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A theoretical analysis of the optical coherent transients that arise when a sample of two-level
atoms is irradiated by a sequence of three broad-bandwidth pulses is presented. The first two pulses
have a relative delay time of order of the correlation time of the pulse fluctuations and are sent into
an atomic vapor from different directions. These pulses, whose temporal width is much greater
than the delay time, can be correlated with one another and can be strong enough to saturate the
two-level atomic transition. The third pulse is weak, noncorrelated with the first two, and is delayed
in time so that it does not overlap them. We present a detailed examination of the transient signal
that is produced when the third pulse is scattered by the spatial gratings in the population difference
of atoms created by the first two pulses. Taking into account the effects of inhomogeneous and
homogeneous broadening, we calculate the intensity of the transient signal, emitted in different
directions, as a function of delay time. The signal is found to depend dramatically on the intensities
of the excitation pulses. It is shown that, for strong excitation pulses, there is a direct dependence
of the signal on the cross-correlation time of pulses 7.2 that does not exist when the pulses are weak.
In particular, the strongest signals exhibit a peak of width of order 7!2. This peak can have a very
narrow dip near its maximum whose width is much smaller than 72, if the pulses are fully correlat-
ed. We develop a representation of the time evolution of the Bloch vector of a two-level atom,
driven by time-delayed pulses, that enables us to explain our results. In this representation, the two
time-delayed pulses are replaced by two fully overlapping pulses having some effective amplitudes
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and atomic field detunings.

I. INTRODUCTION

Experiments in which coherent transients are produced
by time-delayed, correlated, fluctuating optical pulses' '3
have received a great deal of attention in the last few
years, owing to their potential as a source of subpi-
cosecond time resolution. The advantage of using
broad-bandwidth light lies in the fact that under certain
conditions, a time resolution may be achieved that is
equal to the autocorrelation time 7. of the applied fields.
This autocorrelation time may be orders of magnitude
smaller than the pulse duration 7.

A convenient experimental configuration for observing
such optical transients involves sending either two or
three laser pulses into an atomic vapor. In this paper we
consider only three-pulse transients (PT-3). Two pulses
(which may be derived from a single laser), having wave
vectors k; (pulse 1) and k, (pulse 2), respectively, are sent
into a sample of two-level atoms [see Fig. 1(a)]. The wave
vectors are chosen such that |k,|=]k,/=k and
6=/(k;,k,) <<1. Pulse 2 and pulse 1 have a relative time
delay denoted by t,,. For t;;,>0 (¢, <0), pulse 1 pre-
cedes (follows) pulse 2 [see Fig. 1(b)]. Under PT-3 condi-
tions these pulses create spatial gratings in the population
difference of atoms with Bragg vectors nk; =n(k,—k,),
n=0,%1,... . These gratings are subsequently probed
by a third pulse with a wave vector k; that is time de-
layed by #,3>t,, +1, relative to the first excitation pulse.
The energy radiated in the directions k;+nk, is studied
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FIG. 1. The three-pulse transient (PT-3) configuration. (a)
Angled-beam configuration. (b) The temporal sequence of
pulses: for ¢, >0 pulse 1 (wave vector k,) precedes pulse 2
(wave vector k,), the third pulse does not overlap the first two
pulses. (c) A two-level atom having transition frequency w,, is
driven by the pulses, each having central frequency w.
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as a function of ¢,,.

Although signals can be generated by scattering from
nth-order gratings, most experimental work has concen-
trated on the signals originating from the first-order grat-
ings (n ==x1). For weak incident pulses or for fully
separated pulses, the first-order gratings provide the ma-
jor contribution to the signal. However, for strong, over-
lapping incident pulses, higher-order gratings begin to
contribute appreciably.

The early experimental results,! ! obtained for weak
incident fields, have been interpreted in the context of
perturbation theory. More recently, however, time-
delayed two-pulse!! and three-pulse transients'>~!* have
been examined under conditions in which at least one of
the pulses is strong; that is,

at, >1,

where a= f?r,, and f is a Rabi frequency associated with
a laser field interacting with a two-level atom. The
three-pulse experiments are typically carried out at tem-
peratures 300-500 K using excitation pulses having
t,= 10 ns, and with low buffer gas pressures; consequent-
ly, the Doppler width A, =ku (u is the most probable
atomic speed) satisfies the inequalities

Ap>e, T, T, (L.1)
where T| and T, are longitudinal and transverse relaxa-
tion times, respectively.

In the strong-field regime the signal energy as a func-
tion of the delay time ¢,, may depend on the correlation
time 7, itself,'*!> while the dependence of the signal on
the Doppler width of the atomic ensemble is minimal.
Such behavior differs sharply from that in a weak-field re-
gime when the signal strongly depends on the Doppler
width, and the correlation time does not play a separate
role in the effects under consideration. Currently the na-
ture of the phenomena observed in a strong-field regime
remains unclear.

Theoretical analysis of the experimental results brings
into play many profound theoretical problems concerned
with studies of the stochastic Bloch equations in the in-
tense field regime. A number of papers have been devot-
ed to this problem in the last twenty-five years'®~*° and
numerous effects have been discussed assuming fluctuat-
ing radiation fields (resonant fluorescence, double reso-
nance, multiphoton ionization, optical induction decay,
Hanle effect, etc.). In most of these calculations, the
response of an atomic ensemble to a fluctuating field has
been studied as a function of the noise properties of the
fields. In many cases the noise was assumed to be Marko-
vian in nature. The problem under consideration herein
differs in that atoms are subjected to two time-delayed
noise fields which may be correlated. Thus, the atoms re-
tain some memory of the first field when the second field
acts. Even if the noise of each field is Markovian, the
combined effect of the two fields is non-Markovian, in
general, owing to these memory effects. This feature
greatly complicates the calculations. Initial attempts at
solutions employed diagrammatic methods.'#*! Later, a
decorrelation approximation*? was used and results were
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obtained!® in the limit of stationary atoms subjected to
fully correlated, time-delayed fields, one of which was
weak, while another was strong: a;t, << 1 <<ayt,
[a;=|f;|>r, (i=1,2), f; is Rabi frequency associated
with field /]. It was shown theoretically, and has been
confirmed experimentally, that under these conditions the
radiated energy W{>(t,,) exhibits a narrow dip centered
at t,,=0, superimposed on a broad background signal.
The dip has a width of order 7. and relative depth equal
to 0.5

This observation motivates us to consider the limiting,
but important, case in which the correlation and delay
times are sufficiently small to satisfy

Tertyy <<a L1,,A5L,T), T, . (1.2)

No restriction is imposed on the ratio t,,/7,. Under
these conditions we have found a closed form solution for
the signal energy, valid for arbitrary field intensities and
relaxation rates. Some direct dependence of the observed
signal on 7, will be shown to exist in the strong-field re-
gime; the interpretation of this effect is given in terms of
some additional detuning parameter that appears in the
Bloch equations as a result of the time delay of the pulses.
The conditions required for observation of the studied
phenomena are discussed.

In Sec. II we derive the laser fields and quantum sys-
tem to be considered, and present the general expressions
for the measured energy of the signal in the PT-3 case in
terms of a single-time, two-atom correlation function.
Using the Bloch vector model, in Sec. III we develop a
new representation which permits us to analyze the dy-
namics of a two-level atom driven by the time-delayed
pulses as if the pulses are fully overlapping. The equa-
tions for single-time two-atom correlation functions aver-
aged over field fluctuations, which are needed in the cal-
culation, are derived in Sec. IV. In Sec. V we describe a
general solution to the problem. A weak-relaxation limit
is discussed in Sec. VI. An explanation of the depen-
dence of the signal on time delay ¢,, is presented in Sec.
VII and the relative dephasing of the Bloch vectors in a
strong-field regime that leads to the results obtained in
Sec. VI is considered qualitatively. The results obtained
in a strong-relaxation limit are discussed in Sec. VIII.

II. BASIC ASSUMPTIONS AND EQUATIONS

A. Laser field

We consider an ensemble of two-level atoms each hav-
ing transition frequency w,, [excited state b, ground state
a, as shown in Fig. 1(c)]. Atoms interact with two laser
pulses of duration ¢,, time delayed relative to each other
by an interval t,,. These classical incident fields can be
represented as

—iwt

&(r,t)= {6,(t)explik, 1)

+62(t —tlz )exp[i((l)tlz +k2'r)]}

+c.c. , (2.1)
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where, without loss of generalization, we take all fields
having parallel polarization. It is assumed that the
atom-field detuning, A=w,, —w, satisfies |A| <<w, and
that &, and &, are slowly varying complex field ampli-
tudes satisfying

clk,|

16,/6,1,16,/6, << ——— Zik,]

7w’

where c is the speed of light, L is a characteristic length
of the sample, and

k,=k,—k, .

We introduce the Rabi frequency f;=p,, &% !
(i =1,2) associated with field &;; u,, is the dipole mo-
ment matrix element of the @ — b transition. Both of the
pulses are characterized by a broad spectrum, and the
amplitudes &, and &, and, consequently, the Rabi fre-
quencies f, and f, are treated as complex stationary sto-
chastic processes that may be correlated with each other.
In particular, we assume that

<fr(t)f1(t —T))=a1g1](’r) ’

(f3()f2(t —7)) =ag(T), (2.2)
(fLOf (t—=7))=0, {fR(t)f,(t—7))=0,
and
FLOfot =) =0, (F()={f())=0,
(2.3)

(FTOfr(t =) =ag,(1) ,

where the average is over all possible realizations of the
fluctuating fields. The quantity g;;(7) (i,j=12) is a
correlation function normalized such that

fowgij(r)dr=l, i,j=1,2

and the autocorrelation parameters a; and a, are given
by

a; = |fi(t)lz)7'ii,

while the cross-correlation parameter a, that determines
the mutual coherence of the Rabi frequencies is equal to

i=12

ap={f1(Of ()7 (2.4)
Correlation times are defined by
m=g;10) . 2.5)

The cross-correlation time 7!? cannot be larger than auto-

correlation times 7!',722, and it follows that
2
a1

b= , (2.6)
aa,

which is a measure of the relative coherence of the pulses,
satisfies

0=d=1.

For fully correlated pulses ® =1, while for noncorrelated
pulses ®=0.
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According to Egs. (2.2) and (2.3), the statistical proper-
ties of the total field (2.1) are characterized not only by
the correlation time 7/ but also by the delay time ¢,,, pro-
vided the correlation parameter ®+0. In this paper the
correlation times 77/ as well as the delay time ¢, are as-
sumed to be much smaller than any characteristic time in
the problem [see Eq. (1.2)], but can be comparable to
each other; that is

Tty <Aphtyar oy LATLT,,T, . 2.7

In the three-pulse transient, the third pulse is assumed
to be weak (ajt, <<1), to have a broad bandwidth
(r3~7Y), and to be uncorrelated with the first two
pulses. It is switched on after both the first two excita-
tion pulses and any transients associated with them have
already died out. Equation (2.7) defines the delay times
for which the theory is applicable.

It is also assumed that the transverse Doppler effect is
negligible:

Ik,

—FApt, <1,
Tk, TP

enabling us to set k,k,~ 1(k; +k,)=k in certain expres-
sions.

B. Dynamical equations

In the rotating-wave approximation the following
equations then hold for density matrix elements of a
two-level atom having velocity v:

p1=—7.,1t8ptYp;,

pr=—8p,—v.pr—Xp;3, (2.8)
P3=—Yp+Xp—vi(p3—psc) »
where
Py —2Re(pa,,e (wt —k,- r)) ,
_ i(ot —k,1)
p>=2Im(p,e ),
P3=Paa"Pb> PaatPrp=1,
and
X(@)=X,(t)+X,(t —t,,)
Y(t)zYl(t)+Y2(t_t12) )
Xl:—RC[fl(t)e_i¢], Y1=——Im[f1(t)e_"¢] ,
(2.9)

X2= _RC[fz(t
¢=kd'r_wt12, 6=A+kuz N
fi)=p,6,(0A" Y, i=1,2

and p;, is the population difference p; at thermal equilib-
rium. The transverse relaxation rate y, =T, ! can be ex-
pressed as the sum of the spontaneous relaxation rate,
y,=T7 !, of level b and a collisional contribution y ., as

Y
2 +Vcoll

—t3)], Y,=—Im[f,(t —1,,)],

Y=
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All the dependence on position of the atoms is contained
in the phase parameter ¢; the z axis is taken in the k,
direction.

Equations (2.8) can be represented as

ngamkpk+71p3e8m3: m=1,2,3, (2.10)
where
A=[amk]=40—£ s
0 +86 Y
A’=[ap]l=|-8 0 -—x|, 2.11)
-Y X 0
Y. 0 O
L=1(0 vy, ©
0 0 vy,

The components (p;,p,,p;) are the standard com-
ponents of the Bloch vector R(¢;¢,8), which, according
to Egs. (2.8)-(2.10), may be written in series form as

+
3 R%(z;8)explikg) ,

R(z;¢,6)= (2.12)
k=—
where R'* has components (p{*’, pt¥, p{*') and
R(k)=(R(‘k)): (2.13)

We often will refer to p{" as the nth-order population
grating, even though it is a Fourier component corre-
sponding to the nth-order spatial grating.

C. Signal energy

The aim of this paper consists in studying the signal
emitted in the direction k;+nk,. In particular, it is the
pulse intensity as a function of a delay time which is the
subject of investigation. When deriving the general ex-
pressions for this quantity, we do not restrict ourselves to
any particular shape of the pulse envelopes.

It is shown in Appendix A that, if the third pulse is
weak and is not correlated with the first two excitation
pulses, the PT-3 signal intensity in the direction k;+nk,
is proportional to the quantity defined by

W= YE—A)YE—A)
" A,,m/ﬂff 2y, +id_

X(T{~"(1%8,8))d8d5 , (2.14)

_ = 1 /2 31r/3
T(n, n)( t ,5,8 —
y=— 5 fA - ¢ f

e " T(t;6 ,4..,8,5) .
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where

(T "(£;8,8)) ={py"(¢;8)py ™ (£;8)) (2.15)

and
2

¢(8)=exp _F

is a Maxwellian distribution function, ¢ p =t,+1y, is the
time immediately following the two- ex01tat10n pulse se-
quence, and

5_=8-5.

We refer to W >(t,,) as the PT-3 signal intensity. It is
seen from Eq. (2.14) that the signal depends on the aver-
age product of Fourier components (2.12) of two Bloch
vectors, associated with different atoms. In Eq. (2.14)
and all subsequent equations, a tilde denotes variables of
a second atom, i.e., 5= A +k7,.

The problem is reduced to obtaining a two-atom
signal-time correlation function for the population
difference p;. It will be shown that in a strong-field re-
gime, the gratings in the population difference fluctuate
considerably; consequently, the correlation function
(2.15) cannot be factorized. In order to solve the prob-
lem, we have to consider the second moments of the den-
sity matrix elements defined by

Trim =P (£36,8)0,,(1;8,8)=p P -

It follows from Egs. (2.10) that components of the matrix
T,,, evolve as

T, m z(amk Tkm’+am’kka)
k
7108y F B Byms) - (2.16)

The solution of this equation averaged over field fluctua-
tions gives the function

T=(Ty(t;6,4,8,8)) ,
from which one can extract the Fourier component
1 3mr/2 ~ =
=— T(t;9,4¢,8,8
=oa [ 16688

Xe M¢=Ddpdg

T ~"(1;8,5
(2.17)

needed in Eq. (2.14). It also will prove useful to intro-
duce the change of variables

¢_=1Lo—9), ¢,=Lo+4¢), (2.18)

and rewrite Eq. (2.17) as

(2.19)
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Hereafter we take ¢ and ¢ in the simplified form
o=k, T, 6=k, T

instead of using the rigorous definition (2.9), as the term
wt, leads only to a shift of origin of coordinates and does
not affect the Fourier component (2.19) and, consequent-
ly, the PT-3 signal.

The signal (2.14) can be written as a sum of two terms,
one an even function of ¢,, and the other an odd function
of t;,. Using both Eq. (2.13) and the fact that T is un-
changed if a, and a, are interchanged, one can show that
T ~M=(T{% ™™ ) can be written as
T 7"(12;8,8)=N(5_,8,)+is8_N,(5_,6,)  (2.20)
with N, and N, being real functions which are even with

J

o
V3V

wh=ap,v2m T [Ty

The first term in (2.23), which is an even function of ¢,,,
involves a single integral over &, (or, equivalently, over
velocity); consequently, this term can be interpreted as
arising independently from the different velocity groups
of atoms. The second term in (2.23) is responsible for an
asymmetry in the signal as a function of the delay time
t,,; it involves a double integral over velocities.

III. FULLY OVERLAPPING PULSES
VERSUS TIME-DELAYED PULSES:
WHAT IS THE DIFFERENCE?

If the excitation pulses fully overlap, i.e., ¢;, =0, the
non-Markovian nature of the problem related to the time
delay is removed. As a result, all the standard methods
for treating fields with short correlation times can be ap-
plied. What may be less obvious, however, is that, owing
to conditions (2.7), these methods also work for nonzero
delay times. Before going into the details of such a calcu-
lation, we introduce a model which enables us to gain
some physical insight into the dynamics of two-level
atoms interacting with time-delayed pulses. We do not
take into account the relaxation processes at this point,
as they play no role in the particular phenomena dis-
cussed in this section.

For nonzero delay time we would like to represent the
position of the Bloch vector at time t[? as a result of some
rotation performed under the influence of two pulses
which are fully overlapping rather than spaced apart in
time as is the actual case. In other words, we replace the
two time-delayed pulses by two, modified simultaneous
ones. The new pulses produce the same effect as the two
time-delayed pulses. This representation will let us for-
mulate the effect of the time delay in a simple and sys-
tematic manner.

28 oo
N1(0,8+)+—ﬂ_—f0 ¥ [7? ]NZ(S_,5+)d8_
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respect to ¢;,, _=8—35, and 8, =8+8. The parameter
s is given by

1if £,,>0

= _llft12<0

(2.21)
If ¥, is much smaller than any characteristic spectral
width in the system, Eq. (2.14) can be simplified by using
the following approximation:
1
6_

with 8( ) being the § function and P denoting a principal
value. Taking into account Egs. (2.22) and (2.20), we
finally obtain from Eq. (2.14)

(2y,+id_) '=78(8_)—iP (2.22)

&_

ds., . (2.23)

It is well known that in the absence of relaxation Egs.
(2.8) can be rewritten in a vector form as

X
R=[HXR], H=|Y |,
-8

where X and Y as defined in Eq. (2.9) are the real and
imaginary parts, respectively, of the Rabi frequency asso-
ciated with the electric field amplitude, taken with the
negative sign.

Let us consider the rotation of the Bloch vector R un-
der the influence of two arbitrary time delayed pulses. It
is always possible to find a time ¢(, such that the Rabi fre-
quency f(t) of any pulse is negligibly small for ¢ <¢,.
The exact value of ¢, does not play any role, so we put it
equal to zero.

According to Egs. (2.9) the angular velocity H equals

H=H,(1)+H; (1),

(3.1)

where

Hz_(t)sz(t _t12) ’

X, () X,(0)
H1= Yl(t) ’ H2= Yz(t) (3-2)
—& 0

At time t=2t,, the position of the Bloch vector
R(2t,,) results from two consecutive rotations, each of
duration t,,. During the first one, an atom is driven by
the first excitation pulse only. The Bloch vector rotates
with angular velocity

H=H(t), 0=t=¢,,,
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and, at t =t,,, takes the form

t
R(tp;)=R(0)+ [ “[H ()Rt ]dr’ (3.3)

The second rotation is performed under the influence of
both pulses (see Fig. 2) with angular velocity

H=H1(1)+H2(I_t12), 112§t§2t12 .
The position of the Bloch vector at t =2¢,, is then given
by
2t,
R(2t)=R(t)+ [ “{[H (")
12
+H,(¢'—1,)]R(t")}dt’ .
(3.4

We would like to represent the same transition from
the starting position R(0) to the final one R(2¢,) as a re-
sult of a different sequence of rotations. The second rota-
tion is performed under the influence of the first pulse
only:

H=H,(¢), for t,, <t=<2t¢,, (3.5)

while the first rotation is carried out with an angular ve-
locity

Hy*Ha*Had —]

Hy T/
H[‘Hz’ Had ]

Hy —=|=

FIG. 2. Schematic representation of stochastic rotation of a
Bloch vector R for given time-delayed fluctuating excitation
pulses. Solid curve, the trajectory of the tip of this vector on the
surface of a unit sphere. Positions of the Bloch vector at time
t =0,t,,2t,,3t,, are represented by solid arrows. Trajectory
of the tip of the Bloch vector are shown for 0=t <2¢,, (dashed
curve) and ¢, <t < 3t,, (dot-dashed curve) using an effective an-
gular velocity corresponding to fully overlapping pulses (see
text). Dashed arrows represent the modified intermediate posi-
tions R'(z,) and R’(2¢,,) of the Bloch vector. Note that at the
end of each step of the transformation the position of the actual
and modified Bloch vectors coincides, even though they differ
throughout the intervals. The wide arrows labeled by various
values of H give the angular velocity in each interval.
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H=H,()+H,)(t)—H_(¢t), for 0=¢=¢,, (3.6)

where an additional angular velocity component is intro-
duced to achieve the same final position of the Bloch vec-
tor (see Fig. 2). In terms of the new angular velocities,
the modified intermediate position R'(z;,) of the Bloch
vector is given by

112 ’ '
R'(11)=RO)+ [ 7 ([H(¢")+Hyt")

—H,(")R()}dr  (B.T)

and may not coincide with the true value R(z,). Using
Eq. (3.5), one finds that the final position of the Bloch
vector at t =2t, is given by

2t
R(21,,)=R'(1,)+ [ “[H,(¢"R()]dr’ . (3.8)

12
Since the delay time satisfies condition (2.7) the Bloch
vector rotates only slightly in a time period ¢, and Egs.
(3.3), (3.4), (3.7), and (3.8) can be solved by iteration. Car-
rying out the iterations to second order gives us two ex-
pressions for R(2¢,,) in terms of R(0). These expressions
are identical provided that

t+t

H(0=[ PIH,(1)H,(1)]de’

From the geometrical point of view, the appearance of
H,,70 is simply a consequence of the fact that two suc-
cessive rotations with different angular velocity vectors
H, and H, do not coincide with that of a single rotation
with H=H,+H,.

We can carry out a similar transformation for the next
time period t;, <t =3t,, and so forth (see Fig. 2). At
each step we obtain the same result (3.9) for the time in-
tervals nt, <t<(n+1)t;;, n=12.... When this
transformation is completed up to the time t =¢0 we get
the correct position of the Bloch vector, R( t;,) ), although
all the intermediate values R'(nt,,) differ from their true
values. The vector R( t,? ) can be regarded now as a result
of the rotation performed under the influence of the two
fully overlapping modified pulses along with some
modified atom-field detuning. The modification of the
field components and the detuning is given by Eq. (3.9).

If the laser field is fluctuating, the vector H,4 is also a
fluctuating function of time. It turns out that the fluc-
tuating part of H,4(¢) results in contributions which are
negligible in the limits discussed in this paper. Conse-
quently, the signal depends only on (H,y). Taking into
account definitions (2.9) one finds that the only nonzero
component of the averaged vector {(H,,) lies along the 3
axis and thus describes some additional detuning. This
component h,4 3, is given by

(3.9)

a3 =C(Hy) ;=G (t};)asiné , (3.10)
where
Iy
G(t12)=f0 gn(rdr G(tw)==1. (3.11)

The additional detuning A,y ; is nonzero only for time-
delayed pulses (¢,,70), if both «,70 (the pulses are
correlated) and ¢=k,-r#0. It depends strongly on the
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position r of the atom and on the delay time ¢,, through
the functions ¢ and G(t,,), respectively. Owing to its
dependence on G (t,), the absolute value of this addi-
tional detuning rises from O to a,,|sing| as |¢,,| varies
from O to |t,,] >7!2. Hence, if this additional detuning
significantly modlﬁes the dynamics of the two-level atom,
we can also expect the PT-3 signal to depend on ¢, even
if Ty, ~7.2. The implications of this model are explored
below.

IV. AVERAGED EQUATIONS
FOR THE CORRELATION FUNCTIONS

The single-time two-atom correlation functions
(T,,(t)) are the solutions of Egs. (2.16) averaged over
histories of the laser fields. A solution for {T,,, ) for the
general case of arbitrary ¢, will be discussed elsewhere.

In this paper we obtain exact results for delay times ¢,
satisfying Eq. (2.7), i.e., sufficiently small that the Bloch
vector R, as well as the tensor T,,,, varies only slightly
during this time period. Nevertheless, it will be shown
that the signal (2.14) can vary significantly as a function
of t,, even under this restriction.

Owing to condition (2.7) we can use the decorrelation
approximation*? when deriving equations for (T, ). We
follow the method described in Refs. 15 and applied there
to this particular problem, extending the method to in-
clude effects of relaxation and atomic motion. We obtain
the following differential equations for (T}, ) and {p,)
that hold true for pulses of arbitrary shape:

{(p,)=(p,»=0,

p=—"2aldp+v,(ps.—p), (4.1)
T=—2x+y)T+Q(¢,)Z+Q*(¢,$)Z*
+vipsp+pP) (4.2)
Z=—(x+2y,+i8;)Z +4Q*T, 4.3)
where
p={p:(8,8)), p=(p;(8,4)),
T =(p;(8,0)p;5(8,8))=(p3p3) =(T5;) ,
Z={(p,+ip,)p—ip)) o
=(T,,+Ty,+i(Ty,—Ty,)),
and
a(¢)=Ha,+a,+2a,c0s¢) , (4.5)
x =al¢)+ald)=a,+a,+a;,(cosp+cosd) ,
Q0 =1la,+ae' P+a,et+e )], (4.6)
8,=[8+G (t;y)a;,sing]—[85+G(t),)a,sind]
=8_+G(t,)a,(sing—sing) . @.7)

The function G (¢,,) is given by Egs. (3.11).
Equations (4.1)-(4.3) describe the first- and second-
order density-matrix correlation functions of two atoms
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located at points r and T, respectively. We present only
three of the nine equations for 7}, because, under the ap-
proximation applied here, the rest of the equations are
decoupled from Eqgs. (4.2) and (4.3) and do not play any
role in this problem. We shall discuss solutions of Egs.
(4.1)-(4.3) in Sec. V. Before doing so, let us consider the
coefficients appearing in these equations. The parameter
2a(¢) which appears in Eq. (4.1) is proportional to the
mean intensity of interference fringes at the location of
the atom. This parameter is responsible for the decay of
p={p3)={pa—pPp ; in other words, (2a) ! is a relaxa-
tion parameter whose origin can be traced to the com-
bined action of the fluctuating excitation pulses. In Egs.
4.2) and~ (4.3) the parameter x, equal to the sum
a($)+a(d) (¢=k,1,§=k,T), leads to the decay of the
averaged, single-time, two-atom correlation function T.
Another parameter, Q, proportional to the correlation
between interference fringes at different points r and T,
provides coupling between the population correlation
function T and the coherence correlation function Z. As
al@), x, and Q depend on the cross-correlation parameter
a,,, we expect the solution of Egs. (4.1)-(4.3) to differ
substantially for correlated (a;,70) and uncorrelated
(a;;=0) pulses. Finally, we note that quantity 8, defined
as a difference of modified detunings in Eq. (4.7), appears
in Eq. (4.3). In Eq. (4.7), one sees that the atom-field de-
tuning 6 is altered by a term G (¢;,)a;,sing [see Eq.
(3.10)], whose origin was explained in the previous sec-
tion and which is the only parameter in Egs. (4.1)-(4.3)
that depends on the delay time 7,.

V. RECTANGULAR PULSES

In this paper we consider pulses with rectangular en-
velopes

f()=const#0 for 0=t=t,,

for which the coefficients (4.5) in Eqgs. (4.1)-(4.3) do not
vary with time. Although the assumption of rectangular
pulses may seen to be a severe restriction, it turns out
that many of the results obtained are independent of
pulse shape.

The ensemble of two-level atoms is assumed to be in
thermal equilibrium before the excitation pulses are ap-
plied at t=0. The corresponding initial conditions are

P3(0)=p4o(0)—py, (0)=p;, ,
p1(0)=2Re[p,,(0)e "2T]1=0, (5.1)
p>(0)=2Im[p,,(0)e ' *"]1=0,
implying that
p(0)=p,, (T(0))=p, Z(0)=0. (5.2)
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From Eq. (4.1) we find an averaged population difference

P3e —[2a(¢)+7,1t

= . 53
p 2ald) 7, (y;+2ae ) (5.3)

The solution for the averaged second moment of the pop-

Yiple(x +¥[(x +2y,)2+8%]
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ulation difference can be represented in a general form as

3 —
T=Ty+ 3 ¢"'Ti+e "(Tye 25+ Tge ~21)
0 i 4 5

i=1

(5.4)

where T, is the steady-state solution

T,= .
° Qaty)a+y){[(x +2y,2+831x +y,)—4|Q1x +27,)}

The exponents A, , ; are the roots of the equation

(A+2y (A +2y, +x)(A+2y,+3x)=—2p (A+2y, +x)—8F(A+2y,+2x) —2(y;— ¥, (A +2y, +x)?

with
y=x*—4lQ?

=2a,a,[1 —cos(¢—¢)]=al,(sing—sind)*> .  (5.7)

The functions T; (i=1,2,3) are solutions of the homo-
geneous equations (4.2) and (4.3) (p;,=0); they corre-
spond to the roots A; and take into account the initial
conditions (5.2). The exact expressions for T, , ; are too
complicated to be presented here. Limiting values for
T,,T,,T; are given in Sec. VI and Appendix C.

Finally, T,(a,@)=Ts(&,a) is given by

_ 271P§ea(22+5_2f)
(2a+y (22 +83)2a+y,)—8|Ql%2] '

T, (5.8)

where z =@ —a—y,;+2v,.

In principle, a numerical integration (2.19) of the gen-
eral solution (5.4) over ¢ and ¢ gives us the desired PT-3
signal. However, to understand the dependence of this
signal on the numerous parameters involved, it is useful
to obtain some analytical results. They can be obtained
for large or small values of a parameter n, which charac-
terizes the number of population gratings of comparable
amplitude which are generated in the sample, each grat-
ing of order n contributing to the signal in direction
k;tnk,. For ny,<<1, only the gratings of the first order,
n =x=1, are important. For ny>>1, it is possible to in-
tegrate (2.19) by noting that regions where cos¢~cosé
give maximum contributions to the PT-3 signal.

Hereafter, we replace t[?=tp+t,2 by 2,, since under
conditions (2.7) the difference between them does not
affect the results. We assume that at thermal equilibrium
a two-level atom is in its ground state and thus

P3e= 1. (5.9)

Deviation from condition (5.9) leads only to decrease of
the PT-3 signal by the factor p3,. In addition, we drop
the (¢,$,8,5) arguments and write T'(¢;¢,$,8,5) simply
as T'(¢).

(5.5)

(5.6)

VI. QUANTITATIVE RESULTS IN THE
WEAK-RELAXATION LIMIT 7, T, << 1;7 7T, <<1

In this section we assume that
Y1V <<t | 6.1)

and consequently, the role of relaxation in the formation
of the PT-3 signal is negligible, and the signal can be cal-
culated using Eq. (2.23). Most experiments have been
carried out in this ‘“weak-relaxation” limit.

A. Weak-field regime
The weak-field regime is defined by
aj,a,<<t, ' (6.2)

In this limit, the population gratings of order n ==+1 lead
to the strongest PT-3 signals. The signals, originating
from the n=1 and n = —1 gratings, are of equal intensi-
ty. In the weak-field regime, one can interpret the signals
in terms of a four-wave mixing process involving one in-
teraction with each of the three excitation pulses. If ine-
qualities (6.1) and (6.2) hold, one finds (see Appendix B)

1—cos(8_1,)
———L . (63
6

T 71(8,;8,8)=a},t2+2a,a,

As T~V given by (6.3) is a real even function of §_, it
follows that N, =0 in Eq. (2.20). Hence, to obtain the
PT-3 signal from Eq. (2.23), one needs only the expres-

sion (6.3) with equal detunings, that is
T("_l)(tp;8,8)=N1(8_=O), given by
T 7(1,;8,8)=tXal, +aya,) . (6.4)

To interpret (6.4), one can use Egs. (2.15) and (2.13) to
rewrite 7"~ 1)(¢,;8,8) as

T 1(1,;8,8)=(|p"(1,;8)]2)
=[p(1)(tp)]2+< |p(3”(tp;5)_Pm(t,,)|2> ,
(6.5)

where p''(,) is the mean amplitude of the population
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difference grating, p''(z,)={(p4"(1,;8)). From Egs.
(2.12) and (5.3), and under condition (6.2), one finds that
p''(z,) is given by

p ) =ayt, . (6.6)

The correlation function (6.4) consists of the two parts.
The first term af,t depends on the mutual correlation of
the pulses and is equal to the first term in Eq. (6.5), that
is, to the square of the mean amplitude p(”(tp) of the
population difference grating. The second term of ex-
pression (6.4) equals the average of the square of the fluc-
tuating part of the population difference grating and is in-
dependent of the mutual correlation of the pulses. For
fully correlated pulses these two contributions are equal.
From Eqgs. (2.23) and (6.5) one obtains the PT-3 signal

wi =tp2(a%2+a1a2) 6.7

which does not depend on the delay time ¢,,. One might
have anticipated this result since, in a weak-field regime,
the significant asymmetry of the signal occurs only for
long delay times |t,,| > A, !,3® for which the Bloch vec-
tor can acquire a non-negligible Doppler phase (of order
Apt, > 1). For t,, satisfying inequality (2.7), however,
this asymmetry is negligible. For fully correlated pulses
(<I>=1%), Eq. (6.7) coincides with a previously obtained re-
sult.

The important feature of the weak-field result is the ab-
sence of a direct dependence of the signals on the correla-
tion time. This dependence emerges only in third order
of the parameter at, and can be neglected.

One can also see from Eq. (6.7) and the definition of a,,
that the part of the signal proportional to a?,, which de-
pends on the correlation of the pulses, cannot be larger
than the part proportional to a,a,, which is independent
of this correlation. In a strong field, these properties of
the signals are changed dramatically.

B. Strong-field regime

The main objective of this work is to study the regime
when at least one of the excitation pulses is strong. In
the weak-relaxation limit (6.1), the strong-field criterion is

ozmax=max(al,a2)>>tp‘l . (6.8)

The PT-3 signal is determined from Eq. (2.17) [which
gives T("’_"’(tp) in terms of the averaged correlation
function 7'(z,)], Eq. (2.20) [which represents T~ "(z,)
in terms of N, and N,], and Eq. (2.23) (which gives the
PT-3 signal as an integral of N; over 8, and N, over §..).
It is shown in Appendix C that T(z,) is approximately
given by

(6.9)
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AM=—%{2a,a,[1—cos(¢—¢)]
—[1—G*t,)]a3,(sing —sing)*+ 6%
+28_G (t};)a,(sing —sind)}
X[a;+a,+a(cosp+cosd)] ! . (6.10)

All the other terms in the general expression (5.4) provide
corrections to the PT-3 signal which are at most of order
(Caty) "' << 1.
An important feature of the strong-field signal is tied to
the two terms in Eq. (6.10) that contain the function
G(t,,). For correlated pulses (a,,70; i.e., ®70), these
terms lead to the variation of the signal on a time scale of
712, since G(t,,) has been shown to vary over such a time
scale. As noted above, Eq. (2.23) is a valid starting point
for an analysis of the PT-3 signal in the weak-relaxation
limit. The part of the signal which is asymmetrical about
t1, =0 arises from the N, term in Eq. (2.23). Both of the
terms in Eq. (6.10) depending on G (¢,,) affect this part of
the PT-3 signal. It can be shown, however (see Appendix
D), that in a strong-field regime the strongest PT-3 sig-
nals are characterized by small orders n and are almost
symmetrical for [¢,,/ <a~!. Although the asymmetrical
contribution to the signal is usually small, there are cer-
tain cases (to be discussed) where it cannot be neglected.
If we do not consider this small asymmetry, then accord-
ing to Eq. (2.23) the PT-3 signal is determined by its
symmetrical part, N, that depends only on A, (§_=0)
from Eq. (6.10). Consequently, N, is affected only by the
term in Eq. (6.15) which is proportional to the parameter
[1—GX(t,,)]a?, that varies from a3, to O as t,, varies
from O to values >7!2. Thus, for z,, > 7!? this factor van-
ishes. Consequently, the numerator of Eq. (6.10) becomes
independent of ® once t,, > 72 There is an additional
dependence on a,, contained in the denominator of Eq.
(6.10); however, it turns out this dependence does not
significantly modify the signal for small order n. As a re-
sult, the signal is nearly independent of ® for ¢, > r2; in
other words, both correlated or uncorrelated pulses,
characterized by ®=1 and ®=0, respectively, give rise
to almost equal signals for ¢,, > 7.2,

The detailed calculations of the PT-3 signal are carried
out in Appendix D. Below we present the results in the
most important cases.

1. One strong and one weak pulse

As a; and a, enter Eq. (6.10) in a symmetric way, the
PT-3 signal does not depend on which pulse is strong,
and this case is characterized by

>t >>a 6.11)

A max P

min
where a;, =min(a,,a,). Taking into account Egs. (6.11)
and expanding expression (6.10) to first order in a ;¢

3 . min‘p»
we get the correlation function
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2
28_tp
3a

ll N 2amint[J

T(t,)=1exp 3

max

2GP6_
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[cos(¢—)—11{2—(1—GHP[1+cos(¢+)]}

(cos¢+cos¢d)

The strongest signals (n70) are emitted in the directions

kitky. Picking up the terms proportional to
exp{i(¢—d¢)} needed in Eq. (2.19) one finds
A pmint 26% ¢t
T =V(p y= —min’p 9=

20G5_

X [2—[1—=GXt,)]P—i

max

(6.13)
The signal obtained from Egs. (2.20) and (2.23) is given by

Qmin?,
W =—"212-[1-G1,)]®

ol -1,2
max 2
2A2D +Tamaxtp] 1 .

_ 206G
Vi

(6.14)

Thus, when one of the fields is weak, the PT-3 transient
consists of a background signal and a narrow dip of
width 7!? and relative depth ® /2 centered at zero delay
time, ¢, =0 (see Fig. 3). The dip is produced only for
correlated pulses (®70) while the background signal ex-
ists for either noncorrelated or correlated pulses. The re-
sult (6.14) coincides with that ootained earlier!® for fully
correlated pulses, when ®=a}(aa,)"'=1, and for
A maxtp = . Owing to condition (6.11), the signal (6.14) is

J

[I_Gz(tlz)]

—n2/2'r/2 2
W;s)_e [H_E 1_% —
4 ]

where
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4a,ayt,

m= 3(a1+a2)

»

_ 2(a,a,)!?

a1 +a2
(6.20)
and
_ 3a,tay)

T 4Als,

’

1_
a, a

2
B[, 2m2
4

(sing —sing)

] . (6.12)

max

almost symmetrical around ¢, =0 for any Doppler width
Ap; however, there is a small negative asymmetry which
arises from the last term in Eq. (6.14) [the signal at ¢,, <0
is larger than at ¢,, >0]. Such an asymmetry cannot ap-
pear in a weak-field regime.

2. Both pulses are strong
This case is described by the condition
Apin=min(a;,a,)>>1,7" . (6.15)

Population gratings of order n <n,, with ny>>1, are
created by these strong fields; consequently, the signal in-
tensity in many directions, k;tnk,; with n <n,, can be
comparable. We need consider only n =0, since the sig-
nals in the k;—nk, directions are related to those at
k;+nk, by
W) =W (—ty,) . (6.16)

It is possible to obtain analytical expressions for the

signal in some important limiting cases provided
n <<amintp - (6.17)

If mutual correlation of the pulses is moderate or weak,
that is, if

®=<0.5, (6.18)

the PT-3 signal takes the form (see Appendix D)

2n*  n* 2Gnp

7V 2m(D +1)

2+D _n?
1+D

7 7

B

(6.19)

and all the terms in parentheses that are proportional to
® are assumed to be small compared to 1. Note that
D <<1 corresponds to a relatively large Doppler width,
and D >>1 to a relatively small Doppler width.
In the limit that ® =0 (noncorrelated pulses) the signal
(6.19) reduces to
—nt/2n?

W p=0)=2

—_—. 21
InV2r ©621)

The signal (6.21) does not depend on ¢,,, and Eq. (6.21) is
valid for all n <<7? [see Egs. (6.17) and (6.20)].
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FIG. 3. Signals corresponding to order n=1 vs t;, /7!* in a
weak-relaxation limit (y,t,=0.02 and y,2,=0.01 in this figure
and Figs. 4-10) in the case of one strong and one weak pulse
Apaxtpy = 300, apint, =0.05, for different degrees of mutual corre-
lation @ of the pulses; Apt,=14. All curves in this and all oth-
er figures represent numerical solutions of Egs. (4.1)-(4.3).

The signal (6.19) for correlated pulses differs only
slightly from that for uncorrelated pulses, but the
difference between the two is a function of ¢,,. The PT-3
signal (6.19) in a direction characterized by n << exhib-
its a small peak having width 7'% and relative height

Wt =t ) — W (e, >>7.)
§=—" ~ —=lp <1

) (6.22)
W, (t, >71,.)

(see Fig. 4). The signal has positive asymmetry which is
small for any Doppler width and ratio of the pulse inten-
sities. Owing to this asymmetry the central peak max-
imum of the signal is slightly shifted to positive delay
time, that is

max=ﬂ (2+D) 12 12

T T (6.23)
12 ) (1+D)3/2 c c
:'ZI T I T T T T
=
= O . —
2
£
5 - _
™
L
2]045_
4
(&
n
- - _
>
ol 1
—4 -2 4

0
tia/Te?

FIG. 4. Signals corresponding to small order n =1<<7 vs
t;, /71 in a weak-relaxation limit in the case when both pulses
are Strong: Qpmg,t, =10, ap,.t, =107 for different degrees of mu-
tual correlation ® of the pulses; Apt, = 14.

6203

It is also seen in Eq. (6.19) that the background signal for
t;;>7. does not exactly equal that for noncorrelated
pulses. This difference reaches its maximum value
—®/16<<1 when the pulses have equal intensities,
a,=a,, and the background signal decreases with in-
creasing P.

In contrast to the signals corresponding to small n, the
signal in a direction characterized by n >>7 exhibits a
dip (see curve a in Fig. 5), if

npB
n‘/m «<1. (6.24)

Condition (6.24) can be satisfied if the Doppler distribu-
tion is narrow, D >>1, or the pulses have very different
intensities, B<<1 [or ap../Qm,>10, see expression
(6.20)]. The signal has a small negative asymmetry; the
dip is positioned at ¢, =0 and has relative depth

W,‘,S)(tlz >>TC )_ W,(l3)(t12=0)

W3t,>>1,)

2
NEs =1pl «<1.

(6.25)

However, as soon as condition (6.24) is violated, the
dip vanishes and the signal continuously decreases as ¢,
varies from negative to positive values (see curve c in Fig.
5).

If the pulses are strongly correlated, that is if

(1-d)<1, (6.26)

the qualitative behavior of the PT-3 signal is similar to
that considered above; however, all the features are more
clearly defined as we proceed to discuss.

First, we consider the strongest signal, characterized
by small n, n <<7. The intensity of the signal is given by

Wt ,) =W+ W, , (6.27)

where W5 and W g are correspondingly the symmetrical
and asymmetrical parts of the signal

<<

o

n
/

|

PT-3 SIGNAL (arbitrary units)

o

|
>

|
[

0
t'12/"':2

FIG. 5. Signals corresponding to high order n =20>7% vs
t1, /712 in a weak-relaxation limit in the case when both pulses
are strong: @pint, =100 and ap,,t, = 10* (curve a), 10° (curve b),
and 110 (curve ¢). Degree of mutual correlation of the pulses is
moderate: ®=0.25; Apt,=14.
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Ws(tlz):‘Ws(—tlz); WAS(t12)= - WAS( —'tlz) . (628)

For n <<n, Wy is much larger than W,s, and for

t,, <712 it can be represented in the form (see Appendix
D)
S———-l—— W,+W_ +B:2 (6.29)
37V 2w 47
with
4
L s _
N+ niexp(—Z4/2)+[Z, +exp(—Z;)]""%)
(6.30)
and
4a,a,t, 12 |
= |l >1,
=7 | 3(a, +a,t2a,)
(6.31)
[1—-®(1-G)]pt
+= 2 .
n
If the pulses are strongly correlated, that is, if
(1—®)<n?/n3, and if the delay time is very small,
2 172
N+

then Z, <<1 in Eq. (6.30), and W, increases with in-
creasing t,, as

2 1—®+(t), /712 n}
W= |20 AL 6.33)
N+ n 2n
However, when
) 172
22> | —(1-) |, (6.34)
N+
then Z, > 1, and W is given by
W.=—11 16 (6.35)

=0+, /1]

and decreases with increasing ¢,,.
reaches its maximum for

Consequently, W,

02 172
——(1— )
771

12
trlnzax

(6.36)

If the pulses have very different intensities
(Qpax >> pyin OF B<<1), the asymmetrical part of the sig-
nal W, can be neglected, since W, g <<B/n<<n""! (see
Appendix D). Thus the signal is completely determined
by its symmetrical part Wg. The condition << 1 holds
when 7, =7n_=mn; in this limit W, =W _, and the sig-
nal, obtained from Egs. (6.29)-(6.35), exhibit a peak cen-
tered at ,,=0. The peak has temporal width |z,,|~7!?
and, moreover, for fully correlated pulses (®=1) there is
an additional very narrow dip that appears in the middle
of this central peak. This dip has width |t,,|=~(n/5)r}?,
depth ~0.0277!, and is very sensitive to the degree of
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mutual correlation of the pulses, since the dip vanishes as
soon as (1—®)>n?/n?% as shown in Fig. 4. For fully
correlated pulses, the peak is approximately
27 'In(279/n) times higher than the background signal
[see Eq. (D17)]:

1
317\/57

which is reached for |¢,,|>7!* and which would be ob-
tained for noncorrelated pulses [®=0, see Eq. (6.21) for
n <<nl.

In Fig. 6 the signal for order n=1 is shown as a func-
tion of intensity of the weaker pulse. The transition from
a dip of width 7.* [ay,t, <<1; Eq. (6.14)] to the peak
(1 << apint, <<paxl, ) occurs for Cmintp = 1. The absolute
intensity of the background signal varies with a,,;,t, as

W[t >l = , (6.37)

4a 4a
W =1exp "‘3 i . “3““” , (6.38)
where I, is a modified Bessel function, and reaches its
maximum 0.07 for ap;,t, =1.1.

If the pulses have nearly equal intensities, such that
1-B=[(a)"*—(a,))'* P/, +a,) << 1,

one can see from Eq. (6.30) that W >>W _ and thus

Ws=W . The asymmetrical part W,g of the signal is

still small. However, it cannot be neglected if the pulses

are fully correlated [(1—®)<n?/n*<<1] and the

Doppler width of the atomic ensemble is large (D <<1).
In this case W g is given by

2nG 8(32112 . —1
W = —-D+ N lf G << ’
AS T 3n2(4n2—1) 3 16l <<n
(6.39)
__ G e —1
Was=——=, if 7' <<|G|<<nn™ !, (6.40)
6mnV'nr
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FIG. 6. Signal of order n=1 as a function of ¢,,/7.° and
Qmint, in a weak-relaxation limit in the case when one of the ful-
ly correlated (®=1) pulses is strong a,,?, =500, while the in-
tensity of another varies, 0.05 < ayint, <170; Apt, =7.
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_ Jo+ 2n_ 2|G|
A 3mevr [0 WV yo+(2+26D)% |
if 9 '<<|G|, (6.41)
where
n DG*y?
Yo=" exp -=1

One can see from Egs. (6.39)-(6.41) that W g is much
smaller than Wg. However, when |t,| <(n/n)712, W,
is comparable with the part of W which depends on de-
lay time [see Eq. (6.33)]. As a result, the narrow dip in
the middle of the peak practically vanishes (see Fig. 7)
and the maximum of the signal shifts to

txlnzax ~ 17.22 .
For |t,,] >7)? the signal reaches its background value
given by

1 n .
Wt >11)=——=2V2+s——=
e, >10) pp— sn‘/zln min

where s is defined by Eq. (2.21). Comparing Egs. (6.37)
and (6.42), one can see that even in the case of equal in-
tensities of the fully correlated pulses the background sig-
nal differs only slightly from that corresponding to non-
correlated pulses.

In Fig. 8 for a,/a,=const=1 the evolution of the sig-
nal with increasing intensity of both pulses is shown. The
transition from the signal with no dependence on ¢,,

=
3
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FIG. 8. Signal of order n=1 as a function of ¢, /7!* and at,
in a weak-relaxation limit; Apt,=7. The fully correlated
(®=1) pulses have nearly equal intensities a,/a,=1.2 that vary
from small to large values (0.1 < a2, < 500).
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[
>

0
tie/ T8

FIG. 7. Signals corresponding to order n=1 vs t;, /7% in a
weak-relaxation limit in the case of fully correlated (®=1)
strong pulses with almost equal intensities (a;t, =120,
a,t, =100) for different Doppler widths of the atomic ensemble:
curve a, —Apt,=1.4 (D=118); curve b, —Apt,=14 (D=1.2);
curve ¢, —Apt, =70 (D=0.05).

} ] , (6.42)

[weak-field regime, a,,t, <<1; Eq. (6.7)] to the signal
with a well-defined peak (strong-field regime, 1 <<a, ,t,)
occurs in the intermediate range of intensities; that is,
when @, ,t,~1. For these intensities the asymmetry of
the signal and its absolute intensity reach their maximum
values.

The above discussion is valid for orders n satisfying
0<n <<7. The signal of order n=0 is difficult to detect,
as it is emitted simultaneously with the third pulse in the
same direction, but it is the strongest of the PT-3 signals.
It is given completely by its symmetrical part, and at zero
delay time can be expressed as

Wf)3)(t,2=0)=W(13)(t12=0)+§‘l/ﬁ . (6.43)
For ty, > 713 [n?/2n% —(1—®)]'/?, the difference between
PT-3 signals of zero and first order vanishes, and
W) (t,,) coincides with the symmetrical part of the sig-
nal W{*)(z,,) given by Eq. (6.35). The zero-order signal
always decreases with increasing |¢,,|.

Let us now consider the PT-3 signals of higher order,
that is, with n >>7. These signals are relatively weak;
nevertheless, they have some features that deserve discus-
sion. For the sake of simplicity we consider fully corre-
lated pulses (®=1) in two limiting cases: (1) the pulses
have very different intensities ap,,>>a.;, and (2) the
pulses have equal intensities o, =a,=a.

In the first case (a,, > an;,), if

max
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nia,;
_4ﬂ <1, (6.44)
1’ amax
the signal is given by
1 n*(3—G?)
wW3Nt,)=———=—exp | - ————
mR T 3 a?
2132
xI, (U= (6.45)
4n

where I, is a modified Bessel function. As shown in Fig.
9, the signal (6.45) exhibits a profound dip of relative
depth |S|=(1—27n/mn)~ 1 centered at t;,=0; for
|t,] >7!* the signal practically coincides with that for
noncorrelated pulses.

When

n 4amin
7’4amax
the background signal acquires a negative asymmetry if
D7*/n? <1 [see Eq. (D36)].
In the second case (equal pulse intensities) the signal is
given approximately by

>1, (6.46)

w=—"1— ||G|—G erf .
" 3maWVn 6l 7[2(DG?*+2)]'?
2 2
+\/§exp( n”/4n’) 1—erf nlGl , (6.47)
3mn 47

where erf is the error function.*?

If the Doppler width of the atomic ensemble is
sufficiently small, such that
2

<1,

n?

D7n?

nAp

(6.48)
a

then, as in the first limit (a,,, >>a,,;,), the PT-3 signal

PT-3 SIGNAL (arbitrary units)

0
tie/ T

FIG. 9. Signals corresponding to different orders n vs ¢, /7.2
in a weak-relaxation limit. Both pulses are strong and have very
different intensities  Gpaxt, =10%  piet, =100  (B=0.2);
ADtp= 14, d=1.
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for equal intensities exhibits a dip whose minimum is
shifted to positive ¢,,. The dip has relative depth close to
unity, since the background signal

Wil > =
is much larger than the value at zero delay time.

If the Doppler width is sufficiently large, such that
condition (6.48) is violated, the signal (6.47) becomes
strongly negatively asymmetric and the dip vanishes (see
Fig. 10).

The remarkable feature of Eq. (6.49) is the power-law-
type dependence of the signal on n for t,, > 7% rather
than the Gaussian-like dependence seen in Eq. (6.45) for
pulses having different intensities. As a result, it may be
easier to detect signals corresponding to large n if equal
pulse intensities are used. By comparing Eqgs. (6.49) and
(6.21), one sees that the background signal for equal in-
tensity, fully correlated pulses differs from that for non-
correlated pulses. This is the only limit where such a
marked deviation occurs; the origin of this effect can be
traced to the increasing importance of the a;, term in the
denominator of Eq. (6.10), a term that was ignored in the
qualitative discussion following that equation.

When both fields are strong, the PT-3 signal differs in
almost every respect from the analogous signal in the
weak-field regime. The strong-field PT-3 signals are emit-
ted with comparable intensities in many directions (corre-
sponding n <n, S7), while the weak-field signals only in
the k;t+k, directions. The signal for correlated pulses
can be much stronger than that for noncorrelated in the
strong-field regime but not in the weak-field regime.
Only the strong-field result depends directly on the
cross-correlation time 7.2 exhibiting a well-defined nar-
row peak (n <<7), dip (n >>7), or combination of them
(n~m) at t,,=0. A negative asymmetry of the signal
also occurs only in a strong-field regime.

Finally, it is possible to show that, in sharp contrast to
the weak-field regime, for strong fields the signal induced

(6.49)

—

=)
o

10

PT-3 SIGNAL (arbitrary units)
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FIG. 10. Signals corresponding to different orders n vs
t,2/712 in a weak-relaxation limit. Both pulses are strong and
have nearly equal intensities QAmaxty =120,  apint, =100
(B=0.996). All other parameters and notations are the same as
in Fig. 9.
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by the correlated pulses originates from the stochastic
part of the population grating [p}"( t,)— (4 tp))],
while the contribution from the constant part of the grat-
ing, ( p("’(tp ), is negligible. In the weak-field regime, the
constant and stochastic parts of the population grating
induced by the fully correlated pulses provide signals of
the same intensity [see Egs. (6.6) and (6.7)]. To under-
stand the strong-field results one can consider the mean
amplitude p'”'=(py"(z,)) for the grating of the order n.
Since the spontaneous relaxation is assumed to be
negligible (v, <<t,”!) we obtain from Eq. (5.3)
—(a;t+a,

pM=(—1)" ", (2at,) (6.50)

where I, is a modified Bessel function. In contrast
to the two-atom correlation function T~
=(py"(1,)p"(1,)), the single-atom amplitude (6.50)
does not depend on either delay time ¢, or the detuning
5.

As long as condition

(ajta;—2ap,)t, =alm)t, >>1 (6.51)

is satisfied [a(@) is defined in Eq. (4.5)], the mean grating
amplitude p"”(tp) given by (6.50) is exponentially small
for any n, namely

—(a1+a2—2a]2)1p

p'"(t,) <<e «<1.

However, if the pulses are almost fully correlated (®~1)
with nearly equal intensities (a;=~a,=~a;,), inequality
(6.51) can be violated to the point that

(ay+a,—2a,)t, S1 . (6.52)
For max{n, 1} <<a,,t, it follows from Eq. (6.50) that
(—1)"exp(—n 2/4a12tp )

172

"(t,)=
P (4mayt,)

—(a;+tay—2a,)
Xe LN

(6.53)
and, owing to condition (6.52), the gratings characterized
by n <(2atp)” 2 have nonexponentially small mean am-
plitudes ~(az,) ™2,

It is not too difficult to understand the physical origin
of Eq. (6.51). The atoms in the sample see interference
fringes produced by the excitation pulses. Atoms at
points other than interference minima are saturated by
the fields. If the pulse amplitudes are unequal, the inten-
sity at the minima of the interference fringes is still
sufficiently high (in the strong-field regime) to saturate
even these atoms. These saturated atoms produce ex-
ponentially small contributions to the mean grating am-
plitude. On the other hand, for equal pulse amplitudes,
atoms near the interference minima see an arbitrarily
small effective total field; these atoms are not saturated.
As a result, the mean amplitude p(¢,;¢) of the spatial
population grating has narrow groves in the vicinity of
the minima ¢ =(2m +1)7 (m =0,%1. . .) of the interfer-
ence fringes.

If the nth-order population grating pg")(tp;S) is written
as the sum of the constant and stochastic contributions,
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P (1,;8)=p' " (1) +[p§"(1,)—p'"(2,)], (6.54)

the correlation function T ™" =(p{"(z,;8)p}” "(1,;8))
is given by

T(n,—n)(tp)z[p(n)(tp)]Z
+([p§"(2,;8)—p""(1,)]
X[ps~"(t,;8)—p"(t,)]) .

We did not take into account the first term in Eq. (6.55)
when deriving the results in the strong-field regime, ow-
ing to the fact that this contribution is (a) exponentially
small if condition (6.52) is violated and (b) still small rela-
tive to the second term of Eq. (6.55) [compare Egs. (6.53)
and (6.49)] even if condition (6.52) is satisfied. In other
words, for all a),a,,a,, the signal in the strong-field re-
gime is produced by the stochastic part of the populating
grating, i.e.,

W =T"""(1,,8,8)

(6.55)

=~ py"(1,38)—p'"(1,)[*) > [p"(1,)]* . (6.56)

VII. QUALITATIVE EXPLANATION
OF THE STRONG-FIELD RESULTS

To give a qualitative explanation of the strong-field re-
sults obtained in Sec. VI, we recall that the PT-3 signal
depends directly on the correlation function
T(tp)=(p3(tp;¢,8)p3(tp;$,5)) of population differences
of two atoms. In general, these atoms are characterized
by different positions (¢7¢) and velocities (§%8). More
precisely, according to Egs. (2.19), (2.20), and (2.23), the
part of the signal symmetrical relative to t,, and n de-
pends only on the correlation {ps(t,;4,8)p;(t,;6,8)) of
atoms having the same velocity. The asymmetrical part
of the signal can arise when

(p3(t,36,8)p3(1,;6,8) )7 ps(t,;6,8)ps(2,;6,8)) .

To explain the obtained results, we first consider the
behavior of the correlation function T'(z,) as a function
of ¢,¢4,6,8 and t,,. Since in a strong-field regime the
population difference p;(7,;¢,8) is a stochastic quantity
with (p;(z,;6,8)) =0, only those atoms that satisfy the
condition p;(t,;¢,8)=~p;(t,;6,5) contribute to the signal.
To determine the range of ¢ and ¢ and & and & that con-
tribute to W.>)(t,,) for a given t,,, let _us _consider fully
correlated excitation pulses (a;,=1 a;a,), when the
PT-3 signal reveals the most profound dependence on ¢,,.

First we analyze the case of zero delay time, ,, =0.
The behavior of the correlation function T'(t,) depends
implicitly on the spatial dependence of the incident fields,
which in turn is represented by the total Rabi frequency
f(t,8). As the pulses are assumed to be fully correlated,
f(t,4) can be represented in the form

f)=fre %+ 1,

(7.1)

172

a(¢) exp{i[0+argf,(1)]},

=|f1(0)] (7.2)

1
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where
ald)=a,+a,+2(aa,)*cos(¢) , (7.3)
and
a,sin
tanf= — iSing

a,cosp+(aja,)'?

The phase 6 does not depend on time and thus cannot
affect the evolution of atomic population, while argf,(¢)
is the same for all atoms. Thus, all the essential depen-
dence on ¢ is contained only in the absolute value of the
Rabi frequency |f(¢,¢)|, which in turn represents a fixed
spatial grating (or interference fringes) proportional to
al(¢), whose amplitude fluctuates in time according to
If1(0].

The larger the difference in |f(¢,¢)| and |f(t,¢)| for
atoms characterized by ¢ and @, the faster is the decorre-
lation of their populations. A difference in detunings (ve-
locities) leads to the same decorrelation. Namely, for
a(¢)=a(d), only those atoms which satisfy the condition
[see Eq. (C8)]

— (8—38)t

1 — 71)2 I 2
L(Val($)—V a(§))t, + satg) <!
contribute to the signal. At ¢;,=0, however, the
asymmetrical part of the signal vanishes, and only corre-
lations between atoms with equal velocities are impor-
tant. Thus, one need consider only the first term in Eq.
(7.4) when ¢, =0.

For a(¢)=al(¢), it follows from Eq. (7.3) one needs to
have cos¢~cosd. Consequently, the population correla-
tions can be of two types. For a given atom, character-
ized by “location” ¢=k,-r(—7/2=¢=<37/2), the first
type of correlation occurs with a neighboring atom hav-
ing

$=¢ .

The second type of correlation arises for an atom located
at ¢ and another one at

(7.4)

(7.5)

b~—0 if —TL<gp<™T
F~—¢, if =7 <97,
3 (7.6)
b~2r—¢, if Z<¢p<T
F=2m—¢, if T <4<

These correlations are illustrated qualitatively in Fig. 11.
According to Egs. (7.5) and (7.6), all atoms are naturally
separated into two subensembles: those which are closer
to maxima —7/2=<¢ < /2 or minima 7/2<¢ <37 /2 of
the interference fringes, respectively. The atomic popula-
tions are correlated only within these subensembles,
which therefore contribute to the PT-3 signal indepen-
dently:

Wr(l3)= Wr(:,sr:mx + Wr(n,rl)in ’ (7.7)

where max and min designate “maxima” and “minima”
subensembles, respectively.

To continue the analysis, one must distinguish between
two limiting cases, that of (1) pulses with very different

V. FINKELSTEIN AND P. R. BERMAN 41

intensities (a,, >>a;,), and (2) pulses with nearly equal
intensities (a;=a,). In the first case one can see from
Fig. 11(a) that the spatial modulation of the interference
fringes is small compared with its average amplitude.
Hence, one can expect the behavior of the correlation
function T'(z,) to be almost identical for the “maxima”
and “minima” subensembles. In the second case the
“minima” subensemble is driven by a considerably weak-
er field than the “maxima” one [see Fig. 11(b)]; this can
result in different contributions to 7T'(z,) from the two
subensembles.

If the pulses have very different intensities, condition
(7.4) takes the form (§=3)

t

A min P
3

The fact that expression (7.8) is not changed under the
substitution ¢ —¢@+m; ¢—¢+ 7 proves the behavior of
T(z,) to be identical for the two subensembles. Suppose

(cosp—cosg)? <1 . (7.8)

e
(a)

12

..... 5h to>T

o—- e g e
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o ) hod,3:°-
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FIG. 11. Schematic representation of the two types of popu-
lation correlations for t,, =0 for different excitation pulses. (a)
The pulses are strong, fully correlated, and have very different
intensities. Rectangles depict the range of correlations of the
first type, while arrows depict the correlations of the second
type. The solid curve represents the averaged interference
fringes (|f(2)|?), while the dashed curves depict nonaveraged
interference fringes | £ (¢)|2 for two different times. The effective
detuning, which arises at ¢,,70, is shown by the dotted curve.
(b) The pulses have equal intensities. All other conditions and
notations are the same as in (a). (c) The pulses are noncorrelat-
ed; only the correlations of the first type exist, and the effective
detuning vanishes.
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an atom is located near an extremum of the interference
fringes (¢=~0 or ¢=~m). Then, §~¢ holds for the both
types of population correlations. Since Va(¢) varies
slowly near extrema, the amount of (¢ —@) that can still
contribute to T'(¢,) is relatively large. According to Eq.

P
(7.8) this range is given by

lp—&| < (apnt,) %P <<1 .

®min p

(7.9)

On the other hand, if an atom characterized by ¢ is locat-
ed at a slope of the interference fringes, then the correla-
tions of the different types are well separated in space,
and only the atoms satisfying

|6 — @l <(@mint,) ™" <<1

(first type of correlations) (7.10)
and
|+ <(ampnt,) **<<1,
lp+¢—2m| <(apat,) " <<1, (7.11)

(second type of correlations)

can contribute to the signal. The ranges (7.10) and (7.11)
are much smaller than (7.9).

For pulses with equal intensities (a;=a,=a), condi-
tion (7.4) for atoms to contribute is
2

<1. (7.12)

COS% - COS%

4atp
3

Comparing Eqgs. (7.8) and (7.12), one finds that for the
“maxima” subensemble, the behavior of correlations is
not changed significantly compared to the case

Aoy >>amin. However, for the “minima” subensemble,
that is, for an atom located close to a minimum of the in-
terference fringes (¢~), the amount of (¢ —¢) that can
still lead to a contribution to T(z,) decreases drastically.
According to Eq. (7.12), this range is given by

l¢—&l <(at,)”

and does not differ from that of an atom located at a
slope of the interference fringes.

To consider what happens to the population correla-
tions when the pulses become time delayed (¢,,70), we
use the model developed in Sec. III, in which, for
0<ty, <<a1f2], the pulses can be still regarded as fully
overlapping and the Rabi frequency, f(t,¢), is still given
by Eq. (7.2). In this model, every two-level atom acquires
an additional detuning h,q;(¢)=G (t};)(a,a,)' *sing;
consequently, the second term in Eq. (7.4) is modified,
and the condition for atoms to contribute to T'(z,) be-
comes

05«1, (7.13)

3[\/61 ¢ ‘/T&')]th
[8_S+had‘3(¢)_h
+ 3a(¢)

ad,3($)]2tp

<1. (7.14)

The additional ¢-dependent detuning alters the symme-
trical part of the signal since it results in an additional de-
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phasing for atoms having equal detunings §=39§. First
one notes that the additional detuning varies as sing (see
Fig. 11). This implies that correlations of the type 2 for
atoms located at the slopes of the interference fringes are
destroyed for relatively small values of ¢;,. For example,
for the atoms characterized by ¢~—f~m/2 and
¢~2m—¢~m/2 the difference in additional detunings
[see Eq. (7.14)] is maximal, and the correlation of
their populations is already  destroyed  at
t, =T /(i t, t)/2<<7l2. For larger delay time and
pulses having very different intensities, the range (¢ —@)
that contributes to the signal for the atoms located in the
vicinity of the extrema of the interference fringes de-
creases from (azmm )~ 025 to (ammt )7%3 as t), varies
from O to t,, >>7)2. For t,, > 7!? the range (¢—@) which
contributes to the 51gna1 is the same for atoms at the ex-
trema and the slopes of the interference fringes (in con-
trast to the situation at ¢, =0). This result also holds for
atoms near the maxima in the case of equal pulse intensi-
ties. However, the range (¢ —¢) of the correlations for
the atoms near the minima (¢~ ) shrinks from the value
(7.13) to an even smaller value cos(¢/2)(az, )70

In general, when a(¢)=a(d), the detumng term
[second term of Eq. (7.14)] leads to eventual decorrelation
for t;,70. However, for certain unequal detunings §+35,
this decorrelation can be significantly reduced. If

5—8=hy 3 ($)— (7.15)

ad3 ¢)

the second term of Eq. (7.14) vanishes and the correlation
of the populations coincides with that for the atoms with
equal detunings at t;,=0. For detunings %8 which
satisfy (7.15), there is always a contribution to the
asymmetrical part of the signal.

The analysis of the population correlations presented
above and the representation of the atomic ensemble as a
sum of “maxima” and “minima” subensembles helps to
explain the dependence of the signal on time delay ¢,
and grating order N. First, using Eq. (7.7), one can show
that, owing to Eqgs. (2.19), (2.23), and (6.9), the total PT-3
signals emitted in all directions by these subensembles are
given by

2 Wr(13r:13x = 2 Wr(l3[:1|n % b (7. 1 6)
n=-—o© n=-—ow
such that the total signal satisfies
S wr=1. (7.17)

The sum rules (7.16) and (7.17) are valid independent of
the delay time or correlation properties of the pulses.
For any given delay time ¢, and correlation parameter
@, one can regard W), W3, and W > as some “dis-
tribution” functions of the signal intensity relative to N.
Consequently, knowledge of W\*(t,,) for a given n al-
lows one to draw conclusions about W ¥(t,,) for other
values of n.
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A. Pulses with very different intensities

In this case it has been shown that at #,, =0 the behav-
ior of T'(z,) in both (“maxima” and “minima”) suben-
sembles is identical [see Fig. 12(a)], and thus

1 3m/2 3In/2 -~
(3) — (n,—n) -
W 0)=T"""(1,,8,8)= f_ﬂ/2d¢f_v/2d¢(p3(tp,

The correlation function appearing in Eq. (7.18) is always
positive, as is W{». Owing to the oscillatory behavior of
cosn (¢—@) for n#0 the distribution W3 (t,,=0) is a
smoothly decreasing symmetrical function of n, charac-
terized by width n, with ny>>1.

For t,, >0 the two subensembles lead to the distribu-
tions W3 (t,,) and W) (¢,,) which acquire some

n,max n,min

asymmetry [see Fig. 12(b) and Eq. (7.15)]. However, the
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FIG. 12. Distribution of the signal intensity as a function of
order N for delay time (a) ¢;, =0 and (b) ¢,,=27!? @, the total
signal intensity W,>; +, the signal intensity W, ., correspond-
ing to the “minima” ensemble; X, the signal intensity W, ...
corresponding to the “maxima” ensemble (W =W, ..
+ W, max). The pulses are fully correlated and have very
different intensities: ®=1, a2, =10, ayt, =10% Apt,=14.
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W (8, =0)=W3li (£,=0)=0.5W3(1,=0) ,
where, according to Egs. (2.23) and (2.19), W* is given
by

¢,8)p3(1,,8,8))cosn (6—4) . (7.18)

asymmetry of the ‘“maxima” distribution is positive
[W 2 ax(t12)> W2 (21,)], while that of the “minima”
is negative, such that they are exactly compensated in the
joint “distribution” W *(¢,,), which is symmetrical rela-
tive to n (and 7, ).

Some insight into W.*(t,,) can be obtained by first
considering W{*'(¢,,). In light of the discussion above
about the destruction of correlations with increasing ¢,,,
one finds that the signal W (z,,70)< W5’(0). When
t, becomes larger than 7.2, only the correlations of the
first type survive, and the signal W (¢,,) tends to its
minimum, W§ (e ). Thus, the signal W (t,,) exhibits
a peak of width 7!? [see Figs. 8—10 and the discussion
that follows Eq. (6.43)].

To see the connection between W.*X(T,,) (n#0) and
W (t,,), one can use the fact that in the strong-field re-
gime the number n of the PT-3 signals of comparable in-
tensity is large, and owing to relation (7.17) can be ex-
pressed as

no(t)~[W ()17 1. (7.19)
Since the signal W) decreases with increasing t,, it fol-
lows that n, increases with increasing t,, (in the limit
a;t;<<1  considered in  this paper), ie,
ng(0)=ng(t,,=0)<ngl)=n(t;,>>7!?). Now it is
possible to get a qualitative understanding of the depen-
dence of the signal W.> with a given n on t,,. As 1,
varies from 0 to t;,> 712, n, rises from n4(0) to ny( )
and the “distribution” function W'> becomes wider and,
consequently, lower in the center (small n) and higher at
the wings (large n) (see Fig. 12). For fixed n <ny(0), >
decreases with increasing ¢;,, while for n * ny( ), the
signal W' increases with increasing t,,. Thus in the
former case there is a peak centered at ¢;, and in the
latter case a dip. In the intermediate range of n,
no(0)<n <ngy( ), the signal first increases and then de-
creases with increasing t,,. For t;, > 7!? the signal W >
reaches the background value shown in Fig. 12(b). The
narrow dip in the central peak that can occur for fully
correlated pulses and small n can be traced to the fact
that at ¢, =0 the contribution of the correlations of the
second type to the signal is negative, and they are des-
troyed on a time scale ¢,, <<7!%. For example, at t,,=0
this contribution to the first-order signal W{>’ is charac-
terized by (¢ —@)~m and is negative as cos(¢ —¢)~—1
in Eq. (7.18). Since these correlations are destroyed as ¢,,
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varies from O to t,, =~7)2/ (Qpmintp )1/2, this leads to the dip
in the central peak having this width.

B. Pulses with equal intensities

In this case the behavior of T'(z,) is different for the
two subensembles even at t,, =0 [see Fig. 11(b)], and con-
sequently W), (t,,=0)#W3 . (t,,=0). As these sig-
nals represent Fourier transforms (phase factor
explin (¢—¢)]) of T(z,), and, as discussed previously,
the range of (¢ —¢) that contributes to the signal is much
narrower for the “minima” subensemble, it follows that
the distribution W,‘,?,llin(tu =0) over n is much wider and
lower than W), (t,,=0); that is, ng(2;,=0)
5> max(t12=0) [see Fig. 13(a)]. Hence, W), (t,,=0)
and W,.)..(t,,=0) determines the signals of small and
high orders, respectively. As in the case of pulses with
very different intensities, the distributions W,‘,?,:,a,(tlz)
and W3, (t,,) acquire some positive and negative asym-
metry, respectively, as ¢, increases. However, the
asymmetrical parts of these signals are not canceled in
W3(t,,). Ast), tends from O to t;, >>7!%, both “distri-
butions” become wider and lower, and the relation
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FIG. 13. Distribution of the signal intensity as a function of
order n for different delay times: (a) —t,=0; (b) —¢,, =272
The fully correlated pulses (®=1) have nearly equal intensities
(a1, =105, a,t,=100), and Apt,=14. All the notations are the
same as in Fig. 12.
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no,min(?12) > Mo max(212) is satisfied for any ¢, [see Fig.
13(b)]. As a result, the signal of small order n is still
determined by the “maxima” distribution
[W A1) =W (t;)] and has positive asymmetry,
while that of high order is determined by the “minima”
distribution and has negative asymmetry. When the
Doppler width is sufficiently large such that

172
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b
7

condition (7.15) can be satisfied in the whole range of
é—¢ contributing to the signal, and the asymmetry be-
comes most visible.

In the opposite limiting case of noncorrelated pulses,
the position as well as the amplitude of interference
fringes varies in time [see Fig. 11(c)]. Therefore only the
first type of the population correlations exists at ¢, =0.
Moreover, the additional detuning vanishs, and nothing
changes for ¢,,7-0 as compared with the case of zero de-
lay time. As a result, W (¢,,)=W;’(0) and does not
vary with ,.

Ap >

C. Dephasing of two Bloch vectors

Up to now, we have been concerned with the signal as
a function of ¢, for fixed £,. One can also try to under-
stand the qualitative behavior of the correlation function
T(1,)={p3p;) as a function of #, for fixed 7,,. Explicit-
ly, T(t,)=exp{At,}/3 [see Egs. (6.9) and (6.10)] and
leads to all the results for the PT-3 signal discussed in
Sec. VI. This correlation function describes the relative
dephasing of the components p; and g; of two Bloch vec-
tors, R and R, associated with two-level atoms having
different velocities and spatial positions, r and ¥, such
that

88 and ¢=¢(r)F(T)=6 . (7.20)

To understand the origin of Eq. (6.9), we examine the ro-
tation of R and R using the model discussed in Sec. III.
We consider the excitation pulses to be fully overlapping
and take into account a nonzero delay time by introduc-
ing an additional detuning h,4 ;(¢;,,¢4) given by Eq.
(3.10). It follows from condition (7.20) that, generally
speaking, h,q37h,4;. Hence, even if two atoms have
equal velocities, their effective detunings differ if they are
located at different spatial points. Moreover, these atoms
see different field amplitudes at different spatial locations.

First we consider the Bloch vector R. It rotates with
the angular velocity H given by

X
H= Y ,
-—(8+had,3)

(7.21)

[see Eq. (3.6)], where X and Y are the real and imaginary
parts of the Rabi frequency f(z) associated with a total
electric field, X +iY = — f(¢), and the atom-field detun-
ing & is modified by the addition of h, ;. For the
remainder of this section we assume that 77/=1_;i,j=1,2.

Owing to the fluctuating character of the angular ve-
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locity components X and Y, the Bloch vector R rotates
randomly and its tip undergoes a fast, random walk
movement over the sphere having unit radius. This sto-
chastic movement is superimposed on the free precession
of the Bloch vector about the 3 axis with the constant an-
gular velocity —(8+h,,43). By moving from the “abso-
lute” reference frame, where the angular velocity is given
by H, into the reference frame that rotates about the 3
axis with angular velocity —(8+h,4;), one transforms
away this regular rotation. In the new reference frame
the component of the vector H along the 3 axis is zero
and the X and Y components are modified. However, if

(8+had,3)Tc <1 ’ (7.22)

the modification of X and Y can be neglected. In the fol-
lowing discussion the analysis of the rotation of the vec-
tor R is carried out with respect to the rotating reference
frame.

During time interval 7., X, and Y can be considered as
constant, and the Bloch vector R deviates from its initial
position R(¢) by a small angle

X(r )~ (X2 + YY) 25 <1 . (7.23)

The rotation occurring within the next interval of dura-
tion 7, is independent of any previous one. According to
the random walk model, after m such rotations, at time
t; =m7, the Bloch vector R(t +¢,) deviates from R(?) by
an angle y(z,) whose mean square is

(x4t =m{x4r,)) ~2a(d)t, (7.24)

From Eq. (7.24) one can see that the Bloch vector loses
memory of its initial conditions

R(0)=(0,0,1) (7.25)

in a time period of order [a(¢)] ™!, when it has rotated by
an angle of order unity** (see Fig. 14). The criterion
(7.23) of the random walk model at the same time justifies
application of the decorrelation approximation in solving
the Bloch equations (2.10), and leads to the exact solution
(5.3) for {py). For t>[al($)]”!, the position of the
Bloch vector can be regarded as random. For such times,
the mean square values of its components are equal,
namely

(P =) =(p}) =1, t>[al¢)]”!

The second Bloch vector R has the same initial posi-
tion (7.25) and undergoes a similar rotation that results in

(7.27)

(7.26)

BD=(pD=(p}=1

for times ¢ > [a($)] L.

To start the analysis of the relative dephasing of R and
R, we first return to the “absolute” reference frame. Be-
cause H#H, the tip of the vector R follows a trajectory
that differs from that of the vector R. To find the relative
dephasing of the Bloch vectors induced by fluctuations,
one first has to eliminate any possible constant angle 6,
between their projections on the plane defined by the axes
1 and 2. This angles does not affect the populations p;
and p; and leads only to the constant phase shift between

V. FINKELSTEIN AND P. R. BERMAN 41

the coherences, p;+ip, and g, +ip,, of two atoms. The
angle 6§, is given by

6o={(argf(r)) —argf (1))

and can be obtained by the minimization of the expres-
sion (|H— Hg [2), where Hg represents the vector H ro-
tated by the angle 6, about the 3 axis. Solving the equa-
tion

2
7.
d90<|H H, [2)=0 (7.28)

asin(¢—@)+a,,(sing —sing)
a,cos(¢—@)+a,+a,(cosp—cosd)

(7.29)

Only after the Bloch vector R and its angular velocity
vector H are rotated by the angle 6,, given by Eq. (7.29),
about the 3 axis, which is when the rotations

RoRyA—H,

are fulfilled, can one say that the remaining divergence of
the trajectories of the Bloch vectors represents the pro-
cess of their relative dephasing.

We need only consider Bloch vectors R and ﬁeo whose

tips follow close trajectories, since it is only these atoms
for which the relative dephasing is sufficiently small for
time ¢ =t, to contribute appreciably to the signal. In the
strong-field regime the necessary condition for a slow rel-

ative dephasing of the Bloch vector is
ald)=ald) .

Condition (7.30) implies that the two considered atoms
are at positions where the intensities of the interference
fringes are nearly equal. At time ¢~[a(¢)]”
~[a(d)] << t, when conditions (7.26) and (7.27) are al-
ready satisfied, but the relative dephasing is still very
small, the correlation function 7' (¢) takes the form

y=1.

Fora '<t< ty, however, the rotation and, consequently,
the process of dephasing of the Bloch vectors continues.
As a result, T(¢) slowly decreases from ; and tends to-
wards 0. The question we address is as follows: What is
the speed of this process and what is its origin?

By simple geometrical consideration one can show that
in the strong-field regime the correlation function T'(z,)
is expressed in terms of an internal product of the Bloch
vectors (R-R) as

(7.30)

a H=(pyp;)={(p3)=(p3} (7.31)

T(1,)=4((R'R)) . (7.32)

Equation (7.32) implies that it is convenient to analyze
the relative dephasing of the Bloch vectors in a reference
frame which we call the “R” frame, tied to the vector R,
rather than in the ‘‘absolute” frame where both of the
vectors are rotating. In the absolute frame each of the
three axes of the R frame rotates with the angular veloci-
ty H and at t=0 coincides with a corresponding axis of
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the absolute frame, that is,
M,=[HM,]; IM,|*=1,
m;(0)=8;, j,i=12,3,

(7.33)

where the wunit vector M; with coordinates
(m,;,m,;,ms;) determines direction of the i axis of the R
frame at time ¢. All three vectors M, , ; undergo random
rotation, remaining perpendicular to each other (see Fig.
14). It has been shown** that for ¢ >>[a(¢)]™! their
coordinates have the following correlations:

(m;(Om(t —7)) =188,

e TN if j=1,2

X e—2a(¢)!71 if j=3,

(7.34)

where the quantity [a(¢)]~! plays the role of a correla-
tion time.

The vector R coincides with the 3 axis M; of the R
frame and, in this frame, is given by Ry =(0,0,1) at any
time, where the script R means that a vector is con-
sidered in the R frame. Then, T'(z,) given by Eq. (7.32)
transforms into

|
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T(t,)=4(pgr3) , (7.35)

where (pr;) is the average third component of Rpy.
Thus, the two-atom correlation function in the absolute
frame is now expressed in terms of the averaged com-
ponent of the single Bloch vector in the R frame. Rota-
tion of this vector takes the form

Ry =[8H Ry J;8Hz =(Hy —H)y - (7.36)

According to Eq. (7.33), the components dAy; of the vec-
tor 8Hy are given by
3
Shpi= 3 mj,-(ﬁeo—-H)j (7.37)
j=1

and 6Hy represents the vector (ﬁgo_H) that undergoes
some additional random rotation. This rotation is in-
verse to that of the Bloch vector R in the absolute frame
and is described by characteristic time ~[a($)]™! [see
Eq. (7.34)]. All the components of the vector 8Hy are
fluctuating quantities, and using Egs. (7.37) and (7.34) one
obtains their correlation functions:

(8hg;(8hg;(t = 7)) =38, [{[f () =fo (DILf*(t =T)—f5 (1 =)D H (B hog3—hyg 3 e 24N 155 a(4) . (7.38)

One can see from Eq. (7.38) that fluctuations of the angu-
lar velocity vector in the “R” frame are characterized by
two correlation times: the time 7, of the Rabi frequency
fluctuations and the time [2a(¢)] ™! associated with ran-
dom rotation of the component —(8_ +h,q3—h,q3)g of
the vector 8Hy, the latter time being much larger than
Te.

Since the dephasing of the Bloch vectors is assumed to
be slow relative to their random rotation, Ry varies only

R(0) -R(0)-M3(0)

/’M1(t)

R

S =R =Mglt)

M;(0) Mo(0)

FIG. 14. The positions of the axes M, , ;3 of the “R” frame,
tied to the Bloch vector R (R =M;), for time t=0 (the solid ar-
rows), and after random rotation, for t0 (the dashed arrows).
The initial position of the Bloch vector R coincides with R(0).
However, for time 170, owing to difference in angular veloci-
ties, R(¢) depicted by the dot-dashed arrow is not equal to R(?).

=

slightly in time [2a(¢)]”!. As [2a(¢)] ! is the largest
correlation time of the fluctuating vector 8Hy, under this
condition the random rotation of the vector Rz can be
considered to be of the random walk character, and the
decorrelation approximation can be used in solving Eq.
(7.36) [see discussion of Eq. (7.23)]. The third component
of the vector (R ) is then given by

(Prst)y=e "%, (7.39)
where
w 2
yzzfo S (8hg;(1)8hg;(t —7))dT . (7.40)
i=1
The speed of dephasing u can be represented as
pw=prtus, (7.41)

where 11, describes the dephasing induced by fast fluctua-
tions of 8Hy (correlation time 7.), while us originates
from relatively slow fluctuations with correlation time
[2a(¢)]~". Using Eq. (7.38), for i1, one obtains

=3[ T O fo (OIS e =)
—fzo(t—‘r)]>d7' . (7.42)

Carrying out the averaging in Eq. (7.42) and using the ex-
pression (7.20) for 6, yields
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_ 2{2a,a,[1—cos(¢ —¢)]—al,(sing —sing)?}
Hr 3[a,+a,+ay,(cosp+cosd)]
(7.43)
The second part of u, s, is given by
#az%(‘s—+had,3"‘ﬁad,3)2f0we_Zawfd"
2[8_+G (t,,)a,,(sing —sing)]?
_ [ 12)ap,(sing é)] (7.44)

3[a;+a,+a;,(cosd+cosd)]

where we take into account condition (7.30).
From Egs. (7.35), (7.39), and (7.41) one finally obtains
the correlation function T'(z,) in the form

T(t,)=5exp[—(us+ust,] . (7.45)

Expression (7.45) coincides with (6.9), since (u,+pus)
given by Egs. (7.43) and (7.44) is equal to —A,; given by
Eq. (6.10). The part of A, which is independent of & _ and
G (t},) coincides with p -, while the terms that depend on
these parameters are contained in us.

Since we consider the limiting case where the relative
dephasing of the Bloch vectors is a slow process com-
pared with their random rotation, inequality

Koy <<2a(d)t,,2ald)t, (7.46)

must be satisfied, a condition equivalent to Eq. (C5).

VIII. QUANTITATIVE RESULTS
IN A STRONG-RELAXATION LIMIT y T, >>1

In this section we calculate the PT-3 signal under con-
ditions when relaxation plays an essential role in signal
formation. It is assumed that

Y>>0 Lty =t =) T S>>y,

\ (8.1)

The condition y,(t,3—1,,—t,) <<1 insures that the sig-
nal is not seriously attenuated in a time period between
the second and the third pulses. At the same time, the
condition ¥,7, >>1 guarantees that relaxation of atomic
coherence plays an essential role during the excitation
pulses. The latter condition can result from pressure
broadening produced by a buffer gas.

—2a; tayt

W =e

2y,

+2a%21n—l(g)ln+1(§)—2a12(a1+a2)1n(§)[1n—l(§)+1n+l(§)]}

where I, is a modified Bessel function and §=2a,,t,.
The last term in Eq. (8.6), proportional to y?, is contrib-
uted by the steady-state solution T;, and should be taken
into account only when the rest of the signal vanishes.
When the intensity of the pulses increases, so that a
strong-field regime (6.8) is realized, two very different sit-
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A. Weak-field regime

In a weak-field regime (6.2) and under condition (8.1)
the strongest signal is of order n ==*1. One can use Eq.
(2) to obtain the needed Fourier component in the form

2a,azy,tp

TN, ) =ajt,+
PLOTIER T gyli8?

(8.2)
In the strong-relaxation limit, Eq. (2.23) is no longer val-
id, and the PT-3 signal must be obtained directly from
Egs. (2.14) and (8.2). Integrating over 6, in Eq. (2.14),
one arrives at the signal

K, aa.t
WO =Kot + ———L 8.3)
2y,
where
2 %
Y
K,=ex . 1—erf ,
0 P Af) A,
42 (8.4)
1 Yi Ye  —~—
K =—|1- K,+ V2/m .
1 2 1 AZD 0 AD /7T

Similar to the signal in the weak-relaxation limit [see
Eq. (6.7)], the signal (8.3) does not depend on the delay
time. However, in contrast to that case, the first term in
Eq. (8.3), which depends on the correlation of the pulses
and is proportional to the square of the mean amplitude
p“)(tp) of the population difference grating, can be much
larger than the second term proportional to a;a,, which
is independent of this correlation and originates from the
stochastic part of the grating.

B. Moderate and strong-field regimes

If the intensity of the pulses increases so that
Qmaxlp 2 1, the correlation function T'(z,) is given by

8|Q|2Yttp
4y;+86%

T(t,)=e " +T,, (8.5)

where x and Q are defined in Eqgs. (4.5) and (4.6) and we
neglect all the terms leading to minor contributions to
the PT-3 signal. Using Egs. (2.19), (2.14), and (8.5) one
obtains the PT-3 signal

Kt
P KT + =2 {ayay[ T2 (E)+ T2 (E)]+ (a3 +a2+2a2,)IXE)

i

AmaxY

+0 , (8.6)

f

uations may occur, depending on the degree of the mutu-
al correlation of the pulses and their intensities.

If the pulses are almost fully correlated and have al-
most equal intensities (a;=~a,=a;;=a), so that condi-
tion (6.52) is satisfied, the first term in Eq. (8.6) dom-
inates, and the PT-3 signal is given by
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2
exp(—n"/2at,) —ya;+ay~2ap,),

W(3)=K
" 0 4mat,

(8.7)
The signal (8.7) does not exhibit any dependence on delay
time t;, and for n <</ at, it represents a plateau of
height (41ratp)_1, provided at,, <<1. The PT-3 signal
(8.7) is completely determined by the mean amplitude of
the population grating, since

W I=Kpn) . (8.8)

In contrast with the results in a weak-relaxation limit (see
discussion at the end of Sec. VI), when y,2, >>1, the sto-
chastic contribution to the population grating is
effectively suppressed, while the mean amplitude is not
effected by the relaxation of atomic coherence. Transi-
tion from the weak-relaxation limit to the strong-
relaxation one is shown in Fig. 15.

For noncorrelated pulses or correlated pulses with very
different intensities, condition

(8.9)

is satisfied, and the terms which are proportional to K|,
and K, in Eq. (8.6) become exponentially small. In the
limit (8.9), which we examine for the remainder of this
section, the signal is solely determined by the contribu-
tion from the steady-state solution T,.

For moderate field intensities

a;+ay>>2a,t, "

1, LA <Y (8.10)
one can approximate
2
T(t,)=T,= (al-?}/-laz)z - a?(:;z (cos¢p+cosd)
4a%2 -
mcosdj cos¢o
8l0l%r, ]
(ay+a,)4y?+8%) |
(8.11)

PT-3 SIGNAL (arbitrary units)

0
t12/"{2

FIG. 15. Signals of order n=1 vs t,,/7!* for different trans-
verse relaxation parameter y,¢, in the case of weak longitudinal
relaxation: y,2,=0.2. The fully correlated (®=1) pulses have
nearly equal intensities @z, =100, a,t, =105, and A ,=14.
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The strongest signal occurs for orders n =+1. Picking
up the terms proportional to exp[i (¢ —¢)] and integrat-
ing over 8. in Eq. (2.14), one finds the PT-3 signal

i Koal

(a;+a,)? | (a,+a,)?
1 1Ty

2K a,a,

W= ,  (8.12)

(a1+a2)‘}’,

which exhibits no dependence on delay time.
However, when the pulses become very strong,

a1+(12>>a12,‘y1 N (8.13)
one has
4l
T(t,)=Tog=——77—". (8.14)
P oy +8%+xv,

It is shown below that in the regime (8.13), which can be
interpreted as a strong-field regime in a strong-relaxation
limit, the correlation function (8.14) leads to the PT-3 sig-
nal whose dependence on delay time resembles very much
that in a strong-field regime in a weak-relaxation limit.
Integrating over ¢_ in Eq. (2.19) and over 6, in Eq.
(2.14) yields

o Kori
" TTY'(al+a2)
2 {1+ Y [+ Y2 —1] 2
X =L S
fo vi+2y b+
(8.15)
where
Y =2n2[1-®(1—G?*)cos’¢, ] ,
) (8.16)
B L L
ks (a+ay)y,

For one strong and one weak pulse,
Upin <<V, <<a

max ?

it follows that Y <<1 in Eq. (8.15), so that the signal can
be approximated as

2K OY%amin
2

Y t@max

W’(l3)=

2—®(1—-G?)]. (8.17)
The signal (8.17) has the same dependence on the correla-
tion and delay times as the weak-relaxation limit signal
(6.14), but it is much weaker.

If both pulses are strong, that is if

a,a, >y, , (8.18)

the main contribution to the integral in Eq. (8.15) comes
from the regions where Y >>1, and for n70, Eq. (8.15)
can be transformed into

2K,y w2exp(—nvV2/VY)
W= 0 exp(—n .
" vy (a,+a,) fo V2Y dé+

(8.19)
The integral in Eq. (8.19) can be estimated by the same
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method used to approximate the integral in Eq. (D7).
The strongest signal, characterized by small n, n <<7,,
for strongly correlated pulses (1—® <<1) exhibits a
symmetrical peak centered at ¢,, =0. The signal intensity
for t,, < 71%is given by

2
W(”:“—“KOL
" omlatay)ym,
2
X1In 777—_, (8.20)
nlexp(—Z/2)+V'Z +exp(—2Z)]
where
1—®(1—G¥) 2
z=1 Iy 8.21)

n2

If one compares Eqgs. (8.20) and (6.29), one finds that the
signals in the strong-relaxation and in the weak-
relaxation limits are similar, if a.,, >>a.;, (see Fig. 16).
The peak has width |t,,|~7!? and for fully correlated
pulses (®=1), is approximately In(7,/n) times higher
than the background signal

w3 Koy

= (8.22)
" ma;+ay)ym,

which would be obtained for non-correlated pulses
(@=0).

The signal of higher order n >, >>1, is given by
2Koyi

3)— _ n[4+e(1-G?)]

" 7T(a1+a2)71n'y 47]7
2
xI, | P2U=G) | (8.23)
417,,

For fully correlated pulses the signal (8.23) exhibits a pro-
found dip centered at z,, =0, and for |t,,|>7!* it coin-
cides with the signal for noncorrelated pulses.

One can see from the results presented above, that un-

PT-3 SIGNAL (arbitrary vunits)

-4 -2 0
tlz/"':z

FIG. 16. Signals of order n=1 vs t,, /7!? for different trans-
verse relaxation parameter y,?, and a small longitudinal relaxa-
tion parameter: y;t,=0.2. The fully correlated (®=1) pulses
have very different intensities a,z,=100, a,t,= 10%, and
AD tp =14.
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der condition (8.13) the PT-3 signal in the strong-
relaxation regime resembles that in the weak-relaxation

time, attenuated approximately by a factor
3V2rK,y?
TVt «<1; (8.24)
2y, (a;ta,)

1

while the parameter 3(4y,)” plays the role of the

effective pulse duration.

IX. SUMMARY AND DISCUSSION

In this paper we have considered pulses with rectangu-
lar envelopes; that is, rise and fall times ¢, and ¢ r of the
pulses have been assumed to be negligible:

t,=t;=0. 9.1)
If one takes into account nonzero values of ¢, and ¢ +» One
sees that, for the symmetrical part of the signal, Wy, gen-
eralization of the results obtained in Sec. VI is straight-
forward. Since Wy is proportional to T("’”")(tp,B,S), one
can show that all the results for W remain valid provid-
ed that the substitution

ai,= [ “at)dt 9.2)
is made. Thus, the results leading to nearly symmetrical
signals can be still used. However, the asymmetrical part
of the signal may undergo serious charge, if
t,,t;>a” ', A", In this case the effective range of detun-
ings that can contribute to the signal narrows from A, to
min(z,” ‘,tf_ 1). As a result, the parameter D increases:

3a,ta,) (a,+a2)max(t,2,tf2)
4At, %

,  (9.3)

and asymmetry of the signal up to order » =a max(1,,;)
is suppressed [see Eqs. (36) and (38)]. If max(z,,t,)~1,,
signals of all orders become symmetrical.

It has been shown in Sec. VI that in a weak-relaxation
limit the PT-3 signal in many cases depends only weakly
on correlation properties of the pulses when |t,|>7!%
This effect, however, cannot be interpreted as a loss of
memory of the pulse correlations by the two-level atoms.
This memory is preserved, if alt 12I <<1, and can be re-
vealed under certain conditions, as in the case of the sig-
nals of high orders induced by excitation pulses having
equal intensities. The origin of the ® independence of
the PT-3 signal for |tz;,| > 7! can be related to the fact
that the third pulse is weak and noncorrelated with the
first two. As a result, in the weak-relaxation and the
strong-field limit, different velocity groups of atoms con-
tribute to the signal independently [ W * ~ T(z,,8,8)]. It
will be shown elsewhere that in the case of two-pulse
transients, when the atoms with different velocities might
contribute to the signal coherently, the difference in the
signals for correlated and noncorrelated pulses for
[t,,| > 72 can be significant.

In summary, we have studied the three-pulse optical
coherent transients induced by broad-bandwidth pulses.
Within the approximation of a small delay time between
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the first two excitation pulses, we have considered,
analytically and numerically, different values for the
pulse intensities, relaxation times, and Doppler width. It
was shown that if the intensities of the excitation pulses
are high enough, stochastic spatial gratings of many or-
ders can be created in the population difference of two-
level atoms and the signals with comparable energies
might be emitted in many directions. These signals, as
functions of the delay time, can vary sigmﬁcantly on the
time scale of the cross-correlation time 7.2 of the pulses,
provided the relaxation processes in the atomic vapor are
negligible on this time scale. We predict that the signal
for order n <<(apint,)'’* as a function of delay time ex-
hibits a peak having width |z;,| ~7!2. When the pulses
are strongly correlated and their intensities are not equal,
this peak has a very narrow dip at 7,, =0 whose width is
much smaller than 7!2. The signals of higher order can
exhibit either a dip or a considerable negative asymmetry
depending on the Doppler width of the atomic ensemble
and ratio of intensities of the excitation pulses. All these
features occur for strongly correlated pulses, when

Cnint, > 1.

For a two-level atom driven by two arbitrary pulses
with delay time ¢, satisfying |t,,| <<a,,,, we have
shown that the final position of its Bloch vector can be
described as a result of rotation performed under the
influence of two fully overlapping pulses that coincide
with the original pulses. However, as a result of this

J
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transformation, an additional fluctuating detuning pa-
rameter appears in the Bloch equations, which is the only
effect of the time delay of the pulses. We have interpret-
ed the obtained results by using this model.

If the relaxation cannot be neglected and the signal is
detectable (T, <t,<T;), the signal, induced by fully
correlated pulses with equal intensities, is much stronger
than in all other cases and does not show any dependence
on delay time. If the intensities are different, the PT-3
signal exhibits a profile which resembles that in a weak-
relaxation regime; however, the signal is much weaker.

The experiments performed on different atomic vapors
indicate that the PT-3 signal is very sensitive to the atom-
ic level structure, which is usually much more complicat-
ed than a two-level system. The only experiment,'> of
which we are aware, where the active atoms could be
realistically approximated as a two-level system, revealed
direct dependence of the signal on 7!? in the case when
one of the pulses was strong. Extension of this work to
the case of two strong pulses would allow for a more
complete test of our results.
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APPENDIX A: GENERAL EXPRESSION FOR THE PT-3 SIGNAL

The energy W' of the PT-3 signal radiated in the direction k3+nkd under the influence of the third pulse that starts

at time t3, t3

D=cym [ [ws—awE—a)

f (pW(1;8)pl;™(1;8))dt |d5d5

11 1,3, and has duration 3, can be defined as'?

(A1)

where C is a constant. The third pulse is weak, and therefore a component p';’ of the atomic coherence p,, satisfies the

equation
— _,0
pizrllz) (7,+18)p +lf3p(n) v, tp)’
where
k+nk B
Pas(T Zp 4y =pa 650

Substituting the solution of Eq. (A2) into Eq. (A1), one has

WP=c(ahm) ™' [ [w(s—apE—A)

X [fo dtfodt’fo'dt"(f3(t'+t3)f§(t”+t3)

Xe

X p§"(1,;8)p}

—rltg

(A2)
(A3)

At£+t‘+t”)—(i6+y,)(t—t’)—(—i5+y,)(1—l”)
~");8)) |d8db . (A4)

Since the third pulse is not correlated with the first two excitation pulses, averaging in Eq. (A4) can be carried out sepa-
rately for f3(¢'+1¢5)f3(¢t'""+15) and p(’”(t ;8)p5 " t ;8). Using the approximation of 8-correlated fluctuations for the

third pulse,
(f3(t'+t) 3" +13)) =ad(t’'—t")

(AS)
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where 0<t', 1" <t3,, and a;=(|f;|*)72’, and integrating over ¢", t, and ¢’ in Eq. (A4), one finally gets the expression

_ _ —40
W=C(2y 0 m) " ay(1—e 1) i) [ U

Introducing W.*) by the relation

—_ — —,0
W=[CVray1—e 7)) 2y 85" T WY

one obtains Eq. (2.14).

APPENDIX B: EXPRESSION FOR T ~1)(¢)
IN A WEAK-FIELD REGIME

In a weak-field regime

aj,a, <<max[z, ',min(y;,y,)] (B1)

perturbation theory can be applied in Egs. (4.1)-(4.3).
This is more convenient than taking the weak-field limit
of the general solution (5.4). The population gratings of
order =1 dominate the process and lead to the signals of
equal intensity. Iterating Eqgs. (4.1)-(4.3) twice yields
2
T(t;l,—1)=gli(1—

i

t et —2y,(t—t)=2y (' —1")
+2a1a2ff e ! K
oo
Xcosd_(t'—t")dt'dt" .

(B2)

—y,t
e 1)2

In a weak-relaxation limit (6.1), one obtains Eq. (6.3). In
the case of strong transverse relaxation (8.1), Eq. (B2)
leads to Eq. (8.2).

APPENDIX C: EXPRESSION FOR T (tp)
IN A WEAK-RELAXATION LIMIT
IN A STRONG-FIELD REGIME

In a weak-relaxation limit (6.1) the solution (5.4) is
given by

3 At
T(t,)=3 e"'*T,, (C1)
i=1

where the exponents A, , ; are the roots of the equation
AMA+X)(A+3x)=—2y (A+x)—8%(A+2x) .  (C2)

At time Ly, only those atoms whose Bloch vectors have
not dephased contribute to the signal. In the weak-
relaxation limit, the main contrib~utions to the integral
(2.19) come from those regions (@, ), where solution (C1)
is not exponentially small, that is, where at least one of
the indexes A; satisfies the condition

Ait, <<1. (C3)
If the pulses are not fully correlated or their intensities
are not very close to each other, i.e., if

8= DWE—=A) | —n—m( (0.5 F)y g5 45
2y +ib_ (T "(10;6,8))d8d5 . (A6)
(A7)
|
(a;+a,—2a,)t,>>1, (C4)

the regions in the plane (¢,$) that satisfy requirement
(C3) are defined by condition

Vy,8,<<x . (C5)

Then the roots of Eq. (C2) are given by
2y +8%)
Ay=— _y_g__f_ ,
X
(C6)

Ary=—Xx, Ay=—3x
with T, , ; being being equal to

T,=~1,|T,| «<1,T;=%. (C?

The root A, is much smaller than the other two; under
condition (C4) it follows that xz, >>1, and only the term
having index A, on the right-hand side of Eq. (C1) can
provide a contribution which is not exponentially small.
Taking into account Egs. (C6) and (C7) yields

2y +8%)t,

T(t,)=+exp 3

(C8)

If condition (C5) is violated, the difference between the
exact solution (C1) and the approximate solution 7'(z,)
given by Eq. (C8) is exponentially small. Thus, one can
use Eq. (C8) for any y, Sf, and x.

If the pulses are fully correlated and have almost equal
intensities, i.e.,

(a1+a2—’2a12)1p<1 N (C9)

condition (C5) is violated for the atoms situated close to
the minima of the interference fringes, the regions for
which the field is weak. Consequently, for

1

+|, btm| << —m———
bl | << f

<«<1. (C10)

Equation (C8) is not valid. Despite this fact we are still
be able to use Eq. (C8) since the contribution to the PT-3
signal from these regions is of order of [(al—l-otz)tp]‘1
and can be neglected.

Hence we may conclude that in a strong-field regime
the signal is governed by the term (C8) alone. Taking
into account expressions (4.5), (4.7), and (5.7), one gets
Eqgs. (6.9)—(6.10) of the text.
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APPENDIX D: CALCULATION OF W}’ IN A STRONG-FIELD REGIME
Using the symmetry of Eq. (6.10) under the permutations
p>—¢+2mm; m =0,%1, ...
we can rewrite Eq. (2.19) as

T £p38-)= # foﬁd‘b* f_”;z/zT(tp Je _Ziw_d‘ﬁ“ ’ oy

with
T(1,;6_)=+exp[ ——2tp(4sin2¢_{a,a2—[ 1—G(t,)]a%,cos’p, |
+8% +48_G(t,,)a ,sing_cosd ) 3(a;+a,+2a,,cosd_cosd, )] '] . (D2)

In order to obtain the analytical expressions for the PT-3 signal with two strong pulses, one substitutes (D1) in Eq.
(2.23) and carries out the § _ integration to obtain

W=Ws+W,s (D3)
with symmetrical, Wy, and asymmetrical, W g, parts of the signal given by
_ 2 T /2 b
Ws—;—;fo d¢+f0 dé_e bcos2ng_ (D4)
2i T w/2 —_p . .
WAS=§_[0 d¢+f0 dé_e bsin(2n¢_erflia) (D5)

where erf is an error function and
V2®G 7 sing_cos
{(1+V®Bcosp_cosp . )[1+D(1+V®Bcosd_cosd,)]}*5 ’
_27’sin’¢_(1—Pycos’d_)

(D6)
1+V ®Bcos¢ _cosd
172 172
4a,a,t, 2(a;a,) a;+a,)
= |7 >1, ®=®(1-G* =<1, p=—"<]1, =
K a,+a,) 0= ® ) B ata; 4831,

Using the fact that 7>>1, one can analytically carry out the ¢_ integration in Eq. (D4) provided n70. Using these
conditions, the approximation sing_~¢_,cos¢_~1 in expressions (D6) for a and b, and setting the upper integration
limit equal to «o, we carry out the integration over ¢ _ in Eq. (D4) to obtain

» [ 1+V®Bcosp, |'? n¥(1+V®Bcoss., )
Ws= L f > hs exp | — 0 3 a do, . (D7)
InmV2mr Yo 1—®cos’d 27%(1 —dycos’d )
If, in addition, the inequality
(1—dg)p?> 1 (D8)

is satisfied, it is also possible to carry out similar integration in Eq. (D5) that yields

» [ 1+V®Bcos 172 n*(1+V®Bcoss., )
= [ 050+ - — " lerfix)d, (D9)
3pnv2r Yo | 1—dycos’p, 29%(1—®ycos’d . )
where
GnV'® cosé , (1—®cos?¢ ) w0
x= > > — (D10)
V21(1—dycosd ) (1—®ycos’d ) (1+V PBcoss, )

1. Weak mutual correlation of the pulses
Assuming that

n2

(a1+a2)tp

P

2
n
2 (1T 2

n

1+ <1, (D11)
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it follows that
-1

2
B, ®y<< 1+£2— X <<1,
n

and that inequality (D8) is valid. Extracting the terms of zero, first, and second orders in V/ ‘D in the integrals (D7) and
(D9) one finds

—n?/29? 2
0= L ("4 vBeosp, | L [1-1 |+
" 37‘[17\/27Tfﬂ st T 1T vp 2
2 dp? 2n*t  nt ®BGn 2+D n?
+cost, | — [1—2= |- 1+==—— —_— —= || tdo, .
9+ 2 1]2 8 172 174 nV2m(1+D) | 1+D 2 ¢+
(D12)

Carrying out the integration in (D12), one recovers Eq. (6.19).

2. Strongly correlated pulses

In this case 1 —® <<1, and (1—®) is treated as a small parameter. The remainder of this Appendix is devoted to a
consideration of this limit.

a. Signals of order n <<7). First we consider signals, characterized by small n, n <<7. To estimate the symmetrical
part of the signal, Wy, from Eq. (D7), we observe that the expression under the integral sign is not exponentially small
onlyify, <¢, <m—y_, where y, can be expressed as

V118V (1—dg)n?
A AE T N I e DO D13
n (1£8V ®)n
Taking into account only the contributions which are not exponentially small, one has
_ 1 [ 1+V®Bcosp, | vy 1+vVog 172
Ws= — f 2 dé,— f 2 dé+
3nmV2w [Yo | 1—dycos’h, 0 | 1—®y(1—¢%)
— 172
y- -V
_p amves ), D16
0 1—®y(1—¢7%)

Expanding (1+B8V® cosé . )!/? in terms of BV'® up to the fifth order in the first term of Eq. (D14) gives good accuracy
even for S=1. In this limit the integrals reduce to

2 502+, P8 2 5(1+@,)dp?
We=—"b | - 2B _ 0 F(o,)+ 2B o (@)
3V 2 49, 1922 4, 96D,
— 172 172 2 172
1+VoB (Dg) "y Doy
- ——F | In|———+ |1+ , (D15)
E o n l (1—dg)' 2 1—®,

where F and E are elliptic integrals of the first and second kind, ** respectively.

Under the assumption that (1—®;) <<1, one can use asymptotic expressions for the elliptical functions, and, taking
into account the fact that

opr 502+ d)dB*
49, 192d2

2 ~(1+Vep) 2+ (1-Vep)' 2, (D16)
one can arrive at Eq. (6.30) of the text.

For t, >>7!? it follows that G=1 and ®,=0, and thus y, =0. Although the accuracy of Eq. (D15) is reasonably
good, one can use the more accurate expression (D14) to obtain the background value of Wy:

V3 172
3mpVr

2(112 4(112

Wty >>7.)= PR
1 2 12

(D17)

a;+a,

The background signal depends only weakly on the correlation parameter ®, and, independent of ®, differs by at most
10% from the value
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1
W(3)= S
" 3nV2r
which would be obtained for noncorrelated pulses (®=0). For a.;,<<a.., one obtains Eq. (6.37), while for
a,=a,;®=1, Eq. (D17) leads to the symmetrical part of Eq. (6.42).
To estimate the asymmetrical part of the signal, W ,g, we represent it in the form

We=A,—A_, (D18)

where, according to Eq. (D5), 4 is given by
2i /2 /2 —b . .
Ar=3—77l_2f0 d¢+f0 dé_e "Tsin(2ng_)erflia,) , (D19)

and a, =a(xB),b.=>b(L£B). It is not difficult to show that 4, >0, and thus the signal has a positive asymmetry,
when A, > A _, and a negative one in the opposite case.

If (1—®()n < 1, one has to evaluate this exact expression. However, if (1—®;)n> 1, one can use Eq. (D9) to approx-
imate it as
172

1+V'®B cos
Beosd erfiy )dd ., , (D20)

1—®ycos’d

— 1 fv/Z
t 3gmv2r I

where y = xy(x£pB).

In the case of small order n,n <<%, which is considered now, it is shown below that W5 < Wg; however, there are
certain cases where W,g qualitatively modifies the signal. Such a modification can occur for =1, corresponding to
equal intensities of the pulses.

First we estimate W, ¢ for

(1—®)np*<1, (D21)
using the exact equation (D19). In the limit (D21),
—2

erf(ia)=—="(a +1ia?),

vV

and, expanding exp( —b) up to the first order in the parameter (1 —®;)7? one finds

4 /2 /2 2n%sin%¢ _sin%¢ |
A= = d do_exp | — —
Y3V fO P+ fO ¢-exp 1£V'® cosd_cosd .

[ V2G7sing _cosé

sin(2n¢ _)

{(12V® cos¢_cosd . )[1+D (1£V'® cosd _cosd ,)]}°°
N 2V2G’sin’$_cos’p
{(1:V® cos¢_cosd )’[1+D (1+V'® cosé _cosd , )]}°°
G?
3[1+D (1£V® cosd _cosd )]

— 1+, (D22)

Taking into account the fact that the main contribution to the integral (D22) comes from the region 0 <¢_ <<1, we first
integrate Eq. (D22) over ¢, putting sing , =¢, and cos¢ . =1 to obtain

2G a2 sin(2né_)
A= 2 do- d 172
37 Yo [1+D(1£V®cosd_)]
27%sin’¢ _ G?
X |1+ — —= -1+ . D23
1V ®cosd, | 3[1+D(1+V @ cosg,)] 0 (D23

When D >>1, 4, ~[max(n,v'D )] and leads to a negligibly small asymmetrical signal. Evaluating the integral (D23)
under the assumption that D << 1 and subtracting 4 _ from 4 ., one obtains

2nG

G 2
2 . 4
AS 3" _‘2(“—2 1 ) D+ 477 1 q)O M (D2 )

for (1—®) <<n?/7?, one recovers Eq. (6.39).
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To estimate W g when (1—®;)n*> 1, one can use Eq. (D20) and calculateonly 4, ,as 4, >4 _. If
1<<(1—dy)n?<<n?, (D25)

then y,=n/n<<1, and for the integration range y, <¢, <w/2 in Eq. (D20), it follows that y <<1, and
sin’¢ , >>(1—®,). Consequently, 4 , takes the form

1 f,,/z Gn cos¢

4. dé,

= = + — In —
3mpVr | (1—=dy)?2  pVa(1—d,) | yo+[y3+(1—V®)+2D(1—d,)]'2

C 3mVa Yre sindg, V2D +1
G
= (D26)
6mnV'm(2D +1)
which leads to Eq. (6.40) for D <<1.
If (1—®y)n*>>n?, then y, =0;and y <1 for y, <é,, where
Gn 71— ®)[(1— VD) +D (1—dy)] 1—d, |
Yo~ 1,2€XP |~ 2,~2 (D27)
n[(1—Dy)(1+2D )] n“G P,
The main contribution to the integral (D20) comes from the region ¢, <1. Then one finds
_ | fyo ) 1/2d¢
To3mV2r |Yo | 1—p+ Dyl *
d
ZGE f 1 2 < 2 12 | (D28)
VT Y20 (1— @+ @ yp% )[D (1— D)+ (1—V D)+ % (0.5+ DPy)]
which can be integrated exactly. We present here the results in the most important cases. If D> 1,
2Gn
Wys=A4,= — (D29)
AT 32X (1—,)V2D
which is negligibly small. If D <<1, one arrives at
2(1—g)'2
s 1 Yo 2Gn 0 : (D30)

for ®=1 Eq. (D30) reduces to Eq. (6.41).

b. Signals of higher order: n>>n>>1. In this case to estimate the signal one can use Eq. (D9) to obtain W g, as the
inequality (D8) is only violated for very small ¢,,, where the variation of the signal is negligible.

For pulses with very different intensities,

Uy > Ui > 1, (D31)
one has
B<<1. (D32)

If B is so small, that

n2
B— <1, (D33)
U]

the asymmetrical part of the signal is negligible. For its symmetrical part, W, the main contribution to the integral (7)
is from the region defined by (1—®cos’¢ )= 1, leading to the result

2
3)— . _r 2
W, = Ey—e fo exp 27’2(1-+-<I>ocos o) |do,
1 (2+®y)n? dyn? (D34)
IV 2r xp 4n? 0 an? ’
where I is a modified Bessel function, which is Eq. (6.45).
If
2
<I>0>>B>>—7L2 R (D35)

n
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the result (34) is still valid. However, if

2

1>>B>>Py,
n

6223

the major contribution to the integrals (D7) and (D9), which can be used in this case, comes from the region

y =m—¢, <<1, and the PT-3 signal is given by

1 n —
B=—1 |1—serf |—Z=[D +(1— )]/
IngmV 2w ser 2 LD+ ]
2 2
e " (1—B)/2n n _
= —— |1—serf |2 [D+(1—®)] 1”2
3rn V2B se n\/2[ ( ]

where s is defined by Eq. (2.21).

L n2
fo CXP[*EF ll—B

2

Y
1— 2
2

"

’ (D36)

The signal has a negative asymmetry ( 4 _ > A ), which can be large, when D7?/n?<1.
In the limiting case of equal pulse intensities, a;=a, or =1, the region y =7 — ¢, <<1 provides the main contribu-
tion to the integrals (D7) and (D9) for any G. Then for G=0 one has

1 7 n*(1+y?/4)
(3)— ___ _ntlvy /4)
" InmV2rw f 0o P 42 dy
= ;ie—nz/‘;nz . (D37)
For (1—®y)n?/9*> 1, the signal is given by
o1 _ fmin[ﬂ,(<1>0_1—l)]/2| y exp | - nty?
" oemmVr Yo (1—dy)!”? 4} (1— D)
X |1—erf Gn 77 ||
1{2(1—P,)[D (1 —Py)+2]}
(1—,)' "2
= L 2 0- 1—erf Gn 12 > (D38)
3n*nV'nw N{2(1—@y)[D (1 —Dy)+2]}

for ®=1, Eq. (D38) reduces to Eq. (6.47).
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