We can change the sign of two of the three generators
without affecting the commutation relations. The group
generated by B„B2,and L is called the symplectic group
Sp(2) which is unitarily equivalent to SU(1,1) and is local-
ly isomorphic to the (2+ 1)-dimensional Lorentz group.

If the wave function depends on two coordinate vari-
ables x

&
and x2, the Wigner function will be a function of

two pairs of canonical variables:

J =+ l
0

a a
X2 P2

a a
xy py

p) x)
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and there are six squeeze generators: x, y, and z. They are

lK =—
1

l
K =—

2 2

xi +pg
pi x)

8
Xg +Pp

a a
pi&

+ xz Pp
X2 p2

J)= 0
0
0

0

J3= 0
0
0

0 0 0
0 —i 0
i 0 0
0 0 0
0 0 0

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 i 0 0
0 0 0 0 0 0
0, J2= —i 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(4.2)

K =+ l
3 2

l
Q =—

1

l
Q =+

2 2

2

xr +Pz
p2 x)

+ x2 +p)
Bp ) c)xp

x) p)
Bx2 Bp (

X2 p2

xi +pi
pi x)

+ xz +pz
Bp2 BX2

a
X2 +X|

p'
ap

+p'
app&, p2

(3.12)

These generators satisfy the commutation relations for
the three-dimensional rotation group:

[J;,J ]=i@;kJk .. (4.3)

In addition, it is possible to perform rotations in the
plane of t and s, generated by

Jo= 0
0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 —i

0 0 i 0

(4.4)

This matrix commutes with the generators of the three-
dimensional rotation group given in Eq. (4.2):

[JO,J;]=0 . (4.5)

There are three generators of boosts with respect to three
spacelike directions and the 6rst time variable t. They
are

According to the above expressions, we can separate
the four-dimensional phase space into a pair of two-
dimensional spaces, and perform canonical transforma-
tions in each space. If all the transformations are done
within a given pair, the symmetry group is the same as
the one in the two-dimensional phase space. If, on the
other hand, we perform a transformation generated by
E& followed by a K3 or Q3 transformation, the pairs do
not remain separated The gr. oup Sp(4) is much more
complicated than a direct product of two Sp(2) groups.

IV. (3+2)-DIMENSIONAL DE SITTER GROUP

0 0 0
0 0 0

K)= 0 0 0
i 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0

K3= 0 0 0 i 0
0 0 i 0 0
0 0 0 0 0

i 0 0 0 0 0 0
0 0 0 0 0 i 0
0 0, K2= 0 0 0 0 0
0 0 0 i 0 0 0
0 0 0 0 0 0 0

(4.6)

In the usual (3+1)-dimensional Lorentz group, trans-
formations on the vector space (x,y, z, t) leave x +y
+z t invariant. In t—he (3+2)-dimensional de Sitter
group, transformations on the vector space (x,y, z, s, t)
leave the quantity

[+ii+j ] i ~!jk Jk & Ãi Jj ] ~ijk+k (4.7)

These generators satisfy the commutation relations for
the (3+1)-dimensional Lorentz group:

x +y +z —s —t (4.1)

invariant. In this space, there are two timelike variables.
There are three generators of rotations in the space of

In addition, there are three boosts with respect to the
second time variable s. They are generated by
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0

Q)= 0
0

0 0 0 i 0 0 0 0 0
0 0 0 0 0 0 0 0 i

0 0 0 0, Q2= 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 i 0 0 0

G=i x; +x
pi ()pi

(5.4)

on the Wigner function W(x), x2,p),p2). This is valid

also for i =j. The operator

Q3= 0
0
0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 i

0 0 0 0 0
0 0 i 0 0

(4.8)
l

BX;

a
l

BXJ

6= —i p; +p'Bxj 'Bx,

applicable to f(x),x2), corresponds to

(5.5)

(5.6)

These generators also satisfy the commutation relations
for the (3+ 1)-dimensional Lorentz group:

in phase space. The operation of

[ai Qj ] eijk Jk& [ai&Jj ] )eijkak (4.9) Xi + Xi
X~ X~

(5.7)

These Q matrices satisfy the following three sets of com-
mutation relations, with E; and Jo. in the Schrodinger picture leads to

[I('; Jo]=Q; [Q»o]= —&;

[K, , a, ]= —i5,,Jo,
(4.10)

6= l X P)'Bxj 'Bp,
(5.8)

V. DIRACos TWO-OSCILLATOR FORMALISM

We are now interested in corresponding transforma-
tion on the Schrodinger wave function. For this purpose,
let us write the transformation on W(x,p) in terms of the
generators

e
—i eG(x, p) gr( (5.1)

which are like those for the (2+1)-dimensional Lorentz
group. Indeed, they generate such a group. However,
they are not usual transformations with two spacelike
coordinates and one timelike coordinate. Instead, they
represent transformations with two timelike coordinates
and one spacelike direction. This is the characteristic of
the O(3,2) group which has two timelike directions. As
we shall see in Sec. VI, this (1+2)-dimensional Lorentz
group is the most important subgroup of O(3,2) in the
physics of two-mode squeezed states.

J3 4[(x,x, +p,p, )
—(x2x2+p2p2)],

Jo =—[(x ) x, +P,P, ) + (x2x2 +P2P2 )]

k) = 4[(X)X) P)P) ) (X2X2 P2P2)] p

k2 =
—,'(x,P, +P,x, +x2P2+P2x2),

2(x)X2 P)P2)

(5.9)

4(x)P)+P)X) X2P2 P2X2 } ~

Q2 ~[(X)X) P)P) )+(X2X2 P2P2)]

Q3 = —
—,'(x)P2+X2P) ),

applicable to the Wigner function.
It is now possible to translate the operators in the

phase-space picture given in Eqs. (3.11) and (3.12) into
those applicable to the Schrodinger wave function. They
take the form

J) 2 (x)X2+P2P) } J2 2 (X1P2 X2P) )

where 6 is the generator of transformations applicable to
the Wigner function, and e is the transformation pararne-
ter. We then write the corresponding transformation in
the Schrodinger picture as

e
—ifG(x)y(x ) (5.2)

where

aP)= l
Bx )

~ a
and p2= —i

BX2

The operator C(x } depends only on x. Then for small e,

G(x,p) 8'(x,p) =—J e 'PP[))'i'(x +y)[C(x —y)g(x —y)]
1

—[G(x +y)(t((x +y)]'
Xf(x —y)jdy . (5.3)

This relation can be generalized to ))'i(x „x2 ) and
$V(x),x2,p),p2). We can see from the above expression
that the application of G =x;x on g(x „x2 } leads to

Except E2 and Q „ the above set of generators is the
same as that given in Dirac's 1963 paper. ' We are using
here the Hermitian form for E2 and Q, .

A11 of the above operators are Hermitian. Indeed, also
in the case of two-mode squeezed states, linear canonical
transformations in the phase-space picture correspond to
unitary transformations in the Schrodinger picture of
quantum mechanics. In quantum optics, it is more con-
venient to express these generators in terms of the annihi-
lation and creation operators: a =(x + ip )/&2 and
a =(x —iP)/3/2. They are'
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J, =
—,(a 1a2+a2a, ), J2=—(a 1a2

—a2a, ),
21

J3=—,(alai 2 2} 0 ( 1 I+ 2 2)l

k, = —
—,'(ata, +a, a, —a2a2 —a2a2),

k2= ——(a,a, —a, a, +a2a2 —a2a2),2

E3 —,(a,a 2 +a 1a2 )
(5.10)

Q1= ——(a 1a1 —a1a1 —a2a2+a2a2),

g2= —,(a,a, +a,a, +a2a2+a2a2),

g, = ——(a,a2 —a, a, ) .
l

VI. OBSERVABLE SYMMETRIES OF O(3,2)

(6.1)

where the forms of these operators are given in Eq. (5.11),
while their SU(1,1) interferometer is based on Jo, k3, and

Q 3 satisfying the commutation relations

It is possible to study squeezed states in terms of spe-
cial relativity and vice versa by exploiting the correspon-
dence between SU(1, 1) and O(2, 1).' ' In the single-
mode case, the Wigner rotation and the Thomas preces-
sion were the key items in special relativity which corre-
spond to repeated noncollinear squeezes in quantum op-
t, &52a

There are many O(2, 1)-like subgroups of O(3,2). It is
thus possible to propose many experiments to test the
Thomas or Wigner rotation. This is not what we intend
to discuss in this section. The key question is whether
there are experiments to test the symmetry of the O(3,2)
group. It would be ideal if we could design an experi-
ment where all of the ten generators of Dirac's two-
oscillator representation, but we are not able to suggest
such an experiment at this time. On the other hand, it is
still possible to detect the O(3,2) characteristics with its
sub groups.

The O(3,2) de Sitter group has many interesting sub-

groups. One important subgroup is the "ordinary"
(3+1)-dimensional Lorentz group, which in turn has as
subgroups one three-dimensional rotation group and
three (2+ 1)-dimensional Lorentz groups. We could
therefore be misled to believe that the symmetries of
SU(2) [or O(3)] and SU(1,1) [or O(2, 1)] are those from the
ordinary Lorentz group. If this were the case, there
would not be any need for the O(3,2) symmetry. Since
there are only three generators of rotations in O(3, 1), in
order that the O(3, 1) group be the fundamental group, it
is necessary for the rotation generator of the O(2, 1) sub-

group be one of the three generators of rotations forming
the rotation subgroup.

On the other hand, let us look at the interferometers of
Yurke, McCall, and Klauder. Their SU(2) interferometer
is based on J„Jz,and J3, with

[ 3 Q3]= —iJ0, [Jo,k3]=iQ3, [Jo,Q3]= —ik3 .

(6.2)

It is important to note that Jo, while being a generator of
rotation, is not one of the generators of the SU(2) group
given in Eq. (6.1). The SU(l, l) group of Yurke, McCall,
and Klauder is clearly one of the three O(1,2) subgroups
of the (3,2) de Sitter group. It is not a subgroup of the
(3+1)-dimensional Lorentz group, while the rotation
group is.

In the system of interferometers of Yurke, McCall, and
Klauder, there are three generators for SU(2) and three
for SU(1,1). There are altogether six generators. They do
not form a closed system of commutation relations. They
need four more generators. If we add them together, the
result is the set of ten generators of the two-oscillator
representation of the O(3,2) group.

One of the characteristics of O(3,2) is that k3 in the
SU(1,1) interferometer is capable of forming another
SU(l, l} group. It would be very helpful if we could
design experiments to test the set of the O(2, 1}cornmuta-
tion relations involving E3 and the generators not con-
tained in the interferometer of Yurke, McCall, and
Klauder. ' E3 can form the following sets of closed com-
mutation relations:

[J„k3]= ik2, —[J„k2]=if„[k„k,]= —iJ, ,

(6.3)

or

[J2,k3]=F1, [J2,E1]= ik3, [E—1,E3]=iJ2 . (6.4)

The same reasoning is applicable to the expressions
where k, and k2 are replaced by Q, and Q2, respective-
ly. The experiment based on one or more of the above
four sets of commutation relations will prove the ex-
istence of both the O(2, 1) and O(1,2) symmetries. This
will reinforce the evidence of the O(3,2} symmetry in the
two-mode system.

Perhaps, the most ambitious experiment on the O(3,2)
symmetry in two-mode optics can be stated in the follow-
ing way. The original purpose of introducing the O(3,2)
de Sitter group was to study the curvature of the
universe. ' ' The correspondence between this group
and Sp(4) may allow us to design an optical analog com-
puter for studying the curvature of the universe. This is a
future possibility.

In the meantime, let us study how we can extract
measurable numbers from the %igner function. In quan-
tum mechanics, we calculate those numbers from the
overlap of distribution functions and the expectation
value of operators ' for two given wave functions g(x)
and P(x ), and their corresponding Wigner function
W&(x,p) and W~(x,p). Then the transition probability
takes the form

l(p(x), 1}'(x))I'=2~f W&(x,p)W~(x, p)dx dp . (6.5)

This expression is useful when we calculate the probabili-
ty of a certain state being in a particular eigenstate. For
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two pairs of canonical variables, the overlap integral may
be written as

X),X2, X),X2

=(2m) f W&(x&,xz,p&,pz)

X W~(x„xq,p),pq)dx, dxqdp)dpi' . (6.6)

Let us consider next the expectation value of an opera-
tor applicable to 1((x) or the momentum wave function

f (p). If the operator Q is a function only of x or p, then
the expectation value is '

1 x]+pi —1
2

X W(x ),xq,p ),pq )dx )dxpdp, dpi',

x&+p& —1
1

(6.12)

(Q) =(P(x),Q(x)f(x))= fQ(x)W(x, p)dx dp, (6.7)
Likewise,

X W(x ),x~,p, ,pz)dx, dxzdp, dpi' .

with a similar expression for Q (p). If Q is a function of
both x and p, we are not aware of any simple expression.
On the other hand, it is possible to prove that '

f W(x,p)(x "p )dx dp

(N, ) =—f [(x)+p, —1) —1]1

X W(x ),x q,p „pq )dx )dx qdp, dp~,

n
=(—t) (-,')" g 1((x),x"

r=0
x "g(x)

X W(x ),x~,p, ,pz )dx, dxzdp &dpi', (6.13)

(6.8)

Among the many operators in quantum mechanics, the
photon number and the (photon number) operators are
the two most important operators. In the Schrodinger
representation, the number operator takes the form

(N, Nz) =—f (xz+pz~ —1)(xf+p, —1)
1

X W(x, ,x~)p, ,p~)dx, dx~dp, dp~ .

These quantities are needed in calculating the photon
number variations ((bN) ), ((bN~ ) ), and ((AN&) ).

1N= —x—2
2

(6.9) VII. DENSITY MATRICES IN THE PHASE-SPACE
PICTURE OF QUANTUM MECHANICS

This means that in the Wigner phase-space picture, the
expectation value of this operator is

(N ) =—f (x +p —1)W(x,p)dx dp,
1

(6.10)

which is a straightforward application of Eq. (6.8). The
formula N is more complicated because there is a term
proportional to x p . The application of Eq. (6.8) leads
to

(N ) =—f [(x +p —1) —1]W(x,p)dx dp .
1

4
(6.11)

In the single-mode case, it was observed that every
squeezed state can be represented by the Wigner function
of the Gaussian form localized within an elliptic region in

phase space. If the region of localization is a circle, the
Wigner function corresponds to an unsqueezed coherent
state. The circle centered around the origin is the vacu-
urn state. It is possible to obtain a coherent or squeezed
state by canonically transforming the circle centered
around the origin. If we translate the circle, the result is
a coherent state. Without loss of generality, we can ob-
tain every squeezed state by squeezing the vacuum fol-
lowed by translation.

It is quite clear from Eq. (5.11) that Jo measures the to-
tal number of photons. It is also clear that J3 measures
the difference between the photon numbers of the first
and second kinds.

In quantum mechanics and quantum optics, we often
have to deal with nonpure mixed states. For instance, in
the case of the one-dimensional harmonic oscillator, the
most general form of normalized solution is

g(x, t)=e ' '~ g C„e '" 'g„(x), (7.1)

where f„(x) is the solution of the time-independent oscil-
lator equation with the energy level co(n + —,'). The wave

function g(x, t) is normalized:

(1((x,t), 1((x,t)) = g ~C„~'=1 . (7.2)

The expectation value ( A ) =(P(x, t), Ag(x, t)) of an
operator A (x) can be written as

( A ) = y ~C„~'(y„(x),A (x)q„(x))

& A ) = y ~C„~'(IP„(x),A(x)lP„(x)) . (7 4)

+ g C*C„e' ' ""(P (x), A(x)f„(x)) . (7.3)
n, m

num

If we take the ensemble average for many oscillators
prepared independently with different initial times, the
net effect is the same as that of taking the time average,
and the second term in the above expression vanishes. As
a consequence, the ensemble average is
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We use the word "mixed" or "nonpure" in order to de-
scribe this ensemble average.

It is very convenient to treat this problem if we intro-
duce the density matrix defined as

and g„(x ). The expectation value of A (x )

(&)= y C*C„(y (X),1t„(x))(y (x), &(x)y„(x))
n, m

and

p(x, x') = g ~ C„~ 1}j„(x)g„*(x')

( A &
=f dx' f ~(x', x)p(x, x')dx,

(7.5)

(7.6)

(7.9)

(7.10)

is the same as the ensemble average ( 2 ) given in Eq.
(7.4). It is possible to obtain the density matrix by in-

tegrating g(x, x )g'(x', x ) over the x variable:

p(x, x') =f 1}/(x,X)etc"(x', x )dx .
with

A(x', x)=5(x' —x)A(x) .

The above expression is then the trace of the matrix
/I (x', x)p(x, x') often written as

The evaluation of this integral leads to the expression for
p(x, x') given in Eq. (7.5).

The best known example of the above procedure is to
derive the thermally excited oscillator state with the den-

sity matrix:

( /I ) =Tr(p A ) . (7.7)

If C„=5„ for a given value of rn, we say that the system
is in a pure state. Otherwise, the system is in a mixed
state.

It is possible to derive this result without taking the en-
semble average, if we introduce an auxiliary Hilbert space
consisting of 1(„(x) and attach it to C„. We can
consider the wave function of the form

pT(x, x')=(1—e "
) g e " " f„(x)f„"(x'). (7.11)

It is possible to obtain this form by taking an ensemble
average How. ever, we are interested in deriving this ex-
pression by introducing a shadow coordinate. Let us
start with the ground-state harmonic oscillator wave
function

P(x,x')= g [C„t}/„(x)]g„(x). (7.8)
1/2

$0(x,X ) =go(x)go(x ) = — exp[ —( —,
' )(x'+x ')],1

The auxiliary coordinate x is called the "shadow" coordi-
nate in the literature. It is possible to derive the result of
Eq. (7.4) by treating P(x,x ) as a pure-state wave function
defined in the total Hilbert space consisting both of g„(x)

(7.12)

where x is measured in units of I/&mc0. Let us now
make a coordinate transformation:

1 l( 1
co/kT)1/2—

ccc/2kTl( 1
— ro/kT)1/2—

co/2k Tl ( I
— —colkT

)
1/2

1 l( 1
ccc/kT)1/2— (7.13)

(7.14)

This leads to the squeezed wave function of the form
' 1/2

QT(x, x ) = — exp — — tanh (x +x ) + coth (x —x )
1 1 CO N

4 4kT 4kT

This transformation is generated by the squeeze generator Q3 of Eq. (5.9) where x, and x2 are replaced by x and X, re-

spectively. Indeed, the transformation from go(x, x ) of Eq. (7.12}to QT(x, X } of Eq. (7.14}is unitary. The above expres-

sion can be expanded as

QT(x, x ) = [1—exp( co//kT)]'l —g[exp( cc1 I2kT)]"1l/—„(x)f„(x) . (7.15)

The transformation from the ground state to the above series through the coordinate transformation of Eq. (7.13) is

often called the Bogoliubov transformation. The evaluation of the integral

pT(x, x')= f PT(x, x )QT(x', ,x )dx

exp — — (x +x') tanh
1 2 Cd CO

2.kT
+(x —x') coth

4kT

leads to the density matrix of Eq. (7.11). The sum of the series will lead to
1/2

1 N
pT(x, x') = —tanh

7r

(7.16)

(7.17)

Next, we would like to show that the above procedure can be carried out in the phase-space picture of quantum
mechanics. For one pair of canonical variables, the transformation of p(x, x ) into the Wigner function is achieved
through '
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W(x,p)= —fp(x+y, x —y)e '~~dy .1
(7.18)

A similar expression can be given for two pairs of canonical variables. The density matrix can be recovered from
W(x,p) through the inverse transformation:

p(x, x')= fW, p e '~'" " 'dp .
x+x'

(7.19)

Let us start with the Wigner function for the ground-state harmonic oscillator:
r '2

1
Wo(x, x,p,p)= — exp[ —(x 2+x 2+p~+p ')] . (7.20)

(x +x ) tanh +(x —X) coth
4kT

Then the coordinate transformation of Eq. (7.13) leads to

1 1
Wr(x, x,p, p ) = — exp

7r 2

+ (p —p') tanh +(p +p ) coth(co4k T ) (7.21)

This transformation is generated by Q3 of Eq. (3.13) appl-
icable to the Wigner function.

We can now construct the Wigner function Wr(x, p)
by integrating the above expression over X and p:

Wr(x, p)= f Wr(x, &,p,P)d& dp

The result of this integration is

(7.22)

tanh(co/2kT)
Wz. x,p =

X exp —(x +p )tanh
2kT

(7.23)

It is possible to obtain this form also from the definition
of the Wigner function given in Eq. (7.18) and from
pz(x, x') of Eq. (7.17). This is a clear indication that the
Wigner function can also be effective in dealing with
mixed states.

When T =0, Wz (x,p) becomes that of the ground
state. As the temperature rises, the distribution in phase
space becomes widespread. Thus, the transformation is
not a canonical transformation. This corresponds to the
lack of unitarity during the process of taking an ensemble
average, or the integration over the shadow coordinate in
the Schrodinger picture. We shall discuss the group
theoretical implication of the thermal expansion in Sec.
IX.

It is important to realize that the shadow coordinate x
does not describe any physical world. It was introduced
purely for mathematical convenience of producing the re-
sult same as the ensemble average. At this point, we be-
come eager to find an example in which the shadow coor-
dinate has its own physics. We shall study such an exam-
ple in Sec. VIII.

VIII. TWO-MODE SQUEEZED STATES
IN RELATIVISTIC QUANTUM MECHANICS

It was noted in Sec. VII that the mathematics of the
Bogoliubov transformation is that of Lorentz transforma-
tions in special relativity. Thus we are led to the question
of whether there is a physical example of this mathemat-
ics in special relativity. The answer to this question is
yes.

The relativistic quark model within the framework of
the covariant harmonic oscillator formalism is a case in
point. Since this model has been widely discussed in the
literature, we shall study here only the aspect of the
covariant oscillator formalism which exhibits a parallel-
isrn with the thermal excitation of one-mode squeezed
states through a squeezed two-mode state.

Let us consider a hadron consisting of two quarks. If
the space-time position of two quarks are specified by x,
and xb, respectively, the system can be described by the
variables '

X =(x, +xb)/2, x =(x, —xb)/2&2 . (8.1)

The four-vector X specifies where the hadron is located in
space and time, while the variable x measures the space-
tirne separation between the quarks. As for the four-
momenta of the quarks p, and pb, we can combine them
into the total hadronic four-momentum and momentum-
energy separation between the quarks: '

P=p. +p» p=&2(p. pb), —(8.2)

where P is the hadronic four-momentum conjugate to X.
The internal momentum-energy separation is conjugate
to x.

In the convention of Feynman, Kislinger, and
Ravndal, ' the internal motion of the quarks can be de-
scribed by the Lorentz-invariant oscillator equation
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(8.3}

where we use the space-favored metric x"=(x,y, z, t)
The four-dimensional covariant oscillator wave functions
are Hermite polynomials multiplied by a Gaussian factor,
which dictates the localization property of the wave func-
tion. As Dirac suggested, the Gaussian factor takes the
form

exp — —[e (z+ t )
4

2R(z t )2] (8 5)

variables (z+t)/&2 and (z —t)/&2 are transformed to
e (z + t)/&2 and e ' "/&2, respectively, where A. is
the boost parameter and is tanh '(u /c). Then the
ground-state wave function will be Lorentz squeezed

25, 30, 33

exp — —(x +y +z +t )
7T 2

(8.4)

Since the x and y components are invariant under
Lorentz boosts along the z direction, and since the oscil-
lator wave functions are separable in the Cartesian coor-
dinate system, we can drop the x and y variables from the
above expression, and restore them whenever necessary.

The Lorentz boost along the z direction takes a simple
form in the light-cone coordinate system, in which the

1
Pz(p„po ) =— gz(z, t) exp[i(p, z pot )—]dz dt . (8.6)

Thus p and p in Sec. VII will become p, and —p0, respec-
tively. Thus the Wigner function will be

Indeed, this expression is the same as that for the two-
mode squeezed state given in Eq. (7.14), if e is
identified as tanh(to/4kT). The variables z and t corre-
spond to x and x, respectively:

T

W&(z, t,p„po)= — exp — —[e (z+t) +e (p, —po) ] exp — —[e (z t) +e— (p, +pa) ] (8.7)

If the t variable is not measured, the Wigner function will
become

IX. EXPANSION IN PHASE SPACE

1

cosh(2X)

X exp[ —(z +p, ) /cosh(2A, ) ] . (8.8)

We discussed in our earlier papers' the group of
linear canonical transformations in two-dimensional
phase space consisting of one pair of canonical variables
and their generators which are given in Eqs. (3.4), (3.5},
and (3.6) of the present paper. These generators can be
represented by 3X3 matrices applicable to the three-
dimensional space of (x,p, 1).' The generators of
translations are

As the hadronic speed v increases, the distribution be-
comes widespread in phase space. This is derivable from
the two-mode picture of the covariant harmonic oscilla-
tor formalism.

In one of our recent papers, we discussed the possibil-
ity of deriving the concept of hadronic temperature from
the parallelism between the Lorentz and Bogoliubov
transformations. This correspondence can be made in a
simpler way in terms of the expansion of the Wigner dis-
tribution function in phase space. By comparing 8'T of
Eq. (7.23) with Wz of Eq. (8.8), we can make the
correspondence

0 0 i 0 0 0
0 0 0, N2= 0 0 i

0 0 0 0 0 0

The squeeze and rotation generators are

i/2 0 0 0 i/2 0
B)= 0 i/2 0—, B2= i/2 0 0

0 0 0 0 0 0

0 —i/2 0
I = i/2 0 0

0 0 0

(9.1}

(9.2)

tanh
co 1

2kT cosh(2A, )
(8.9)

We can achieve the thermal expansion of the Wigner
distribution function from that of the ground state:

1
Wo(x,p)= —exp[ —(x +p )],

This leads to the conclusion that ( u /c) =exp( —to/
to Wr(x, p) of Eq. (7.23) by applying the operator
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F(A, ) = exp — In tanh
1 x +p + I

a
t)x t)p

i 0 0
E= 0 i 0 (9.6)

(9.4)

to Wo(x,p). This transformation is unitary in phase
space in the sense that the Wigner function of Eq. (7.23)
remains normalized. However, this is not an area-
preserving canonical transformation. We have observed
in Sec. V that the thermal excitation is not a unitary
transformation in the Schrodinger picture of quantum
mechanics.

The generator of this expansion in phase space is

[E,L]=0, [E,B,]=0, [E,B2]=0,
[E,N)]=iN), [E,N2]=iN2 .

(9.7)

The expansion commutes with the squeeze and rotation
generators. However, the translation does not commute
with the expansion. The expansion changes the scale of
translations.

0 0 0

This generator satisfies the following commutation rela-
tions with the generators of canonical transformations.

E=i x +p +I
c)x p

In matrix form, this generator is
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